| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-pci: fix mempool alloc size
Convert the max size to bytes to match the units of the divisor that
calculates the worst-case number of PRP entries.
The result is used to determine how many PRP Lists are required. The
code was previously rounding this to 1 list, but we can require 2 in the
worst case. In that scenario, the driver would corrupt memory beyond the
size provided by the mempool.
While unlikely to occur (you'd need a 4MB in exactly 127 phys segments
on a queue that doesn't support SGLs), this memory corruption has been
observed by kfence. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/xen: Fix memory leak in xen_init_lock_cpu()
In xen_init_lock_cpu(), the @name has allocated new string by kasprintf(),
if bind_ipi_to_irqhandler() fails, it should be freed, otherwise may lead
to a memory leak issue, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid5: Remove unnecessary bio_put() in raid5_read_one_chunk()
When running chunk-sized reads on disks with badblocks duplicate bio
free/puts are observed:
=============================================================================
BUG bio-200 (Not tainted): Object already free
-----------------------------------------------------------------------------
Allocated in mempool_alloc_slab+0x17/0x20 age=3 cpu=2 pid=7504
__slab_alloc.constprop.0+0x5a/0xb0
kmem_cache_alloc+0x31e/0x330
mempool_alloc_slab+0x17/0x20
mempool_alloc+0x100/0x2b0
bio_alloc_bioset+0x181/0x460
do_mpage_readpage+0x776/0xd00
mpage_readahead+0x166/0x320
blkdev_readahead+0x15/0x20
read_pages+0x13f/0x5f0
page_cache_ra_unbounded+0x18d/0x220
force_page_cache_ra+0x181/0x1c0
page_cache_sync_ra+0x65/0xb0
filemap_get_pages+0x1df/0xaf0
filemap_read+0x1e1/0x700
blkdev_read_iter+0x1e5/0x330
vfs_read+0x42a/0x570
Freed in mempool_free_slab+0x17/0x20 age=3 cpu=2 pid=7504
kmem_cache_free+0x46d/0x490
mempool_free_slab+0x17/0x20
mempool_free+0x66/0x190
bio_free+0x78/0x90
bio_put+0x100/0x1a0
raid5_make_request+0x2259/0x2450
md_handle_request+0x402/0x600
md_submit_bio+0xd9/0x120
__submit_bio+0x11f/0x1b0
submit_bio_noacct_nocheck+0x204/0x480
submit_bio_noacct+0x32e/0xc70
submit_bio+0x98/0x1a0
mpage_readahead+0x250/0x320
blkdev_readahead+0x15/0x20
read_pages+0x13f/0x5f0
page_cache_ra_unbounded+0x18d/0x220
Slab 0xffffea000481b600 objects=21 used=0 fp=0xffff8881206d8940 flags=0x17ffffc0010201(locked|slab|head|node=0|zone=2|lastcpupid=0x1fffff)
CPU: 0 PID: 34525 Comm: kworker/u24:2 Not tainted 6.0.0-rc2-localyes-265166-gf11c5343fa3f #143
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Workqueue: raid5wq raid5_do_work
Call Trace:
<TASK>
dump_stack_lvl+0x5a/0x78
dump_stack+0x10/0x16
print_trailer+0x158/0x165
object_err+0x35/0x50
free_debug_processing.cold+0xb7/0xbe
__slab_free+0x1ae/0x330
kmem_cache_free+0x46d/0x490
mempool_free_slab+0x17/0x20
mempool_free+0x66/0x190
bio_free+0x78/0x90
bio_put+0x100/0x1a0
mpage_end_io+0x36/0x150
bio_endio+0x2fd/0x360
md_end_io_acct+0x7e/0x90
bio_endio+0x2fd/0x360
handle_failed_stripe+0x960/0xb80
handle_stripe+0x1348/0x3760
handle_active_stripes.constprop.0+0x72a/0xaf0
raid5_do_work+0x177/0x330
process_one_work+0x616/0xb20
worker_thread+0x2bd/0x6f0
kthread+0x179/0x1b0
ret_from_fork+0x22/0x30
</TASK>
The double free is caused by an unnecessary bio_put() in the
if(is_badblock(...)) error path in raid5_read_one_chunk().
