| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix memleak for 'conf->bio_split'
In the error path of raid10_run(), 'conf' need be freed, however,
'conf->bio_split' is missed and memory will be leaked.
Since there are 3 places to free 'conf', factor out a helper to fix the
problem. |
| In the Linux kernel, the following vulnerability has been resolved:
net: nsh: Use correct mac_offset to unwind gso skb in nsh_gso_segment()
As the call trace shows, skb_panic was caused by wrong skb->mac_header
in nsh_gso_segment():
invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 3 PID: 2737 Comm: syz Not tainted 6.3.0-next-20230505 #1
RIP: 0010:skb_panic+0xda/0xe0
call Trace:
skb_push+0x91/0xa0
nsh_gso_segment+0x4f3/0x570
skb_mac_gso_segment+0x19e/0x270
__skb_gso_segment+0x1e8/0x3c0
validate_xmit_skb+0x452/0x890
validate_xmit_skb_list+0x99/0xd0
sch_direct_xmit+0x294/0x7c0
__dev_queue_xmit+0x16f0/0x1d70
packet_xmit+0x185/0x210
packet_snd+0xc15/0x1170
packet_sendmsg+0x7b/0xa0
sock_sendmsg+0x14f/0x160
The root cause is:
nsh_gso_segment() use skb->network_header - nhoff to reset mac_header
in skb_gso_error_unwind() if inner-layer protocol gso fails.
However, skb->network_header may be reset by inner-layer protocol
gso function e.g. mpls_gso_segment. skb->mac_header reset by the
inaccurate network_header will be larger than skb headroom.
nsh_gso_segment
nhoff = skb->network_header - skb->mac_header;
__skb_pull(skb,nsh_len)
skb_mac_gso_segment
mpls_gso_segment
skb_reset_network_header(skb);//skb->network_header+=nsh_len
return -EINVAL;
skb_gso_error_unwind
skb_push(skb, nsh_len);
skb->mac_header = skb->network_header - nhoff;
// skb->mac_header > skb->headroom, cause skb_push panic
Use correct mac_offset to restore mac_header and get rid of nhoff. |
| In the Linux kernel, the following vulnerability has been resolved:
ixgbe: Fix panic during XDP_TX with > 64 CPUs
Commit 4fe815850bdc ("ixgbe: let the xdpdrv work with more than 64 cpus")
adds support to allow XDP programs to run on systems with more than
64 CPUs by locking the XDP TX rings and indexing them using cpu % 64
(IXGBE_MAX_XDP_QS).
Upon trying this out patch on a system with more than 64 cores,
the kernel paniced with an array-index-out-of-bounds at the return in
ixgbe_determine_xdp_ring in ixgbe.h, which means ixgbe_determine_xdp_q_idx
was just returning the cpu instead of cpu % IXGBE_MAX_XDP_QS. An example
splat:
==========================================================================
UBSAN: array-index-out-of-bounds in
/var/lib/dkms/ixgbe/5.18.6+focal-1/build/src/ixgbe.h:1147:26
index 65 is out of range for type 'ixgbe_ring *[64]'
==========================================================================
BUG: kernel NULL pointer dereference, address: 0000000000000058
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP NOPTI
CPU: 65 PID: 408 Comm: ksoftirqd/65
Tainted: G IOE 5.15.0-48-generic #54~20.04.1-Ubuntu
Hardware name: Dell Inc. PowerEdge R640/0W23H8, BIOS 2.5.4 01/13/2020
RIP: 0010:ixgbe_xmit_xdp_ring+0x1b/0x1c0 [ixgbe]
Code: 3b 52 d4 cf e9 42 f2 ff ff 66 0f 1f 44 00 00 0f 1f 44 00 00 55 b9
00 00 00 00 48 89 e5 41 57 41 56 41 55 41 54 53 48 83 ec 08 <44> 0f b7
