Search Results (16620 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68726 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: aead - Fix reqsize handling Commit afddce13ce81d ("crypto: api - Add reqsize to crypto_alg") introduced cra_reqsize field in crypto_alg struct to replace type specific reqsize fields. It looks like this was introduced specifically for ahash and acomp from the commit description as subsequent commits add necessary changes in these alg frameworks. However, this is being recommended for use in all crypto algs instead of setting reqsize using crypto_*_set_reqsize(). Using cra_reqsize in aead algorithms, hence, causes memory corruptions and crashes as the underlying functions in the algorithm framework have not been updated to set the reqsize properly from cra_reqsize. [1] Add proper set_reqsize calls in the aead init function to properly initialize reqsize for these algorithms in the framework. [1]: https://gist.github.com/Pratham-T/24247446f1faf4b7843e4014d5089f6b
CVE-2022-50738 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vhost-vdpa: fix an iotlb memory leak Before commit 3d5698793897 ("vhost-vdpa: introduce asid based IOTLB") we called vhost_vdpa_iotlb_unmap(v, iotlb, 0ULL, 0ULL - 1) during release to free all the resources allocated when processing user IOTLB messages through vhost_vdpa_process_iotlb_update(). That commit changed the handling of IOTLB a bit, and we accidentally removed some code called during the release. We partially fixed this with commit 037d4305569a ("vhost-vdpa: call vhost_vdpa_cleanup during the release") but a potential memory leak is still there as showed by kmemleak if the application does not send VHOST_IOTLB_INVALIDATE or crashes: unreferenced object 0xffff888007fbaa30 (size 16): comm "blkio-bench", pid 914, jiffies 4294993521 (age 885.500s) hex dump (first 16 bytes): 40 73 41 07 80 88 ff ff 00 00 00 00 00 00 00 00 @sA............. backtrace: [<0000000087736d2a>] kmem_cache_alloc_trace+0x142/0x1c0 [<0000000060740f50>] vhost_vdpa_process_iotlb_msg+0x68c/0x901 [vhost_vdpa] [<0000000083e8e205>] vhost_chr_write_iter+0xc0/0x4a0 [vhost] [<000000008f2f414a>] vhost_vdpa_chr_write_iter+0x18/0x20 [vhost_vdpa] [<00000000de1cd4a0>] vfs_write+0x216/0x4b0 [<00000000a2850200>] ksys_write+0x71/0xf0 [<00000000de8e720b>] __x64_sys_write+0x19/0x20 [<0000000018b12cbb>] do_syscall_64+0x3f/0x90 [<00000000986ec465>] entry_SYSCALL_64_after_hwframe+0x63/0xcd Let's fix this calling vhost_vdpa_iotlb_unmap() on the whole range in vhost_vdpa_remove_as(). We move that call before vhost_dev_cleanup() since we need a valid v->vdev.mm in vhost_vdpa_pa_unmap(). vhost_iotlb_reset() call can be removed, since vhost_vdpa_iotlb_unmap() on the whole range removes all the entries. The kmemleak log reported was observed with a vDPA device that has `use_va` set to true (e.g. VDUSE). This patch has been tested with both types of devices.
CVE-2023-54064 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipmi:ssif: Fix a memory leak when scanning for an adapter The adapter scan ssif_info_find() sets info->adapter_name if the adapter info came from SMBIOS, as it's not set in that case. However, this function can be called more than once, and it will leak the adapter name if it had already been set. So check for NULL before setting it.
CVE-2022-50722 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: media: ipu3-imgu: Fix NULL pointer dereference in active selection access What the IMGU driver did was that it first acquired the pointers to active and try V4L2 subdev state, and only then figured out which one to use. The problem with that approach and a later patch (see Fixes: tag) is that as sd_state argument to v4l2_subdev_get_try_crop() et al is NULL, there is now an attempt to dereference that. Fix this. Also rewrap lines a little.