The error path was moved ahead of bio_alloc_clone() in c82aa1b76787c
("md/raid5: move checking badblock before clone bio in
raid5_read_one_chunk"). The previous code checked and freed align_bio
which required a bio_put. After the move that is no longer needed as
raid_bio is returned to the control of the common io path which
performs its own endio resulting in a double free on bad device blocks. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: stm32-pwr: fix of_iomap leak
Smatch reports:
drivers/regulator/stm32-pwr.c:166 stm32_pwr_regulator_probe() warn:
'base' from of_iomap() not released on lines: 151,166.
In stm32_pwr_regulator_probe(), base is not released
when devm_kzalloc() fails to allocate memory or
devm_regulator_register() fails to register a new regulator device,
which may cause a leak.
To fix this issue, replace of_iomap() with
devm_platform_ioremap_resource(). devm_platform_ioremap_resource()
is a specialized function for platform devices.
It allows 'base' to be automatically released whether the probe
function succeeds or fails.
Besides, use IS_ERR(base) instead of !base
as the return value of devm_platform_ioremap_resource()
can either be a pointer to the remapped memory or
an ERR_PTR() encoded error code if the operation fails. |
| In the Linux kernel, the following vulnerability has been resolved:
isdn: mISDN: hfcsusb: fix memory leak in hfcsusb_probe()
In hfcsusb_probe(), the memory allocated for ctrl_urb gets leaked when
setup_instance() fails with an error code. Fix that by freeing the urb
before freeing the hw structure. Also change the error paths to use the
goto ladder style.
Compile tested only. Issue found using a prototype static analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
media: max9286: Free control handler
The control handler is leaked in some probe-time error paths, as well as
in the remove path. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Do not let BPF test infra emit invalid GSO types to stack
Yinhao et al. reported that their fuzzer tool was able to trigger a
skb_warn_bad_offload() from netif_skb_features() -> gso_features_check().
When a BPF program - triggered via BPF test infra - pushes the packet
to the loopback device via bpf_clone_redirect() then mentioned offload
warning can be seen. GSO-related features are then rightfully disabled.
We get into this situation due to convert___skb_to_skb() setting
gso_segs and gso_size but not gso_type. Technically, it makes sense
that this warning triggers since the GSO properties are malformed due
to the gso_type. Potentially, the gso_type could be marked non-trustworthy
through setting it at least to SKB_GSO_DODGY without any other specific
assumptions, but that also feels wrong given we should not go further
into the GSO engine in the first place.
The checks were added in 121d57af308d ("gso: validate gso_type in GSO
handlers") because there were malicious (syzbot) senders that combine
a protocol with a non-matching gso_type. If we would want to drop such
packets, gso_features_check() currently only returns feature flags via
netif_skb_features(), so one location for potentially dropping such skbs
could be validate_xmit_unreadable_skb(), but then otoh it would be
an additional check in the fast-path for a very corner case. Given
bpf_clone_redirect() is the only place where BPF test infra could emit
such packets, lets reject them right there. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Initialize allocated memory before use
KMSAN reports: Multiple uninitialized values detected:
- KMSAN: uninit-value in ntfs_read_hdr (3)
- KMSAN: uninit-value in bcmp (3)
Memory is allocated by __getname(), which is a wrapper for
kmem_cache_alloc(). This memory is used before being properly
cleared. Change kmem_cache_alloc() to kmem_cache_zalloc() to
properly allocate and clear memory before use. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: efct: Fix possible memleak in efct_device_init()
In efct_device_init(), when efct_scsi_reg_fc_transport() fails,
efct_scsi_tgt_driver_exit() is not called to release memory for
efct_scsi_tgt_driver_init() and causes memleak:
unreferenced object 0xffff8881020ce000 (size 2048):
comm "modprobe", pid 465, jiffies 4294928222 (age 55.872s)
backtrace:
[<0000000021a1ef1b>] kmalloc_trace+0x27/0x110
[<000000004c3ed51c>] target_register_template+0x4fd/0x7b0 [target_core_mod]
[<00000000f3393296>] efct_scsi_tgt_driver_init+0x18/0x50 [efct]
[<00000000115de533>] 0xffffffffc0d90011
[<00000000d608f646>] do_one_initcall+0xd0/0x4e0
[<0000000067828cf1>] do_init_module+0x1cc/0x6a0
... |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: silence the warning when evicting inode with dioread_nolock
When evicting an inode with default dioread_nolock, it could be raced by
the unwritten extents converting kworker after writeback some new
allocated dirty blocks. It convert unwritten extents to written, the
extents could be merged to upper level and free extent blocks, so it
could mark the inode dirty again even this inode has been marked
I_FREEING. But the inode->i_io_list check and warning in
ext4_evict_inode() missing this corner case. Fortunately,
ext4_evict_inode() will wait all extents converting finished before this
check, so it will not lead to inode use-after-free problem, every thing
is OK besides this warning. The WARN_ON_ONCE was originally designed
for finding inode use-after-free issues in advance, but if we add
current dioread_nolock case in, it will become not quite useful, so fix
this warning by just remove this check.