47 58 0f b7 47 5a 0f b7 57 54 44 0f b7 76 08 66 41 39 c0
RSP: 0018:ffffbc3fcd88fcb0 EFLAGS: 00010282
RAX: ffff92a253260980 RBX: ffffbc3fe68b00a0 RCX: 0000000000000000
RDX: ffff928b5f659000 RSI: ffff928b5f659000 RDI: 0000000000000000
RBP: ffffbc3fcd88fce0 R08: ffff92b9dfc20580 R09: 0000000000000001
R10: 3d3d3d3d3d3d3d3d R11: 3d3d3d3d3d3d3d3d R12: 0000000000000000
R13: ffff928b2f0fa8c0 R14: ffff928b9be20050 R15: 000000000000003c
FS: 0000000000000000(0000) GS:ffff92b9dfc00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000058 CR3: 000000011dd6a002 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
ixgbe_poll+0x103e/0x1280 [ixgbe]
? sched_clock_cpu+0x12/0xe0
__napi_poll+0x30/0x160
net_rx_action+0x11c/0x270
__do_softirq+0xda/0x2ee
run_ksoftirqd+0x2f/0x50
smpboot_thread_fn+0xb7/0x150
? sort_range+0x30/0x30
kthread+0x127/0x150
? set_kthread_struct+0x50/0x50
ret_from_fork+0x1f/0x30
</TASK>
I think this is how it happens:
Upon loading the first XDP program on a system with more than 64 CPUs,
ixgbe_xdp_locking_key is incremented in ixgbe_xdp_setup. However,
immediately after this, the rings are reconfigured by ixgbe_setup_tc.
ixgbe_setup_tc calls ixgbe_clear_interrupt_scheme which calls
ixgbe_free_q_vectors which calls ixgbe_free_q_vector in a loop.
ixgbe_free_q_vector decrements ixgbe_xdp_locking_key once per call if
it is non-zero. Commenting out the decrement in ixgbe_free_q_vector
stopped my system from panicing.
I suspect to make the original patch work, I would need to load an XDP
program and then replace it in order to get ixgbe_xdp_locking_key back
above 0 since ixgbe_setup_tc is only called when transitioning between
XDP and non-XDP ring configurations, while ixgbe_xdp_locking_key is
incremented every time ixgbe_xdp_setup is called.
Also, ixgbe_setup_tc can be called via ethtool --set-channels, so this
becomes another path to decrement ixgbe_xdp_locking_key to 0 on systems
with more than 64 CPUs.
Since ixgbe_xdp_locking_key only protects the XDP_TX path and is tied
to the number of CPUs present, there is no reason to disable it upon
unloading an XDP program. To avoid confusion, I have moved enabling
ixgbe_xdp_locking_key into ixgbe_sw_init, which is part of the probe path. |
| In the Linux kernel, the following vulnerability has been resolved:
media: rcar_fdp1: Fix refcount leak in probe and remove function
rcar_fcp_get() take reference, which should be balanced with
rcar_fcp_put(). Add missing rcar_fcp_put() in fdp1_remove and
the error paths of fdp1_probe() to fix this.
[hverkuil: resolve merge conflict, remove() is now void] |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: core: fix resource leak in regulator_register()
I got some resource leak reports while doing fault injection test:
OF: ERROR: memory leak, expected refcount 1 instead of 100,
of_node_get()/of_node_put() unbalanced - destroy cset entry:
attach overlay node /i2c/pmic@64/regulators/buck1
unreferenced object 0xffff88810deea000 (size 512):
comm "490-i2c-rt5190a", pid 253, jiffies 4294859840 (age 5061.046s)
hex dump (first 32 bytes):
00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N..........
ff ff ff ff ff ff ff ff a0 1e 00 a1 ff ff ff ff ................