CVE-2023-54098 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/i915/gvt: fix gvt debugfs destroy When gvt debug fs is destroyed, need to have a sane check if drm minor's debugfs root is still available or not, otherwise in case like device remove through unbinding, drm minor's debugfs directory has already been removed, then intel_gvt_debugfs_clean() would act upon dangling pointer like below oops. i915 0000:00:02.0: Direct firmware load for i915/gvt/vid_0x8086_did_0x1926_rid_0x0a.golden_hw_state failed with error -2 i915 0000:00:02.0: MDEV: Registered Console: switching to colour dummy device 80x25 i915 0000:00:02.0: MDEV: Unregistering BUG: kernel NULL pointer dereference, address: 00000000000000a0 PGD 0 P4D 0 Oops: 0002 [#1] PREEMPT SMP PTI CPU: 2 PID: 2486 Comm: gfx-unbind.sh Tainted: G I 6.1.0-rc8+ #15 Hardware name: Dell Inc. XPS 13 9350/0JXC1H, BIOS 1.13.0 02/10/2020 RIP: 0010:down_write+0x1f/0x90 Code: 1d ff ff 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 53 48 89 fb e8 62 c0 ff ff bf 01 00 00 00 e8 28 5e 31 ff 31 c0 ba 01 00 00 00 <f0> 48 0f b1 13 75 33 65 48 8b 04 25 c0 bd 01 00 48 89 43 08 bf 01 RSP: 0018:ffff9eb3036ffcc8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 00000000000000a0 RCX: ffffff8100000000 RDX: 0000000000000001 RSI: 0000000000000064 RDI: ffffffffa48787a8 RBP: ffff9eb3036ffd30 R08: ffffeb1fc45a0608 R09: ffffeb1fc45a05c0 R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000 R13: ffff91acc33fa328 R14: ffff91acc033f080 R15: ffff91acced533e0 FS: 00007f6947bba740(0000) GS:ffff91ae36d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000a0 CR3: 00000001133a2002 CR4: 00000000003706e0 Call Trace: <TASK> simple_recursive_removal+0x9f/0x2a0 ? start_creating.part.0+0x120/0x120 ? _raw_spin_lock+0x13/0x40 debugfs_remove+0x40/0x60 intel_gvt_debugfs_clean+0x15/0x30 [kvmgt] intel_gvt_clean_device+0x49/0xe0 [kvmgt] intel_gvt_driver_remove+0x2f/0xb0 i915_driver_remove+0xa4/0xf0 i915_pci_remove+0x1a/0x30 pci_device_remove+0x33/0xa0 device_release_driver_internal+0x1b2/0x230 unbind_store+0xe0/0x110 kernfs_fop_write_iter+0x11b/0x1f0 vfs_write+0x203/0x3d0 ksys_write+0x63/0xe0 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f6947cb5190 Code: 40 00 48 8b 15 71 9c 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 80 3d 51 24 0e 00 00 74 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 48 83 ec 28 48 89 RSP: 002b:00007ffcbac45a28 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007f6947cb5190 RDX: 000000000000000d RSI: 0000555e35c866a0 RDI: 0000000000000001 RBP: 0000555e35c866a0 R08: 0000000000000002 R09: 0000555e358cb97c R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000001 R13: 000000000000000d R14: 0000000000000000 R15: 0000555e358cb8e0 </TASK> Modules linked in: kvmgt CR2: 00000000000000a0 ---[ end trace 0000000000000000 ]---
CVE-2025-68359 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix double free of qgroup record after failure to add delayed ref head In the previous code it was possible to incur into a double kfree() scenario when calling add_delayed_ref_head(). This could happen if the record was reported to already exist in the btrfs_qgroup_trace_extent_nolock() call, but then there was an error later on add_delayed_ref_head(). In this case, since add_delayed_ref_head() returned an error, the caller went to free the record. Since add_delayed_ref_head() couldn't set this kfree'd pointer to NULL, then kfree() would have acted on a non-NULL 'record' object which was pointing to memory already freed by the callee. The problem comes from the fact that the responsibility to kfree the object is on both the caller and the callee at the same time. Hence, the fix for this is to shift the ownership of the 'qrecord' object out of the add_delayed_ref_head(). That is, we will never attempt to kfree() the given object inside of this function, and will expect the caller to act on the 'qrecord' object on its own. The only exception where the 'qrecord' object cannot be kfree'd is if it was inserted into the tracing logic, for which we already have the 'qrecord_inserted_ret' boolean to account for this. Hence, the caller has to kfree the object only if add_delayed_ref_head() reports not to have inserted it on the tracing logic. As a side-effect of the above, we must guarantee that 'qrecord_inserted_ret' is properly initialized at the start of the function, not at the end, and then set when an actual insert happens. This way we avoid 'qrecord_inserted_ret' having an invalid value on an early exit. The documentation from the add_delayed_ref_head() has also been updated to reflect on the exact ownership of the 'qrecord' object.
