| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bcache: fixup btree_cache_wait list damage
We get a kernel crash about "list_add corruption. next->prev should be
prev (ffff9c801bc01210), but was ffff9c77b688237c.
(next=ffffae586d8afe68)."
crash> struct list_head 0xffff9c801bc01210
struct list_head {
next = 0xffffae586d8afe68,
prev = 0xffffae586d8afe68
}
crash> struct list_head 0xffff9c77b688237c
struct list_head {
next = 0x0,
prev = 0x0
}
crash> struct list_head 0xffffae586d8afe68
struct list_head struct: invalid kernel virtual address: ffffae586d8afe68 type: "gdb_readmem_callback"
Cannot access memory at address 0xffffae586d8afe68
[230469.019492] Call Trace:
[230469.032041] prepare_to_wait+0x8a/0xb0
[230469.044363] ? bch_btree_keys_free+0x6c/0xc0 [escache]
[230469.056533] mca_cannibalize_lock+0x72/0x90 [escache]
[230469.068788] mca_alloc+0x2ae/0x450 [escache]
[230469.080790] bch_btree_node_get+0x136/0x2d0 [escache]
[230469.092681] bch_btree_check_thread+0x1e1/0x260 [escache]
[230469.104382] ? finish_wait+0x80/0x80
[230469.115884] ? bch_btree_check_recurse+0x1a0/0x1a0 [escache]
[230469.127259] kthread+0x112/0x130
[230469.138448] ? kthread_flush_work_fn+0x10/0x10
[230469.149477] ret_from_fork+0x35/0x40
bch_btree_check_thread() and bch_dirty_init_thread() may call
mca_cannibalize() to cannibalize other cached btree nodes. Only one thread
can do it at a time, so the op of other threads will be added to the
btree_cache_wait list.
We must call finish_wait() to remove op from btree_cache_wait before free
it's memory address. Otherwise, the list will be damaged. Also should call
bch_cannibalize_unlock() to release the btree_cache_alloc_lock and wake_up
other waiters. |
| In the Linux kernel, the following vulnerability has been resolved:
media: av7110: prevent underflow in write_ts_to_decoder()
The buf[4] value comes from the user via ts_play(). It is a value in
the u8 range. The final length we pass to av7110_ipack_instant_repack()
is "len - (buf[4] + 1) - 4" so add a check to ensure that the length is
not negative. It's not clear that passing a negative len value does
anything bad necessarily, but it's not best practice.
With the new bounds checking the "if (!len)" condition is no longer
possible or required so remove that. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: at91-pio4: check return value of devm_kasprintf()
devm_kasprintf() returns a pointer to dynamically allocated memory.
Pointer could be NULL in case allocation fails. Check pointer validity.
Identified with coccinelle (kmerr.cocci script).
Depends-on: 1c4e5c470a56 ("pinctrl: at91: use devm_kasprintf() to avoid potential leaks")
Depends-on: 5a8f9cf269e8 ("pinctrl: at91-pio4: use proper format specifier for unsigned int") |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: udlfb: Fix endpoint check
The syzbot fuzzer detected a problem in the udlfb driver, caused by an
endpoint not having the expected type:
usb 1-1: Read EDID byte 0 failed: -71
usb 1-1: Unable to get valid EDID from device/display
------------[ cut here ]------------
usb 1-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 0 PID: 9 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880
drivers/usb/core/urb.c:504
Modules linked in:
CPU: 0 PID: 9 Comm: kworker/0:1 Not tainted
6.4.0-rc1-syzkaller-00016-ga4422ff22142 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google
04/28/2023
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
...
Call Trace:
<TASK>
dlfb_submit_urb+0x92/0x180 drivers/video/fbdev/udlfb.c:1980
dlfb_set_video_mode+0x21f0/0x2950 drivers/video/fbdev/udlfb.c:315
dlfb_ops_set_par+0x2a7/0x8d0 drivers/video/fbdev/udlfb.c:1111
dlfb_usb_probe+0x149a/0x2710 drivers/video/fbdev/udlfb.c:1743
The current approach for this issue failed to catch the problem
because it only checks for the existence of a bulk-OUT endpoint; it
doesn't check whether this endpoint is the one that the driver will
actually use.
We can fix the problem by instead checking that the endpoint used by
the driver does exist and is bulk-OUT. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "IB/isert: Fix incorrect release of isert connection"
Commit: 699826f4e30a ("IB/isert: Fix incorrect release of isert connection") is
causing problems on OPA when DEVICE_REMOVAL is happening.