backtrace:
[<00000000d78541e2>] kmalloc_trace+0x21/0x110
[<00000000b343d153>] device_private_init+0x32/0xd0
[<00000000be1f0c70>] device_add+0xb2d/0x1030
[<00000000e3e6344d>] regulator_register+0xaf2/0x12a0
[<00000000e2f5e754>] devm_regulator_register+0x57/0xb0
[<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator]
unreferenced object 0xffff88810b617b80 (size 32):
comm "490-i2c-rt5190a", pid 253, jiffies 4294859904 (age 5060.983s)
hex dump (first 32 bytes):
72 65 67 75 6c 61 74 6f 72 2e 32 38 36 38 2d 53 regulator.2868-S
55 50 50 4c 59 00 ff ff 29 00 00 00 2b 00 00 00 UPPLY...)...+...
backtrace:
[<000000009da9280d>] __kmalloc_node_track_caller+0x44/0x1b0
[<0000000025c6a4e5>] kstrdup+0x3a/0x70
[<00000000790efb69>] create_regulator+0xc0/0x4e0
[<0000000005ed203a>] regulator_resolve_supply+0x2d4/0x440
[<0000000045796214>] regulator_register+0x10b3/0x12a0
[<00000000e2f5e754>] devm_regulator_register+0x57/0xb0
[<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator]
After calling regulator_resolve_supply(), the 'rdev->supply' is set
by set_supply(), after this set, in the error path, the resources
need be released, so call regulator_put() to avoid the leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86: Fix NULL event access and potential PEBS record loss
When intel_pmu_drain_pebs_icl() is called to drain PEBS records, the
perf_event_overflow() could be called to process the last PEBS record.
While perf_event_overflow() could trigger the interrupt throttle and
stop all events of the group, like what the below call-chain shows.
perf_event_overflow()
-> __perf_event_overflow()
->__perf_event_account_interrupt()
-> perf_event_throttle_group()
-> perf_event_throttle()
-> event->pmu->stop()
-> x86_pmu_stop()
The side effect of stopping the events is that all corresponding event
pointers in cpuc->events[] array are cleared to NULL.
Assume there are two PEBS events (event a and event b) in a group. When
intel_pmu_drain_pebs_icl() calls perf_event_overflow() to process the
last PEBS record of PEBS event a, interrupt throttle is triggered and
all pointers of event a and event b are cleared to NULL. Then
intel_pmu_drain_pebs_icl() tries to process the last PEBS record of
event b and encounters NULL pointer access.
To avoid this issue, move cpuc->events[] clearing from x86_pmu_stop()
to x86_pmu_del(). It's safe since cpuc->active_mask or
cpuc->pebs_enabled is always checked before access the event pointer
from cpuc->events[]. |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: rawnand: fsl_upm: Fix an off-by one test in fun_exec_op()
'op-cs' is copied in 'fun->mchip_number' which is used to access the
'mchip_offsets' and the 'rnb_gpio' arrays.
These arrays have NAND_MAX_CHIPS elements, so the index must be below this
limit.
Fix the sanity check in order to avoid the NAND_MAX_CHIPS value. This
would lead to out-of-bound accesses. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gvt: fix gvt debugfs destroy
When gvt debug fs is destroyed, need to have a sane check if drm
minor's debugfs root is still available or not, otherwise in case like
device remove through unbinding, drm minor's debugfs directory has
already been removed, then intel_gvt_debugfs_clean() would act upon
dangling pointer like below oops.