CVE-2022-50732 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8192u: Fix use after free in ieee80211_rx() We cannot dereference the "skb" pointer after calling ieee80211_monitor_rx(), because it is a use after free.
CVE-2023-54077 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fix memory leak if ntfs_read_mft failed Label ATTR_ROOT in ntfs_read_mft() sets is_root = true and ni->ni_flags |= NI_FLAG_DIR, then next attr will goto label ATTR_ALLOC and alloc ni->dir.alloc_run. However two states are not always consistent and can make memory leak. 1) attr_name in ATTR_ROOT does not fit the condition it will set is_root = true but NI_FLAG_DIR is not set. 2) next attr_name in ATTR_ALLOC fits the condition and alloc ni->dir.alloc_run 3) in cleanup function ni_clear(), when NI_FLAG_DIR is set, it frees ni->dir.alloc_run, otherwise it frees ni->file.run 4) because NI_FLAG_DIR is not set in this case, ni->dir.alloc_run is leaked as kmemleak reported: unreferenced object 0xffff888003bc5480 (size 64): backtrace: [<000000003d42e6b0>] __kmalloc_node+0x4e/0x1c0 [<00000000d8e19b8a>] kvmalloc_node+0x39/0x1f0 [<00000000fc3eb5b8>] run_add_entry+0x18a/0xa40 [ntfs3] [<0000000011c9f978>] run_unpack+0x75d/0x8e0 [ntfs3] [<00000000e7cf1819>] run_unpack_ex+0xbc/0x500 [ntfs3] [<00000000bbf0a43d>] ntfs_iget5+0xb25/0x2dd0 [ntfs3] [<00000000a6e50693>] ntfs_fill_super+0x218d/0x3580 [ntfs3] [<00000000b9170608>] get_tree_bdev+0x3fb/0x710 [<000000004833798a>] vfs_get_tree+0x8e/0x280 [<000000006e20b8e6>] path_mount+0xf3c/0x1930 [<000000007bf15a5f>] do_mount+0xf3/0x110 ... Fix this by always setting is_root and NI_FLAG_DIR together.
CVE-2022-50724 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regulator: core: fix resource leak in regulator_register() I got some resource leak reports while doing fault injection test: OF: ERROR: memory leak, expected refcount 1 instead of 100, of_node_get()/of_node_put() unbalanced - destroy cset entry: attach overlay node /i2c/pmic@64/regulators/buck1 unreferenced object 0xffff88810deea000 (size 512): comm "490-i2c-rt5190a", pid 253, jiffies 4294859840 (age 5061.046s) hex dump (first 32 bytes): 00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N.......... ff ff ff ff ff ff ff ff a0 1e 00 a1 ff ff ff ff ................ backtrace: [<00000000d78541e2>] kmalloc_trace+0x21/0x110 [<00000000b343d153>] device_private_init+0x32/0xd0 [<00000000be1f0c70>] device_add+0xb2d/0x1030 [<00000000e3e6344d>] regulator_register+0xaf2/0x12a0 [<00000000e2f5e754>] devm_regulator_register+0x57/0xb0 [<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator] unreferenced object 0xffff88810b617b80 (size 32): comm "490-i2c-rt5190a", pid 253, jiffies 4294859904 (age 5060.983s) hex dump (first 32 bytes): 72 65 67 75 6c 61 74 6f 72 2e 32 38 36 38 2d 53 regulator.2868-S 55 50 50 4c 59 00 ff ff 29 00 00 00 2b 00 00 00 UPPLY...)...+... backtrace: [<000000009da9280d>] __kmalloc_node_track_caller+0x44/0x1b0 [<0000000025c6a4e5>] kstrdup+0x3a/0x70 [<00000000790efb69>] create_regulator+0xc0/0x4e0 [<0000000005ed203a>] regulator_resolve_supply+0x2d4/0x440 [<0000000045796214>] regulator_register+0x10b3/0x12a0 [<00000000e2f5e754>] devm_regulator_register+0x57/0xb0 [<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator] After calling regulator_resolve_supply(), the 'rdev->supply' is set by set_supply(), after this set, in the error path, the resources need be released, so call regulator_put() to avoid the leaks.