======
WARNING: CPU: 7 PID: 1092 at fs/ext4/inode.c:227
ext4_evict_inode+0x875/0xc60
...
RIP: 0010:ext4_evict_inode+0x875/0xc60
...
Call Trace:
<TASK>
evict+0x11c/0x2b0
iput+0x236/0x3a0
do_unlinkat+0x1b4/0x490
__x64_sys_unlinkat+0x4c/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7fa933c1115b
======
rm kworker
ext4_end_io_end()
vfs_unlink()
ext4_unlink()
ext4_convert_unwritten_io_end_vec()
ext4_convert_unwritten_extents()
ext4_map_blocks()
ext4_ext_map_blocks()
ext4_ext_try_to_merge_up()
__mark_inode_dirty()
check !I_FREEING
locked_inode_to_wb_and_lock_list()
iput()
iput_final()
evict()
ext4_evict_inode()
truncate_inode_pages_final() //wait release io_end
inode_io_list_move_locked()
ext4_release_io_end()
trigger WARN_ON_ONCE() |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Add check for cstate
As kzalloc may fail and return NULL pointer,
it should be better to check cstate
in order to avoid the NULL pointer dereference
in __drm_atomic_helper_crtc_reset.
Patchwork: https://patchwork.freedesktop.org/patch/514163/ |
| In the Linux kernel, the following vulnerability has been resolved:
media: rcar_fdp1: Fix refcount leak in probe and remove function
rcar_fcp_get() take reference, which should be balanced with
rcar_fcp_put(). Add missing rcar_fcp_put() in fdp1_remove and
the error paths of fdp1_probe() to fix this.
[hverkuil: resolve merge conflict, remove() is now void] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix PCI device refcount leak in amdgpu_atrm_get_bios()
As comment of pci_get_class() says, it returns a pci_device with its
refcount increased and decreased the refcount for the input parameter
@from if it is not NULL.
If we break the loop in amdgpu_atrm_get_bios() with 'pdev' not NULL, we
need to call pci_dev_put() to decrease the refcount. Add the missing
pci_dev_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: realtek: fix out-of-bounds access
The probe function sets priv->chip_data to (void *)priv + sizeof(*priv)
with the expectation that priv has enough trailing space.
However, only realtek-smi actually allocated this chip_data space.
Do likewise in realtek-mdio to fix out-of-bounds accesses.