i915 0000:00:02.0: Direct firmware load for i915/gvt/vid_0x8086_did_0x1926_rid_0x0a.golden_hw_state failed with error -2
i915 0000:00:02.0: MDEV: Registered
Console: switching to colour dummy device 80x25
i915 0000:00:02.0: MDEV: Unregistering
BUG: kernel NULL pointer dereference, address: 00000000000000a0
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP PTI
CPU: 2 PID: 2486 Comm: gfx-unbind.sh Tainted: G I 6.1.0-rc8+ #15
Hardware name: Dell Inc. XPS 13 9350/0JXC1H, BIOS 1.13.0 02/10/2020
RIP: 0010:down_write+0x1f/0x90
Code: 1d ff ff 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 53 48 89 fb e8 62 c0 ff ff bf 01 00 00 00 e8 28 5e 31 ff 31 c0 ba 01 00 00 00 <f0> 48 0f b1 13 75 33 65 48 8b 04 25 c0 bd 01 00 48 89 43 08 bf 01
RSP: 0018:ffff9eb3036ffcc8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 00000000000000a0 RCX: ffffff8100000000
RDX: 0000000000000001 RSI: 0000000000000064 RDI: ffffffffa48787a8
RBP: ffff9eb3036ffd30 R08: ffffeb1fc45a0608 R09: ffffeb1fc45a05c0
R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000
R13: ffff91acc33fa328 R14: ffff91acc033f080 R15: ffff91acced533e0
FS: 00007f6947bba740(0000) GS:ffff91ae36d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000000a0 CR3: 00000001133a2002 CR4: 00000000003706e0
Call Trace:
<TASK>
simple_recursive_removal+0x9f/0x2a0
? start_creating.part.0+0x120/0x120
? _raw_spin_lock+0x13/0x40
debugfs_remove+0x40/0x60
intel_gvt_debugfs_clean+0x15/0x30 [kvmgt]
intel_gvt_clean_device+0x49/0xe0 [kvmgt]
intel_gvt_driver_remove+0x2f/0xb0
i915_driver_remove+0xa4/0xf0
i915_pci_remove+0x1a/0x30
pci_device_remove+0x33/0xa0
device_release_driver_internal+0x1b2/0x230
unbind_store+0xe0/0x110
kernfs_fop_write_iter+0x11b/0x1f0
vfs_write+0x203/0x3d0
ksys_write+0x63/0xe0
do_syscall_64+0x37/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f6947cb5190
Code: 40 00 48 8b 15 71 9c 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 80 3d 51 24 0e 00 00 74 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 48 83 ec 28 48 89
RSP: 002b:00007ffcbac45a28 EFLAGS: 00000202 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007f6947cb5190
RDX: 000000000000000d RSI: 0000555e35c866a0 RDI: 0000000000000001
RBP: 0000555e35c866a0 R08: 0000000000000002 R09: 0000555e358cb97c
R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000001
R13: 000000000000000d R14: 0000000000000000 R15: 0000555e358cb8e0
</TASK>
Modules linked in: kvmgt
CR2: 00000000000000a0
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: hif_usb: fix memory leak of urbs in ath9k_hif_usb_dealloc_tx_urbs()
Syzkaller reports a long-known leak of urbs in
ath9k_hif_usb_dealloc_tx_urbs().
The cause of the leak is that usb_get_urb() is called but usb_free_urb()
(or usb_put_urb()) is not called inside usb_kill_urb() as urb->dev or
urb->ep fields have not been initialized and usb_kill_urb() returns
immediately.
The patch removes trying to kill urbs located in hif_dev->tx.tx_buf
because hif_dev->tx.tx_buf is not supposed to contain urbs which are in
pending state (the pending urbs are stored in hif_dev->tx.tx_pending).
The tx.tx_lock is acquired so there should not be any changes in the list.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Set end correctly when doing batch carry
Even though the test suite covers this it somehow became obscured that
this wasn't working.
The test iommufd_ioas.mock_domain.access_domain_destory would blow up
rarely.
end should be set to 1 because this just pushed an item, the carry, to the
pfns list.