------------[ cut here ]------------
WARNING: CPU: 52 PID: 2117247 at drivers/infiniband/core/cq.c:359
ib_cq_pool_cleanup+0xac/0xb0 [ib_core]
Modules linked in: nfsd nfs_acl target_core_user uio tcm_fc libfc
scsi_transport_fc tcm_loop target_core_pscsi target_core_iblock target_core_file
rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs
rfkill rpcrdma rdma_ucm ib_srpt sunrpc ib_isert iscsi_target_mod target_core_mod
opa_vnic ib_iser libiscsi ib_umad scsi_transport_iscsi rdma_cm ib_ipoib iw_cm
ib_cm hfi1(-) rdmavt ib_uverbs intel_rapl_msr intel_rapl_common sb_edac ib_core
x86_pkg_temp_thermal intel_powerclamp coretemp i2c_i801 mxm_wmi rapl iTCO_wdt
ipmi_si iTCO_vendor_support mei_me ipmi_devintf mei intel_cstate ioatdma
intel_uncore i2c_smbus joydev pcspkr lpc_ich ipmi_msghandler acpi_power_meter
acpi_pad xfs libcrc32c sr_mod sd_mod cdrom t10_pi sg crct10dif_pclmul
crc32_pclmul crc32c_intel drm_kms_helper drm_shmem_helper ahci libahci
ghash_clmulni_intel igb drm libata dca i2c_algo_bit wmi fuse
CPU: 52 PID: 2117247 Comm: modprobe Not tainted 6.5.0-rc1+ #1
Hardware name: Intel Corporation S2600CWR/S2600CW, BIOS
SE5C610.86B.01.01.0014.121820151719 12/18/2015
RIP: 0010:ib_cq_pool_cleanup+0xac/0xb0 [ib_core]
Code: ff 48 8b 43 40 48 8d 7b 40 48 83 e8 40 4c 39 e7 75 b3 49 83
c4 10 4d 39 fc 75 94 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc <0f> 0b eb a1
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f
RSP: 0018:ffffc10bea13fc80 EFLAGS: 00010206
RAX: 000000000000010c RBX: ffff9bf5c7e66c00 RCX: 000000008020001d
RDX: 000000008020001e RSI: fffff175221f9900 RDI: ffff9bf5c7e67640
RBP: ffff9bf5c7e67600 R08: ffff9bf5c7e64400 R09: 000000008020001d
R10: 0000000040000000 R11: 0000000000000000 R12: ffff9bee4b1e8a18
R13: dead000000000122 R14: dead000000000100 R15: ffff9bee4b1e8a38
FS: 00007ff1e6d38740(0000) GS:ffff9bfd9fb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005652044ecc68 CR3: 0000000889b5c005 CR4: 00000000001706e0
Call Trace:
<TASK>
? __warn+0x80/0x130
? ib_cq_pool_cleanup+0xac/0xb0 [ib_core]
? report_bug+0x195/0x1a0
? handle_bug+0x3c/0x70
? exc_invalid_op+0x14/0x70
? asm_exc_invalid_op+0x16/0x20
? ib_cq_pool_cleanup+0xac/0xb0 [ib_core]
disable_device+0x9d/0x160 [ib_core]
__ib_unregister_device+0x42/0xb0 [ib_core]
ib_unregister_device+0x22/0x30 [ib_core]
rvt_unregister_device+0x20/0x90 [rdmavt]
hfi1_unregister_ib_device+0x16/0xf0 [hfi1]
remove_one+0x55/0x1a0 [hfi1]
pci_device_remove+0x36/0xa0
device_release_driver_internal+0x193/0x200
driver_detach+0x44/0x90
bus_remove_driver+0x69/0xf0
pci_unregister_driver+0x2a/0xb0
hfi1_mod_cleanup+0xc/0x3c [hfi1]
__do_sys_delete_module.constprop.0+0x17a/0x2f0
? exit_to_user_mode_prepare+0xc4/0xd0
? syscall_trace_enter.constprop.0+0x126/0x1a0
do_syscall_64+0x5c/0x90
? syscall_exit_to_user_mode+0x12/0x30
? do_syscall_64+0x69/0x90
? syscall_exit_work+0x103/0x130
? syscall_exit_to_user_mode+0x12/0x30
? do_syscall_64+0x69/0x90
? exc_page_fault+0x65/0x150
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
RIP: 0033:0x7ff1e643f5ab
Code: 73 01 c3 48 8b 0d 75 a8 1b 00 f7 d8 64 89 01 48 83 c8 ff c3
66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 b0 00 00 00 0f 05 <48> 3d 01 f0
ff ff 73 01 c3 48 8b 0d 45 a8 1b 00 f7 d8 64 89 01 48
RSP: 002b:00007ffec9103cc8 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0
RAX: ffffffffffffffda RBX: 00005615267fdc50 RCX: 00007ff1e643f5ab
RDX: 0000000000000000 RSI: 0000000000000800 RDI: 00005615267fdcb8
RBP: 00005615267fdc50 R08: 0000000000000000 R09: 0000000000000000
R10: 00007ff1e659eac0 R11: 0000000000000206 R12: 00005615267fdcb8
R13: 00000000000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/pmem: Fix nvdimm registration races
A loop of the form:
while true; do modprobe cxl_pci; modprobe -r cxl_pci; done
...fails with the following crash signature:
BUG: kernel NULL pointer dereference, address: 0000000000000040
[..]