These accesses likely went unnoticed so far, because of an (unused)
buf[4096] member in struct realtek_priv, which caused kmalloc to
round up the allocated buffer to a big enough size, so nothing of
value was overwritten. With a different allocator (like in the barebox
bootloader port of the driver) or with KASAN, the memory corruption
becomes quickly apparent. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/fbdev-generic: prohibit potential out-of-bounds access
The fbdev test of IGT may write after EOF, which lead to out-of-bound
access for drm drivers with fbdev-generic. For example, run fbdev test
on a x86+ast2400 platform, with 1680x1050 resolution, will cause the
linux kernel hang with the following call trace:
Oops: 0000 [#1] PREEMPT SMP PTI
[IGT] fbdev: starting subtest eof
Workqueue: events drm_fb_helper_damage_work [drm_kms_helper]
[IGT] fbdev: starting subtest nullptr
RIP: 0010:memcpy_erms+0xa/0x20
RSP: 0018:ffffa17d40167d98 EFLAGS: 00010246
RAX: ffffa17d4eb7fa80 RBX: ffffa17d40e0aa80 RCX: 00000000000014c0
RDX: 0000000000001a40 RSI: ffffa17d40e0b000 RDI: ffffa17d4eb80000
RBP: ffffa17d40167e20 R08: 0000000000000000 R09: ffff89522ecff8c0
R10: ffffa17d4e4c5000 R11: 0000000000000000 R12: ffffa17d4eb7fa80
R13: 0000000000001a40 R14: 000000000000041a R15: ffffa17d40167e30
FS: 0000000000000000(0000) GS:ffff895257380000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffa17d40e0b000 CR3: 00000001eaeca006 CR4: 00000000001706e0
Call Trace:
<TASK>
? drm_fbdev_generic_helper_fb_dirty+0x207/0x330 [drm_kms_helper]
drm_fb_helper_damage_work+0x8f/0x170 [drm_kms_helper]
process_one_work+0x21f/0x430
worker_thread+0x4e/0x3c0
? __pfx_worker_thread+0x10/0x10
kthread+0xf4/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2c/0x50
</TASK>
CR2: ffffa17d40e0b000
---[ end trace 0000000000000000 ]---
The is because damage rectangles computed by
drm_fb_helper_memory_range_to_clip() function is not guaranteed to be
bound in the screen's active display area. Possible reasons are:
1) Buffers are allocated in the granularity of page size, for mmap system
call support. The shadow screen buffer consumed by fbdev emulation may
also choosed be page size aligned.
2) The DIV_ROUND_UP() used in drm_fb_helper_memory_range_to_clip()
will introduce off-by-one error.
For example, on a 16KB page size system, in order to store a 1920x1080
XRGB framebuffer, we need allocate 507 pages. Unfortunately, the size
1920*1080*4 can not be divided exactly by 16KB.
1920 * 1080 * 4 = 8294400 bytes
506 * 16 * 1024 = 8290304 bytes
507 * 16 * 1024 = 8306688 bytes
line_length = 1920*4 = 7680 bytes
507 * 16 * 1024 / 7680 = 1081.6
off / line_length = 507 * 16 * 1024 / 7680 = 1081
DIV_ROUND_UP(507 * 16 * 1024, 7680) will yeild 1082
memcpy_toio() typically issue the copy line by line, when copy the last
line, out-of-bound access will be happen. Because:
1082 * line_length = 1082 * 7680 = 8309760, and 8309760 > 8306688
Note that userspace may still write to the invisiable area if a larger
buffer than width x stride is exposed. But it is not a big issue as
long as there still have memory resolve the access if not drafting so
far.
- Also limit the y1 (Daniel)
- keep fix patch it to minimal (Daniel)
- screen_size is page size aligned because of it need mmap (Thomas)
- Adding fixes tag (Thomas) |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: Add validation for lmac type
Upon physical link change, firmware reports to the kernel about the
change along with the details like speed, lmac_type_id, etc.
Kernel derives lmac_type based on lmac_type_id received from firmware.
In a few scenarios, firmware returns an invalid lmac_type_id, which
is resulting in below kernel panic. This patch adds the missing
validation of the lmac_type_id field.
Internal error: Oops: 96000005 [#1] PREEMPT SMP
[ 35.321595] Modules linked in:
[ 35.328982] CPU: 0 PID: 31 Comm: kworker/0:1 Not tainted
5.4.210-g2e3169d8e1bc-dirty #17
[ 35.337014] Hardware name: Marvell CN103XX board (DT)
[ 35.344297] Workqueue: events work_for_cpu_fn
[ 35.352730] pstate: 40400089 (nZcv daIf +PAN -UAO)
[ 35.360267] pc : strncpy+0x10/0x30
[ 35.366595] lr : cgx_link_change_handler+0x90/0x180 |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: marvell/octeontx - prevent integer overflows
The "code_length" value comes from the firmware file. If your firmware
is untrusted realistically there is probably very little you can do to
protect yourself. Still we try to limit the damage as much as possible.