Sometimes the test would blow up with:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP
CPU: 5 PID: 584 Comm: iommufd Not tainted 6.5.0-rc1-dirty #1236
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:batch_unpin+0xa2/0x100 [iommufd]
Code: 17 48 81 fe ff ff 07 00 77 70 48 8b 15 b7 be 97 e2 48 85 d2 74 14 48 8b 14 fa 48 85 d2 74 0b 40 0f b6 f6 48 c1 e6 04 48 01 f2 <48> 8b 3a 48 c1 e0 06 89 ca 48 89 de 48 83 e7 f0 48 01 c7 e8 96 dc
RSP: 0018:ffffc90001677a58 EFLAGS: 00010246
RAX: 00007f7e2646f000 RBX: 0000000000000000 RCX: 0000000000000001
RDX: 0000000000000000 RSI: 00000000fefc4c8d RDI: 0000000000fefc4c
RBP: ffffc90001677a80 R08: 0000000000000048 R09: 0000000000000200
R10: 0000000000030b98 R11: ffffffff81f3bb40 R12: 0000000000000001
R13: ffff888101f75800 R14: ffffc90001677ad0 R15: 00000000000001fe
FS: 00007f9323679740(0000) GS:ffff8881ba540000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000105ede003 CR4: 00000000003706a0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? show_regs+0x5c/0x70
? __die+0x1f/0x60
? page_fault_oops+0x15d/0x440
? lock_release+0xbc/0x240
? exc_page_fault+0x4a4/0x970
? asm_exc_page_fault+0x27/0x30
? batch_unpin+0xa2/0x100 [iommufd]
? batch_unpin+0xba/0x100 [iommufd]
__iopt_area_unfill_domain+0x198/0x430 [iommufd]
? __mutex_lock+0x8c/0xb80
? __mutex_lock+0x6aa/0xb80
? xa_erase+0x28/0x30
? iopt_table_remove_domain+0x162/0x320 [iommufd]
? lock_release+0xbc/0x240
iopt_area_unfill_domain+0xd/0x10 [iommufd]
iopt_table_remove_domain+0x195/0x320 [iommufd]
iommufd_hw_pagetable_destroy+0xb3/0x110 [iommufd]
iommufd_object_destroy_user+0x8e/0xf0 [iommufd]
iommufd_device_detach+0xc5/0x140 [iommufd]
iommufd_selftest_destroy+0x1f/0x70 [iommufd]
iommufd_object_destroy_user+0x8e/0xf0 [iommufd]
iommufd_destroy+0x3a/0x50 [iommufd]
iommufd_fops_ioctl+0xfb/0x170 [iommufd]
__x64_sys_ioctl+0x40d/0x9a0
do_syscall_64+0x3c/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: wed: use proper wed reference in mt76 wed driver callabacks
MT7996 driver can use both wed and wed_hif2 devices to offload traffic
from/to the wireless NIC. In the current codebase we assume to always
use the primary wed device in wed callbacks resulting in the following
crash if the hw runs wed_hif2 (e.g. 6GHz link).
[ 297.455876] Unable to handle kernel read from unreadable memory at virtual address 000000000000080a
[ 297.464928] Mem abort info:
[ 297.467722] ESR = 0x0000000096000005
[ 297.471461] EC = 0x25: DABT (current EL), IL = 32 bits
[ 297.476766] SET = 0, FnV = 0
[ 297.479809] EA = 0, S1PTW = 0
[ 297.482940] FSC = 0x05: level 1 translation fault
[ 297.487809] Data abort info:
[ 297.490679] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 297.496156] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 297.501196] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 297.506500] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000107480000
[ 297.512927] [000000000000080a] pgd=08000001097fb003, p4d=08000001097fb003, pud=08000001097fb003, pmd=0000000000000000
[ 297.523532] Internal error: Oops: 0000000096000005 [#1] SMP
[ 297.715393] CPU: 2 UID: 0 PID: 45 Comm: kworker/u16:2 Tainted: G O 6.12.50 #0
[ 297.723908] Tainted: [O]=OOT_MODULE
[ 297.727384] Hardware name: Banana Pi BPI-R4 (2x SFP+) (DT)
[ 297.732857] Workqueue: nf_ft_offload_del nf_flow_rule_route_ipv6 [nf_flow_table]
[ 297.740254] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 297.747205] pc : mt76_wed_offload_disable+0x64/0xa0 [mt76]
[ 297.752688] lr : mtk_wed_flow_remove+0x58/0x80