RIP: 0010:cxl_internal_send_cmd+0x5/0xb0 [cxl_core]
[..]
Call Trace:
<TASK>
cxl_pmem_ctl+0x121/0x240 [cxl_pmem]
nvdimm_get_config_data+0xd6/0x1a0 [libnvdimm]
nd_label_data_init+0x135/0x7e0 [libnvdimm]
nvdimm_probe+0xd6/0x1c0 [libnvdimm]
nvdimm_bus_probe+0x7a/0x1e0 [libnvdimm]
really_probe+0xde/0x380
__driver_probe_device+0x78/0x170
driver_probe_device+0x1f/0x90
__device_attach_driver+0x85/0x110
bus_for_each_drv+0x7d/0xc0
__device_attach+0xb4/0x1e0
bus_probe_device+0x9f/0xc0
device_add+0x445/0x9c0
nd_async_device_register+0xe/0x40 [libnvdimm]
async_run_entry_fn+0x30/0x130
...namely that the bottom half of async nvdimm device registration runs
after the CXL has already torn down the context that cxl_pmem_ctl()
needs. Unlike the ACPI NFIT case that benefits from launching multiple
nvdimm device registrations in parallel from those listed in the table,
CXL is already marked PROBE_PREFER_ASYNCHRONOUS. So provide for a
synchronous registration path to preclude this scenario. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ebtables: fix table blob use-after-free
We are not allowed to return an error at this point.
Looking at the code it looks like ret is always 0 at this
point, but its not.
t = find_table_lock(net, repl->name, &ret, &ebt_mutex);
... this can return a valid table, with ret != 0.
This bug causes update of table->private with the new
blob, but then frees the blob right away in the caller.
Syzbot report:
BUG: KASAN: vmalloc-out-of-bounds in __ebt_unregister_table+0xc00/0xcd0 net/bridge/netfilter/ebtables.c:1168
Read of size 4 at addr ffffc90005425000 by task kworker/u4:4/74
Workqueue: netns cleanup_net
Call Trace:
kasan_report+0xbf/0x1f0 mm/kasan/report.c:517
__ebt_unregister_table+0xc00/0xcd0 net/bridge/netfilter/ebtables.c:1168
ebt_unregister_table+0x35/0x40 net/bridge/netfilter/ebtables.c:1372
ops_exit_list+0xb0/0x170 net/core/net_namespace.c:169
cleanup_net+0x4ee/0xb10 net/core/net_namespace.c:613
...
ip(6)tables appears to be ok (ret should be 0 at this point) but make
this more obvious. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Check for uptr overflow
syzkaller found that setting up a map with a user VA that wraps past zero
can trigger WARN_ONs, particularly from pin_user_pages weirdly returning 0
due to invalid arguments.
Prevent creating a pages with a uptr and size that would math overflow.