Also Smatch marks any data read from the filesystem as untrusted and
prints warnings if it not capped correctly.
The "code_length * 2" can overflow. The round_up(ucode_size, 16) +
sizeof() expression can overflow too. Prevent these overflows. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zoned: skip splitting and logical rewriting on pre-alloc write
When doing a relocation, there is a chance that at the time of
btrfs_reloc_clone_csums(), there is no checksum for the corresponding
region.
In this case, btrfs_finish_ordered_zoned()'s sum points to an invalid item
and so ordered_extent's logical is set to some invalid value. Then,
btrfs_lookup_block_group() in btrfs_zone_finish_endio() failed to find a
block group and will hit an assert or a null pointer dereference as
following.
This can be reprodcued by running btrfs/028 several times (e.g, 4 to 16
times) with a null_blk setup. The device's zone size and capacity is set to
32 MB and the storage size is set to 5 GB on my setup.
KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f]
CPU: 6 PID: 3105720 Comm: kworker/u16:13 Tainted: G W 6.5.0-rc6-kts+ #1
Hardware name: Supermicro Super Server/X10SRL-F, BIOS 2.0 12/17/2015
Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
RIP: 0010:btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs]
Code: 41 54 49 89 fc 55 48 89 f5 53 e8 57 7d fc ff 48 8d b8 88 00 00 00 48 89 c3 48 b8 00 00 00 00 00
> 3c 02 00 0f 85 02 01 00 00 f6 83 88 00 00 00 01 0f 84 a8 00 00
RSP: 0018:ffff88833cf87b08 EFLAGS: 00010206
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000011 RSI: 0000000000000004 RDI: 0000000000000088
RBP: 0000000000000002 R08: 0000000000000001 R09: ffffed102877b827
R10: ffff888143bdc13b R11: ffff888125b1cbc0 R12: ffff888143bdc000
R13: 0000000000007000 R14: ffff888125b1cba8 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88881e500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f3ed85223d5 CR3: 00000001519b4005 CR4: 00000000001706e0
Call Trace:
<TASK>
? die_addr+0x3c/0xa0
? exc_general_protection+0x148/0x220
? asm_exc_general_protection+0x22/0x30
? btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs]
? btrfs_zone_finish_endio.part.0+0x19/0x160 [btrfs]
btrfs_finish_one_ordered+0x7b8/0x1de0 [btrfs]
? rcu_is_watching+0x11/0xb0
? lock_release+0x47a/0x620
? btrfs_finish_ordered_zoned+0x59b/0x800 [btrfs]
? __pfx_btrfs_finish_one_ordered+0x10/0x10 [btrfs]
? btrfs_finish_ordered_zoned+0x358/0x800 [btrfs]
? __smp_call_single_queue+0x124/0x350
? rcu_is_watching+0x11/0xb0
btrfs_work_helper+0x19f/0xc60 [btrfs]
? __pfx_try_to_wake_up+0x10/0x10
? _raw_spin_unlock_irq+0x24/0x50
? rcu_is_watching+0x11/0xb0
process_one_work+0x8c1/0x1430
? __pfx_lock_acquire+0x10/0x10
? __pfx_process_one_work+0x10/0x10
? __pfx_do_raw_spin_lock+0x10/0x10
? _raw_spin_lock_irq+0x52/0x60
worker_thread+0x100/0x12c0
? __kthread_parkme+0xc1/0x1f0
? __pfx_worker_thread+0x10/0x10
kthread+0x2ea/0x3c0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
On the zoned mode, writing to pre-allocated region means data relocation
write. Such write always uses WRITE command so there is no need of splitting
and rewriting logical address. Thus, we can just skip the function for the
case. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921: fix skb leak by txs missing in AMSDU
txs may be dropped if the frame is aggregated in AMSDU. When the problem
shows up, some SKBs would be hold in driver to cause network stopped
temporarily. Even if the problem can be recovered by txs timeout handling,
mt7921 still need to disable txs in AMSDU to avoid this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: fix memory leak in bnxt_nvm_test()
Free the kzalloc'ed buffer before returning in the success path. |