Total
10 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-52881 | 1 Opencontainers | 1 Runc | 2025-11-07 | 8.2 High |
| runc is a CLI tool for spawning and running containers according to the OCI specification. In versions 1.2.7, 1.3.2 and 1.4.0-rc.2, an attacker can trick runc into misdirecting writes to /proc to other procfs files through the use of a racing container with shared mounts (we have also verified this attack is possible to exploit using a standard Dockerfile with docker buildx build as that also permits triggering parallel execution of containers with custom shared mounts configured). This redirect could be through symbolic links in a tmpfs or theoretically other methods such as regular bind-mounts. While similar, the mitigation applied for the related CVE, CVE-2019-19921, was fairly limited and effectively only caused runc to verify that when LSM labels are written they are actually procfs files. This issue is fixed in versions 1.2.8, 1.3.3, and 1.4.0-rc.3. | ||||
| CVE-2025-52565 | 1 Opencontainers | 1 Runc | 2025-11-07 | 8.2 High |
| runc is a CLI tool for spawning and running containers according to the OCI specification. Versions 1.0.0-rc3 through 1.2.7, 1.3.0-rc.1 through 1.3.2, and 1.4.0-rc.1 through 1.4.0-rc.2, due to insufficient checks when bind-mounting `/dev/pts/$n` to `/dev/console` inside the container, an attacker can trick runc into bind-mounting paths which would normally be made read-only or be masked onto a path that the attacker can write to. This attack is very similar in concept and application to CVE-2025-31133, except that it attacks a similar vulnerability in a different target (namely, the bind-mount of `/dev/pts/$n` to `/dev/console` as configured for all containers that allocate a console). This happens after `pivot_root(2)`, so this cannot be used to write to host files directly -- however, as with CVE-2025-31133, this can load to denial of service of the host or a container breakout by providing the attacker with a writable copy of `/proc/sysrq-trigger` or `/proc/sys/kernel/core_pattern` (respectively). This issue is fixed in versions 1.2.8, 1.3.3 and 1.4.0-rc.3. | ||||
| CVE-2025-62161 | 1 Youki Project | 1 Youki | 2025-11-06 | N/A |
| Youki is a container runtime written in Rust. In versions 0.5.6 and below, the initial validation of the source /dev/null is insufficient, allowing container escape when youki utilizes bind mounting the container's /dev/null as a file mask. This issue is fixed in version 0.5.7. | ||||
| CVE-2025-31133 | 1 Opencontainers | 1 Runc | 2025-11-06 | 8.2 High |
| runc is a CLI tool for spawning and running containers according to the OCI specification. In versions 1.2.7 and below, 1.3.0-rc.1 through 1.3.1, 1.4.0-rc.1 and 1.4.0-rc.2 files, runc would not perform sufficient verification that the source of the bind-mount (i.e., the container's /dev/null) was actually a real /dev/null inode when using the container's /dev/null to mask. This exposes two methods of attack: an arbitrary mount gadget, leading to host information disclosure, host denial of service, container escape, or a bypassing of maskedPaths. This issue is fixed in versions 1.2.8, 1.3.3 and 1.4.0-rc.3. | ||||
| CVE-2025-62596 | 1 Youki Project | 1 Youki | 2025-11-06 | N/A |
| Youki is a container runtime written in Rust. In versions 0.5.6 and below, youki’s apparmor handling performs insufficiently strict write-target validation, and when combined with path substitution during pathname resolution, can allow writes to unintended procfs locations. While resolving a path component-by-component, a shared-mount race can substitute intermediate components and redirect the final target. This issue is fixed in version 0.5.7. | ||||
| CVE-2024-45310 | 4 Docker, Kubernetes, Linux and 1 more | 4 Docker, Kubernetes, Linux Kernel and 1 more | 2025-07-12 | 3.6 Low |