WARNING: CPU: 0 PID: 518 at drivers/iommu/iommufd/pages.c:793 pfn_reader_user_pin+0x2e6/0x390
Modules linked in:
CPU: 0 PID: 518 Comm: repro Not tainted 6.3.0-rc2-eeac8ede1755+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:pfn_reader_user_pin+0x2e6/0x390
Code: b1 11 e9 25 fe ff ff e8 28 e4 0f ff 31 ff 48 89 de e8 2e e6 0f ff 48 85 db 74 0a e8 14 e4 0f ff e9 4d ff ff ff e8 0a e4 0f ff <0f> 0b bb f2 ff ff ff e9 3c ff ff ff e8 f9 e3 0f ff ba 01 00 00 00
RSP: 0018:ffffc90000f9fa30 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff821e2b72
RDX: 0000000000000000 RSI: ffff888014184680 RDI: 0000000000000002
RBP: ffffc90000f9fa78 R08: 00000000000000ff R09: 0000000079de6f4e
R10: ffffc90000f9f790 R11: ffff888014185418 R12: ffffc90000f9fc60
R13: 0000000000000002 R14: ffff888007879800 R15: 0000000000000000
FS: 00007f4227555740(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000043 CR3: 000000000e748005 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
<TASK>
pfn_reader_next+0x14a/0x7b0
? interval_tree_double_span_iter_update+0x11a/0x140
pfn_reader_first+0x140/0x1b0
iopt_pages_rw_slow+0x71/0x280
? __this_cpu_preempt_check+0x20/0x30
iopt_pages_rw_access+0x2b2/0x5b0
iommufd_access_rw+0x19f/0x2f0
iommufd_test+0xd11/0x16f0
? write_comp_data+0x2f/0x90
iommufd_fops_ioctl+0x206/0x330
__x64_sys_ioctl+0x10e/0x160
? __pfx_iommufd_fops_ioctl+0x10/0x10
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Disable preemption in bpf_perf_event_output
The nesting protection in bpf_perf_event_output relies on disabled
preemption, which is guaranteed for kprobes and tracepoints.
However bpf_perf_event_output can be also called from uprobes context
through bpf_prog_run_array_sleepable function which disables migration,
but keeps preemption enabled.
This can cause task to be preempted by another one inside the nesting
protection and lead eventually to two tasks using same perf_sample_data
buffer and cause crashes like:
kernel tried to execute NX-protected page - exploit attempt? (uid: 0)
BUG: unable to handle page fault for address: ffffffff82be3eea
...
Call Trace:
? __die+0x1f/0x70
? page_fault_oops+0x176/0x4d0
? exc_page_fault+0x132/0x230
? asm_exc_page_fault+0x22/0x30
? perf_output_sample+0x12b/0x910
? perf_event_output+0xd0/0x1d0
? bpf_perf_event_output+0x162/0x1d0
? bpf_prog_c6271286d9a4c938_krava1+0x76/0x87
? __uprobe_perf_func+0x12b/0x540
? uprobe_dispatcher+0x2c4/0x430
? uprobe_notify_resume+0x2da/0xce0
? atomic_notifier_call_chain+0x7b/0x110
? exit_to_user_mode_prepare+0x13e/0x290
? irqentry_exit_to_user_mode+0x5/0x30
? asm_exc_int3+0x35/0x40
Fixing this by disabling preemption in bpf_perf_event_output. |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: fix potential null-ptr-deref in device_add()
I got the following null-ptr-deref report while doing fault injection test:
BUG: kernel NULL pointer dereference, address: 0000000000000058
CPU: 2 PID: 278 Comm: 37-i2c-ds2482 Tainted: G B W N 6.1.0-rc3+
RIP: 0010:klist_put+0x2d/0xd0
Call Trace:
<TASK>
klist_remove+0xf1/0x1c0
device_release_driver_internal+0x196/0x210
bus_remove_device+0x1bd/0x240
device_add+0xd3d/0x1100
w1_add_master_device+0x476/0x490 [wire]
ds2482_probe+0x303/0x3e0 [ds2482]
This is how it happened:
w1_alloc_dev()
// The dev->driver is set to w1_master_driver.
memcpy(&dev->dev, device, sizeof(struct device));
device_add()
bus_add_device()
dpm_sysfs_add() // It fails, calls bus_remove_device.
// error path
bus_remove_device()
// The dev->driver is not null, but driver is not bound.
__device_release_driver()
klist_remove(&dev->p->knode_driver) <-- It causes null-ptr-deref.