CVE-2025-68370 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: coresight: tmc: add the handle of the event to the path The handle is essential for retrieving the AUX_EVENT of each CPU and is required in perf mode. It has been added to the coresight_path so that dependent devices can access it from the path when needed. The existing bug can be reproduced with: perf record -e cs_etm//k -C 0-9 dd if=/dev/zero of=/dev/null Showing an oops as follows: Unable to handle kernel paging request at virtual address 000f6e84934ed19e Call trace: tmc_etr_get_buffer+0x30/0x80 [coresight_tmc] (P) catu_enable_hw+0xbc/0x3d0 [coresight_catu] catu_enable+0x70/0xe0 [coresight_catu] coresight_enable_path+0xb0/0x258 [coresight]
CVE-2023-54074 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Use correct encap attribute during invalidation With introduction of post action infrastructure most of the users of encap attribute had been modified in order to obtain the correct attribute by calling mlx5e_tc_get_encap_attr() helper instead of assuming encap action is always on default attribute. However, the cited commit didn't modify mlx5e_invalidate_encap() which prevents it from destroying correct modify header action which leads to a warning [0]. Fix the issue by using correct attribute. [0]: Feb 21 09:47:35 c-237-177-40-045 kernel: WARNING: CPU: 17 PID: 654 at drivers/net/ethernet/mellanox/mlx5/core/en_tc.c:684 mlx5e_tc_attach_mod_hdr+0x1cc/0x230 [mlx5_core] Feb 21 09:47:35 c-237-177-40-045 kernel: RIP: 0010:mlx5e_tc_attach_mod_hdr+0x1cc/0x230 [mlx5_core] Feb 21 09:47:35 c-237-177-40-045 kernel: Call Trace: Feb 21 09:47:35 c-237-177-40-045 kernel: <TASK> Feb 21 09:47:35 c-237-177-40-045 kernel: mlx5e_tc_fib_event_work+0x8e3/0x1f60 [mlx5_core] Feb 21 09:47:35 c-237-177-40-045 kernel: ? mlx5e_take_all_encap_flows+0xe0/0xe0 [mlx5_core] Feb 21 09:47:35 c-237-177-40-045 kernel: ? lock_downgrade+0x6d0/0x6d0 Feb 21 09:47:35 c-237-177-40-045 kernel: ? lockdep_hardirqs_on_prepare+0x273/0x3f0 Feb 21 09:47:35 c-237-177-40-045 kernel: ? lockdep_hardirqs_on_prepare+0x273/0x3f0 Feb 21 09:47:35 c-237-177-40-045 kernel: process_one_work+0x7c2/0x1310 Feb 21 09:47:35 c-237-177-40-045 kernel: ? lockdep_hardirqs_on_prepare+0x3f0/0x3f0 Feb 21 09:47:35 c-237-177-40-045 kernel: ? pwq_dec_nr_in_flight+0x230/0x230 Feb 21 09:47:35 c-237-177-40-045 kernel: ? rwlock_bug.part.0+0x90/0x90 Feb 21 09:47:35 c-237-177-40-045 kernel: worker_thread+0x59d/0xec0 Feb 21 09:47:35 c-237-177-40-045 kernel: ? __kthread_parkme+0xd9/0x1d0
CVE-2023-54087 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ubi: Fix possible null-ptr-deref in ubi_free_volume() It willl cause null-ptr-deref in the following case: uif_init() ubi_add_volume() cdev_add() -> if it fails, call kill_volumes() device_register() kill_volumes() -> if ubi_add_volume() fails call this function ubi_free_volume() cdev_del() device_unregister() -> trying to delete a not added device, it causes null-ptr-deref So in ubi_free_volume(), it delete devices whether they are added or not, it will causes null-ptr-deref. Handle the error case whlie calling ubi_add_volume() to fix this problem. If add volume fails, set the corresponding vol to null, so it can not be accessed in kill_volumes() and release the resource in ubi_add_volume() error path.