| runc is a CLI tool for spawning and running containers according to the OCI specification. runc 1.1.13 and earlier, as well as 1.2.0-rc2 and earlier, can be tricked into creating empty files or directories in arbitrary locations in the host filesystem by sharing a volume between two containers and exploiting a race with `os.MkdirAll`. While this could be used to create empty files, existing files would not be truncated. An attacker must have the ability to start containers using some kind of custom volume configuration. Containers using user namespaces are still affected, but the scope of places an attacker can create inodes can be significantly reduced. Sufficiently strict LSM policies (SELinux/Apparmor) can also in principle block this attack -- we suspect the industry standard SELinux policy may restrict this attack's scope but the exact scope of protection hasn't been analysed. This is exploitable using runc directly as well as through Docker and Kubernetes. The issue is fixed in runc v1.1.14 and v1.2.0-rc3. Some workarounds are available. Using user namespaces restricts this attack fairly significantly such that the attacker can only create inodes in directories that the remapped root user/group has write access to. Unless the root user is remapped to an actual user on the host (such as with rootless containers that don't use `/etc/sub[ug]id`), this in practice means that an attacker would only be able to create inodes in world-writable directories. A strict enough SELinux or AppArmor policy could in principle also restrict the scope if a specific label is applied to the runc runtime, though neither the extent to which the standard existing policies block this attack nor what exact policies are needed to sufficiently restrict this attack have been thoroughly tested. | ||||
| CVE-2022-21658 | 4 Apple, Fedoraproject, Redhat and 1 more | 8 Ipados, Iphone Os, Macos and 5 more | 2025-04-22 | 7.3 High |
| Rust is a multi-paradigm, general-purpose programming language designed for performance and safety, especially safe concurrency. The Rust Security Response WG was notified that the `std::fs::remove_dir_all` standard library function is vulnerable a race condition enabling symlink following (CWE-363). An attacker could use this security issue to trick a privileged program into deleting files and directories the attacker couldn't otherwise access or delete. Rust 1.0.0 through Rust 1.58.0 is affected by this vulnerability with 1.58.1 containing a patch. Note that the following build targets don't have usable APIs to properly mitigate the attack, and are thus still vulnerable even with a patched toolchain: macOS before version 10.10 (Yosemite) and REDOX. We recommend everyone to update to Rust 1.58.1 as soon as possible, especially people developing programs expected to run in privileged contexts (including system daemons and setuid binaries), as those have the highest risk of being affected by this. Note that adding checks in your codebase before calling remove_dir_all will not mitigate the vulnerability, as they would also be vulnerable to race conditions like remove_dir_all itself. The existing mitigation is working as intended outside of race conditions. | ||||
| CVE-2024-27102 | 1 Pterodactyl | 1 Wings | 2025-04-15 | 10 Critical |
| Wings is the server control plane for Pterodactyl Panel. This vulnerability impacts anyone running the affected versions of Wings. The vulnerability can potentially be used to access files and directories on the host system. The full scope of impact is exactly unknown, but reading files outside of a server's base directory (sandbox root) is possible. In order to use this exploit, an attacker must have an existing "server" allocated and controlled by Wings. Details on the exploitation of this vulnerability are embargoed until March 27th, 2024 at 18:00 UTC. In order to mitigate this vulnerability, a full rewrite of the entire server filesystem was necessary. Because of this, the size of the patch is massive, however effort was made to reduce the amount of breaking changes. Users are advised to update to version 1.11.9. There are no known workarounds for this vulnerability. | ||||
| CVE-2023-6857 | 6 Apple, Debian, Google and 3 more | 12 Macos, Debian Linux, Android and 9 more | 2025-02-13 | 5.3 Medium |
| When resolving a symlink, a race may occur where the buffer passed to `readlink` may actually be smaller than necessary. *This bug only affects Firefox on Unix-based operating systems (Android, Linux, MacOS). Windows is unaffected.* This vulnerability affects Firefox ESR < 115.6, Thunderbird < 115.6, and Firefox < 121. | ||||
| CVE-2018-6693 | 2 Linux, Mcafee | 3 Linux Kernel, Endpoint Security For Linux Threat Prevention, Endpoint Security Linux Threat Prevention | 2024-11-21 | 5.3 Medium |
| An unprivileged user can delete arbitrary files on a Linux system running ENSLTP 10.5.1, 10.5.0, and 10.2.3 Hotfix 1246778 and earlier. By exploiting a time of check to time of use (TOCTOU) race condition during a specific scanning sequence, the unprivileged user is able to perform a privilege escalation to delete arbitrary files. | ||||
Page 1 of 1.