// normal path
bus_probe_device() // It's not called yet.
device_bind_driver()
If dev->driver is set, in the error path after calling bus_add_device()
in device_add(), bus_remove_device() is called, then the device will be
detached from driver. But device_bind_driver() is not called yet, so it
causes null-ptr-deref while access the 'knode_driver'. To fix this, set
dev->driver to null in the error path before calling bus_remove_device(). |
| In the Linux kernel, the following vulnerability has been resolved:
dm flakey: don't corrupt the zero page
When we need to zero some range on a block device, the function
__blkdev_issue_zero_pages submits a write bio with the bio vector pointing
to the zero page. If we use dm-flakey with corrupt bio writes option, it
will corrupt the content of the zero page which results in crashes of
various userspace programs. Glibc assumes that memory returned by mmap is
zeroed and it uses it for calloc implementation; if the newly mapped
memory is not zeroed, calloc will return non-zeroed memory.
Fix this bug by testing if the page is equal to ZERO_PAGE(0) and
avoiding the corruption in this case. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: use smc_lgr_list.lock to protect smc_lgr_list.list iterate in smcr_port_add
While doing smcr_port_add, there maybe linkgroup add into or delete
from smc_lgr_list.list at the same time, which may result kernel crash.
So, use smc_lgr_list.lock to protect smc_lgr_list.list iterate in
smcr_port_add.
The crash calltrace show below:
BUG: kernel NULL pointer dereference, address: 0000000000000000
PGD 0 P4D 0
Oops: 0000 [#1] SMP NOPTI
CPU: 0 PID: 559726 Comm: kworker/0:92 Kdump: loaded Tainted: G
Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 449e491 04/01/2014
Workqueue: events smc_ib_port_event_work [smc]
RIP: 0010:smcr_port_add+0xa6/0xf0 [smc]
RSP: 0000:ffffa5a2c8f67de0 EFLAGS: 00010297
RAX: 0000000000000001 RBX: ffff9935e0650000 RCX: 0000000000000000
RDX: 0000000000000010 RSI: ffff9935e0654290 RDI: ffff9935c8560000
RBP: 0000000000000000 R08: 0000000000000000 R09: ffff9934c0401918
R10: 0000000000000000 R11: ffffffffb4a5c278 R12: ffff99364029aae4
R13: ffff99364029aa00 R14: 00000000ffffffed R15: ffff99364029ab08
FS: 0000000000000000(0000) GS:ffff994380600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000f06a10003 CR4: 0000000002770ef0
PKRU: 55555554
Call Trace:
smc_ib_port_event_work+0x18f/0x380 [smc]
process_one_work+0x19b/0x340
worker_thread+0x30/0x370
? process_one_work+0x340/0x340
kthread+0x114/0x130
? __kthread_cancel_work+0x50/0x50
ret_from_fork+0x1f/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
mlx5: fix skb leak while fifo resync and push
During ptp resync operation SKBs were poped from the fifo but were never
freed neither by napi_consume nor by dev_kfree_skb_any. Add call to
napi_consume_skb to properly free SKBs.
Another leak was happening because mlx5e_skb_fifo_has_room() had an error
in the check. Comparing free running counters works well unless C promotes
the types to something wider than the counter. In this case counters are
u16 but the result of the substraction is promouted to int and it causes
wrong result (negative value) of the check when producer have already
overlapped but consumer haven't yet. Explicit cast to u16 fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix potential panic dues to unprotected smc_llc_srv_add_link()
There is a certain chance to trigger the following panic:
PID: 5900 TASK: ffff88c1c8af4100 CPU: 1 COMMAND: "kworker/1:48"
#0 [ffff9456c1cc79a0] machine_kexec at ffffffff870665b7
#1 [ffff9456c1cc79f0] __crash_kexec at ffffffff871b4c7a
#2 [ffff9456c1cc7ab0] crash_kexec at ffffffff871b5b60
#3 [ffff9456c1cc7ac0] oops_end at ffffffff87026ce7
#4 [ffff9456c1cc7ae0] page_fault_oops at ffffffff87075715
#5 [ffff9456c1cc7b58] exc_page_fault at ffffffff87ad0654
#6 [ffff9456c1cc7b80] asm_exc_page_fault at ffffffff87c00b62
[exception RIP: ib_alloc_mr+19]
RIP: ffffffffc0c9cce3 RSP: ffff9456c1cc7c38 RFLAGS: 00010202
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000004
RDX: 0000000000000010 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff88c1ea281d00 R8: 000000020a34ffff R9: ffff88c1350bbb20
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000
R13: 0000000000000010 R14: ffff88c1ab040a50 R15: ffff88c1ea281d00
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#7 [ffff9456c1cc7c60] smc_ib_get_memory_region at ffffffffc0aff6df [smc]
#8 [ffff9456c1cc7c88] smcr_buf_map_link at ffffffffc0b0278c [smc]
#9 [ffff9456c1cc7ce0] __smc_buf_create at ffffffffc0b03586 [smc]
The reason here is that when the server tries to create a second link,
smc_llc_srv_add_link() has no protection and may add a new link to
link group. This breaks the security environment protected by
llc_conf_mutex. |
| In the Linux kernel, the following vulnerability has been resolved:
net/net_failover: fix txq exceeding warning
The failover txq is inited as 16 queues.