CVE-2022-50751 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: configfs: fix possible memory leak in configfs_create_dir() kmemleak reported memory leaks in configfs_create_dir(): unreferenced object 0xffff888009f6af00 (size 192): comm "modprobe", pid 3777, jiffies 4295537735 (age 233.784s) backtrace: kmem_cache_alloc (mm/slub.c:3250 mm/slub.c:3256 mm/slub.c:3263 mm/slub.c:3273) new_fragment (./include/linux/slab.h:600 fs/configfs/dir.c:163) configfs_register_subsystem (fs/configfs/dir.c:1857) basic_write (drivers/hwtracing/stm/p_basic.c:14) stm_p_basic do_one_initcall (init/main.c:1296) do_init_module (kernel/module/main.c:2455) ... unreferenced object 0xffff888003ba7180 (size 96): comm "modprobe", pid 3777, jiffies 4295537735 (age 233.784s) backtrace: kmem_cache_alloc (mm/slub.c:3250 mm/slub.c:3256 mm/slub.c:3263 mm/slub.c:3273) configfs_new_dirent (./include/linux/slab.h:723 fs/configfs/dir.c:194) configfs_make_dirent (fs/configfs/dir.c:248) configfs_create_dir (fs/configfs/dir.c:296) configfs_attach_group.isra.28 (fs/configfs/dir.c:816 fs/configfs/dir.c:852) configfs_register_subsystem (fs/configfs/dir.c:1881) basic_write (drivers/hwtracing/stm/p_basic.c:14) stm_p_basic do_one_initcall (init/main.c:1296) do_init_module (kernel/module/main.c:2455) ... This is because the refcount is not correct in configfs_make_dirent(). For normal stage, the refcount is changing as: configfs_register_subsystem() configfs_create_dir() configfs_make_dirent() configfs_new_dirent() # set s_count = 1 dentry->d_fsdata = configfs_get(sd); # s_count = 2 ... configfs_unregister_subsystem() configfs_remove_dir() remove_dir() configfs_remove_dirent() # s_count = 1 dput() ... *dentry_unlink_inode()* configfs_d_iput() # s_count = 0, release However, if we failed in configfs_create(): configfs_register_subsystem() configfs_create_dir() configfs_make_dirent() # s_count = 2 ... configfs_create() # fail ->out_remove: configfs_remove_dirent(dentry) configfs_put(sd) # s_count = 1 return PTR_ERR(inode); There is no inode in the error path, so the configfs_d_iput() is lost and makes sd and fragment memory leaked. To fix this, when we failed in configfs_create(), manually call configfs_put(sd) to keep the refcount correct.
CVE-2023-54057 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu/amd: Add a length limitation for the ivrs_acpihid command-line parameter The 'acpiid' buffer in the parse_ivrs_acpihid function may overflow, because the string specifier in the format string sscanf() has no width limitation. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2023-54089 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: virtio_pmem: add the missing REQ_OP_WRITE for flush bio When doing mkfs.xfs on a pmem device, the following warning was ------------[ cut here ]------------ WARNING: CPU: 2 PID: 384 at block/blk-core.c:751 submit_bio_noacct Modules linked in: CPU: 2 PID: 384 Comm: mkfs.xfs Not tainted 6.4.0-rc7+ #154 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) RIP: 0010:submit_bio_noacct+0x340/0x520 ...... Call Trace: <TASK> ? submit_bio_noacct+0xd5/0x520 submit_bio+0x37/0x60 async_pmem_flush+0x79/0xa0 nvdimm_flush+0x17/0x40 pmem_submit_bio+0x370/0x390 __submit_bio+0xbc/0x190 submit_bio_noacct_nocheck+0x14d/0x370 submit_bio_noacct+0x1ef/0x520 submit_bio+0x55/0x60 submit_bio_wait+0x5a/0xc0 blkdev_issue_flush+0x44/0x60 The root cause is that submit_bio_noacct() needs bio_op() is either WRITE or ZONE_APPEND for flush bio and async_pmem_flush() doesn't assign REQ_OP_WRITE when allocating flush bio, so submit_bio_noacct just fail the flush bio. Simply fix it by adding the missing REQ_OP_WRITE for flush bio. And we could fix the flush order issue and do flush optimization later.