[ 297.757126] sp : ffffffc080fe3ae0
[ 297.760430] x29: ffffffc080fe3ae0 x28: ffffffc080fe3be0 x27: 00000000deadbef7
[ 297.767557] x26: ffffff80c5ebca00 x25: 0000000000000001 x24: ffffff80c85f4c00
[ 297.774683] x23: ffffff80c1875b78 x22: ffffffc080d42cd0 x21: ffffffc080660018
[ 297.781809] x20: ffffff80c6a076d0 x19: ffffff80c6a043c8 x18: 0000000000000000
[ 297.788935] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000000
[ 297.796060] x14: 0000000000000019 x13: ffffff80c0ad8ec0 x12: 00000000fa83b2da
[ 297.803185] x11: ffffff80c02700c0 x10: ffffff80c0ad8ec0 x9 : ffffff81fef96200
[ 297.810311] x8 : ffffff80c02700c0 x7 : ffffff80c02700d0 x6 : 0000000000000002
[ 297.817435] x5 : 0000000000000400 x4 : 0000000000000000 x3 : 0000000000000000
[ 297.824561] x2 : 0000000000000001 x1 : 0000000000000800 x0 : ffffff80c6a063c8
[ 297.831686] Call trace:
[ 297.834123] mt76_wed_offload_disable+0x64/0xa0 [mt76]
[ 297.839254] mtk_wed_flow_remove+0x58/0x80
[ 297.843342] mtk_flow_offload_cmd+0x434/0x574
[ 297.847689] mtk_wed_setup_tc_block_cb+0x30/0x40
[ 297.852295] nf_flow_offload_ipv6_hook+0x7f4/0x964 [nf_flow_table]
[ 297.858466] nf_flow_rule_route_ipv6+0x438/0x4a4 [nf_flow_table]
[ 297.864463] process_one_work+0x174/0x300
[ 297.868465] worker_thread+0x278/0x430
[ 297.872204] kthread+0xd8/0xdc
[ 297.875251] ret_from_fork+0x10/0x20
[ 297.878820] Code: 928b5ae0 8b000273 91400a60 f943fa61 (79401421)
[ 297.884901] ---[ end trace 0000000000000000 ]---
Fix the issue detecting the proper wed reference to use running wed
callabacks. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: akcipher - default implementation for setting a private key
Changes from v1:
* removed the default implementation from set_pub_key: it is assumed that
an implementation must always have this callback defined as there are
no use case for an algorithm, which doesn't need a public key
Many akcipher implementations (like ECDSA) support only signature
verifications, so they don't have all callbacks defined.
Commit 78a0324f4a53 ("crypto: akcipher - default implementations for
request callbacks") introduced default callbacks for sign/verify
operations, which just return an error code.
However, these are not enough, because before calling sign the caller would
likely call set_priv_key first on the instantiated transform (as the
in-kernel testmgr does). This function does not have a default stub, so the
kernel crashes, when trying to set a private key on an akcipher, which
doesn't support signature generation.
I've noticed this, when trying to add a KAT vector for ECDSA signature to
the testmgr.
With this patch the testmgr returns an error in dmesg (as it should)
instead of crashing the kernel NULL ptr dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix OOB read in indx_insert_into_buffer
Syzbot reported a OOB read bug:
BUG: KASAN: slab-out-of-bounds in indx_insert_into_buffer+0xaa3/0x13b0
fs/ntfs3/index.c:1755
Read of size 17168 at addr ffff8880255e06c0 by task syz-executor308/3630
Call Trace:
<TASK>
memmove+0x25/0x60 mm/kasan/shadow.c:54
indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755
indx_insert_entry+0x446/0x6b0 fs/ntfs3/index.c:1863
ntfs_create_inode+0x1d3f/0x35c0 fs/ntfs3/inode.c:1548
ntfs_create+0x3e/0x60 fs/ntfs3/namei.c:100
lookup_open fs/namei.c:3413 [inline]
If the member struct INDEX_BUFFER *index of struct indx_node is
incorrect, that is, the value of __le32 used is greater than the value
of __le32 total in struct INDEX_HDR. Therefore, OOB read occurs when
memmove is called in indx_insert_into_buffer().