when a packet is transmitted from the failover device firstly,
the failover device will select the queue which is returned from
the primary device if the primary device is UP and running.
If the primary device txq is bigger than the default 16,
it can lead to the following warning:
eth0 selects TX queue 18, but real number of TX queues is 16
The warning backtrace is:
[ 32.146376] CPU: 18 PID: 9134 Comm: chronyd Tainted: G E 6.2.8-1.el7.centos.x86_64 #1
[ 32.147175] Hardware name: Red Hat KVM, BIOS 1.10.2-3.el7_4.1 04/01/2014
[ 32.147730] Call Trace:
[ 32.147971] <TASK>
[ 32.148183] dump_stack_lvl+0x48/0x70
[ 32.148514] dump_stack+0x10/0x20
[ 32.148820] netdev_core_pick_tx+0xb1/0xe0
[ 32.149180] __dev_queue_xmit+0x529/0xcf0
[ 32.149533] ? __check_object_size.part.0+0x21c/0x2c0
[ 32.149967] ip_finish_output2+0x278/0x560
[ 32.150327] __ip_finish_output+0x1fe/0x2f0
[ 32.150690] ip_finish_output+0x2a/0xd0
[ 32.151032] ip_output+0x7a/0x110
[ 32.151337] ? __pfx_ip_finish_output+0x10/0x10
[ 32.151733] ip_local_out+0x5e/0x70
[ 32.152054] ip_send_skb+0x19/0x50
[ 32.152366] udp_send_skb.isra.0+0x163/0x3a0
[ 32.152736] udp_sendmsg+0xba8/0xec0
[ 32.153060] ? __folio_memcg_unlock+0x25/0x60
[ 32.153445] ? __pfx_ip_generic_getfrag+0x10/0x10
[ 32.153854] ? sock_has_perm+0x85/0xa0
[ 32.154190] inet_sendmsg+0x6d/0x80
[ 32.154508] ? inet_sendmsg+0x6d/0x80
[ 32.154838] sock_sendmsg+0x62/0x70
[ 32.155152] ____sys_sendmsg+0x134/0x290
[ 32.155499] ___sys_sendmsg+0x81/0xc0
[ 32.155828] ? _get_random_bytes.part.0+0x79/0x1a0
[ 32.156240] ? ip4_datagram_release_cb+0x5f/0x1e0
[ 32.156649] ? get_random_u16+0x69/0xf0
[ 32.156989] ? __fget_light+0xcf/0x110
[ 32.157326] __sys_sendmmsg+0xc4/0x210
[ 32.157657] ? __sys_connect+0xb7/0xe0
[ 32.157995] ? __audit_syscall_entry+0xce/0x140
[ 32.158388] ? syscall_trace_enter.isra.0+0x12c/0x1a0
[ 32.158820] __x64_sys_sendmmsg+0x24/0x30
[ 32.159171] do_syscall_64+0x38/0x90
[ 32.159493] entry_SYSCALL_64_after_hwframe+0x72/0xdc
Fix that by reducing txq number as the non-existent primary-dev does. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/DOE: Fix destroy_work_on_stack() race
The following debug object splat was observed in testing:
ODEBUG: free active (active state 0) object: 0000000097d23782 object type: work_struct hint: doe_statemachine_work+0x0/0x510
WARNING: CPU: 1 PID: 71 at lib/debugobjects.c:514 debug_print_object+0x7d/0xb0
...
Workqueue: pci 0000:36:00.0 DOE [1 doe_statemachine_work
RIP: 0010:debug_print_object+0x7d/0xb0
...
Call Trace:
? debug_print_object+0x7d/0xb0
? __pfx_doe_statemachine_work+0x10/0x10
debug_object_free.part.0+0x11b/0x150
doe_statemachine_work+0x45e/0x510
process_one_work+0x1d4/0x3c0
This occurs because destroy_work_on_stack() was called after signaling
the completion in the calling thread. This creates a race between
destroy_work_on_stack() and the task->work struct going out of scope in
pci_doe().