CVE-2023-54065 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: net: dsa: realtek: fix out-of-bounds access The probe function sets priv->chip_data to (void *)priv + sizeof(*priv) with the expectation that priv has enough trailing space. However, only realtek-smi actually allocated this chip_data space. Do likewise in realtek-mdio to fix out-of-bounds accesses. These accesses likely went unnoticed so far, because of an (unused) buf[4096] member in struct realtek_priv, which caused kmalloc to round up the allocated buffer to a big enough size, so nothing of value was overwritten. With a different allocator (like in the barebox bootloader port of the driver) or with KASAN, the memory corruption becomes quickly apparent.
CVE-2022-50745 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: media: tegra-video: fix device_node use after free At probe time this code path is followed: * tegra_csi_init * tegra_csi_channels_alloc * for_each_child_of_node(node, channel) -- iterates over channels * automatically gets 'channel' * tegra_csi_channel_alloc() * saves into chan->of_node a pointer to the channel OF node * automatically gets and puts 'channel' * now the node saved in chan->of_node has refcount 0, can disappear * tegra_csi_channels_init * iterates over channels * tegra_csi_channel_init -- uses chan->of_node After that, chan->of_node keeps storing the node until the device is removed. of_node_get() the node and of_node_put() it during teardown to avoid any risk.
CVE-2023-54069 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix BUG in ext4_mb_new_inode_pa() due to overflow When we calculate the end position of ext4_free_extent, this position may be exactly where ext4_lblk_t (i.e. uint) overflows. For example, if ac_g_ex.fe_logical is 4294965248 and ac_orig_goal_len is 2048, then the computed end is 0x100000000, which is 0. If ac->ac_o_ex.fe_logical is not the first case of adjusting the best extent, that is, new_bex_end > 0, the following BUG_ON will be triggered: ========================================================= kernel BUG at fs/ext4/mballoc.c:5116! invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 3 PID: 673 Comm: xfs_io Tainted: G E 6.5.0-rc1+ #279 RIP: 0010:ext4_mb_new_inode_pa+0xc5/0x430 Call Trace: <TASK> ext4_mb_use_best_found+0x203/0x2f0 ext4_mb_try_best_found+0x163/0x240 ext4_mb_regular_allocator+0x158/0x1550 ext4_mb_new_blocks+0x86a/0xe10 ext4_ext_map_blocks+0xb0c/0x13a0 ext4_map_blocks+0x2cd/0x8f0 ext4_iomap_begin+0x27b/0x400 iomap_iter+0x222/0x3d0 __iomap_dio_rw+0x243/0xcb0 iomap_dio_rw+0x16/0x80 ========================================================= A simple reproducer demonstrating the problem: mkfs.ext4 -F /dev/sda -b 4096 100M mount /dev/sda /tmp/test fallocate -l1M /tmp/test/tmp fallocate -l10M /tmp/test/file fallocate -i -o 1M -l16777203M /tmp/test/file fsstress -d /tmp/test -l 0 -n 100000 -p 8 & sleep 10 && killall -9 fsstress rm -f /tmp/test/tmp xfs_io -c "open -ad /tmp/test/file" -c "pwrite -S 0xff 0 8192" We simply refactor the logic for adjusting the best extent by adding a temporary ext4_free_extent ex and use extent_logical_end() to avoid overflow, which also simplifies the code.
CVE-2022-50760 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix PCI device refcount leak in amdgpu_atrm_get_bios() As comment of pci_get_class() says, it returns a pci_device with its refcount increased and decreased the refcount for the input parameter @from if it is not NULL. If we break the loop in amdgpu_atrm_get_bios() with 'pdev' not NULL, we need to call pci_dev_put() to decrease the refcount. Add the missing pci_dev_put() to avoid refcount leak.
CVE-2023-54101 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: driver: soc: xilinx: use _safe loop iterator to avoid a use after free The hash_for_each_possible() loop dereferences "eve_data" to get the next item on the list. However the loop frees eve_data so it leads to a use after free. Use hash_for_each_possible_safe() instead.