Fix this by adding a check in hdr_find_e(). |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Initialize allocated memory before use
KMSAN reports: Multiple uninitialized values detected:
- KMSAN: uninit-value in ntfs_read_hdr (3)
- KMSAN: uninit-value in bcmp (3)
Memory is allocated by __getname(), which is a wrapper for
kmem_cache_alloc(). This memory is used before being properly
cleared. Change kmem_cache_alloc() to kmem_cache_zalloc() to
properly allocate and clear memory before use. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix stackmap overflow check in __bpf_get_stackid()
Syzkaller reported a KASAN slab-out-of-bounds write in __bpf_get_stackid()
when copying stack trace data. The issue occurs when the perf trace
contains more stack entries than the stack map bucket can hold,
leading to an out-of-bounds write in the bucket's data array. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: hold queue_lock when removing blkg->q_node
When blkg is removed from q->blkg_list from blkg_free_workfn(), queue_lock
has to be held, otherwise, all kinds of bugs(list corruption, hard lockup,
..) can be triggered from blkg_destroy_all(). |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: Add validation for lmac type
Upon physical link change, firmware reports to the kernel about the
change along with the details like speed, lmac_type_id, etc.
Kernel derives lmac_type based on lmac_type_id received from firmware.
In a few scenarios, firmware returns an invalid lmac_type_id, which
is resulting in below kernel panic. This patch adds the missing
validation of the lmac_type_id field.
Internal error: Oops: 96000005 [#1] PREEMPT SMP
[ 35.321595] Modules linked in:
[ 35.328982] CPU: 0 PID: 31 Comm: kworker/0:1 Not tainted
5.4.210-g2e3169d8e1bc-dirty #17
[ 35.337014] Hardware name: Marvell CN103XX board (DT)
[ 35.344297] Workqueue: events work_for_cpu_fn
[ 35.352730] pstate: 40400089 (nZcv daIf +PAN -UAO)
[ 35.360267] pc : strncpy+0x10/0x30
[ 35.366595] lr : cgx_link_change_handler+0x90/0x180 |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: stop parsing non-compact HEAD index if clusterofs is invalid
Syzbot generated a crafted image [1] with a non-compact HEAD index of
clusterofs 33024 while valid numbers should be 0 ~ lclustersize-1,
which causes the following unexpected behavior as below:
BUG: unable to handle page fault for address: fffff52101a3fff9
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 23ffed067 P4D 23ffed067 PUD 0
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 4398 Comm: kworker/u5:1 Not tainted 6.3.0-rc6-syzkaller-g09a9639e56c0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/30/2023
Workqueue: erofs_worker z_erofs_decompressqueue_work
RIP: 0010:z_erofs_decompress_queue+0xb7e/0x2b40
...
Call Trace:
<TASK>
z_erofs_decompressqueue_work+0x99/0xe0
process_one_work+0x8f6/0x1170
worker_thread+0xa63/0x1210
kthread+0x270/0x300
ret_from_fork+0x1f/0x30
Note that normal images or images using compact indexes are not
impacted. Let's fix this now.
[1] https://lore.kernel.org/r/[email protected] |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-pci: fix mempool alloc size
Convert the max size to bytes to match the units of the divisor that
calculates the worst-case number of PRP entries.
The result is used to determine how many PRP Lists are required. The
code was previously rounding this to 1 list, but we can require 2 in the
worst case. In that scenario, the driver would corrupt memory beyond the
size provided by the mempool.
While unlikely to occur (you'd need a 4MB in exactly 127 phys segments
on a queue that doesn't support SGLs), this memory corruption has been
observed by kfence. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panel/panel-sitronix-st7701: Remove panel on DSI attach failure
In case mipi_dsi_attach() fails, call drm_panel_remove() to
avoid memory leak. |