Signal the work complete after destroying the work struct. This is safe
because signal_task_complete() is the final thing the work item does and
the workqueue code is careful not to access the work struct after. |
| In the Linux kernel, the following vulnerability has been resolved:
net: libwx: fix memory leak in wx_setup_rx_resources
When wx_alloc_page_pool() failed in wx_setup_rx_resources(), it doesn't
release DMA buffer. Add dma_free_coherent() in the error path to release
the DMA buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: raa215300: Fix resource leak in case of error
The clk_register_clkdev() allocates memory by calling vclkdev_alloc() and
this memory is not freed in the error path. Similarly, resources allocated
by clk_register_fixed_rate() are not freed in the error path.
Fix these issues by using devm_clk_hw_register_fixed_rate() and
devm_clk_hw_register_clkdev().
After this, the static variable clk is not needed. Replace it withÂ
local variable hw in probe() and drop calling clk_unregister_fixed_rate()
from raa215300_rtc_unregister_device(). |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix data races around sk->sk_shutdown.
KCSAN found a data race around sk->sk_shutdown where unix_release_sock()
and unix_shutdown() update it under unix_state_lock(), OTOH unix_poll()
and unix_dgram_poll() read it locklessly.
We need to annotate the writes and reads with WRITE_ONCE() and READ_ONCE().
BUG: KCSAN: data-race in unix_poll / unix_release_sock
write to 0xffff88800d0f8aec of 1 bytes by task 264 on cpu 0:
unix_release_sock+0x75c/0x910 net/unix/af_unix.c:631
unix_release+0x59/0x80 net/unix/af_unix.c:1042
__sock_release+0x7d/0x170 net/socket.c:653
sock_close+0x19/0x30 net/socket.c:1397
__fput+0x179/0x5e0 fs/file_table.c:321
____fput+0x15/0x20 fs/file_table.c:349
task_work_run+0x116/0x1a0 kernel/task_work.c:179
resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
exit_to_user_mode_loop kernel/entry/common.c:171 [inline]
exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204
__syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline]
syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297
do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x72/0xdc
read to 0xffff88800d0f8aec of 1 bytes by task 222 on cpu 1:
unix_poll+0xa3/0x2a0 net/unix/af_unix.c:3170
sock_poll+0xcf/0x2b0 net/socket.c:1385
vfs_poll include/linux/poll.h:88 [inline]
ep_item_poll.isra.0+0x78/0xc0 fs/eventpoll.c:855
ep_send_events fs/eventpoll.c:1694 [inline]
ep_poll fs/eventpoll.c:1823 [inline]
do_epoll_wait+0x6c4/0xea0 fs/eventpoll.c:2258
__do_sys_epoll_wait fs/eventpoll.c:2270 [inline]
__se_sys_epoll_wait fs/eventpoll.c:2265 [inline]
__x64_sys_epoll_wait+0xcc/0x190 fs/eventpoll.c:2265
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x72/0xdc
value changed: 0x00 -> 0x03
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 222 Comm: dbus-broker Not tainted 6.3.0-rc7-02330-gca6270c12e20 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipa: only reset hashed tables when supported
Last year, the code that manages GSI channel transactions switched
from using spinlock-protected linked lists to using indexes into the
ring buffer used for a channel. Recently, Google reported seeing
transaction reference count underflows occasionally during shutdown.
Doug Anderson found a way to reproduce the issue reliably, and
bisected the issue to the commit that eliminated the linked lists
and the lock. The root cause was ultimately determined to be
related to unused transactions being committed as part of the modem
shutdown cleanup activity. Unused transactions are not normally
expected (except in error cases).
The modem uses some ranges of IPA-resident memory, and whenever it
shuts down we zero those ranges. In ipa_filter_reset_table() a
transaction is allocated to zero modem filter table entries. If
hashing is not supported, hashed table memory should not be zeroed.
But currently nothing prevents that, and the result is an unused
transaction. Something similar occurs when we zero routing table
entries for the modem.
By preventing any attempt to clear hashed tables when hashing is not
supported, the reference count underflow is avoided in this case.
Note that there likely remains an issue with properly freeing unused
transactions (if they occur due to errors). This patch addresses
only the underflows that Google originally reported. |