Filtered by NVD-CWE-noinfo
Total 33456 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2015-4495 6 Canonical, Mozilla, Opensuse and 3 more 16 Ubuntu Linux, Firefox, Firefox Os and 13 more 2025-10-22 8.8 High
The PDF reader in Mozilla Firefox before 39.0.3, Firefox ESR 38.x before 38.1.1, and Firefox OS before 2.2 allows remote attackers to bypass the Same Origin Policy, and read arbitrary files or gain privileges, via vectors involving crafted JavaScript code and a native setter, as exploited in the wild in August 2015.
CVE-2015-2590 6 Canonical, Debian, Opensuse and 3 more 25 Ubuntu Linux, Debian Linux, Opensuse and 22 more 2025-10-22 9.8 Critical
Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45, and Java SE Embedded 7u75 and 8u33 allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries, a different vulnerability than CVE-2015-4732.
CVE-2015-2545 1 Microsoft 1 Office 2025-10-22 7.8 High
Microsoft Office 2007 SP3, 2010 SP2, 2013 SP1, and 2013 RT SP1 allows remote attackers to execute arbitrary code via a crafted EPS image, aka "Microsoft Office Malformed EPS File Vulnerability."
CVE-2015-1701 1 Microsoft 4 Windows 2003 Server, Windows 7, Windows Server 2008 and 1 more 2025-10-22 7.8 High
Win32k.sys in the kernel-mode drivers in Microsoft Windows Server 2003 SP2, Vista SP2, and Server 2008 SP2 allows local users to gain privileges via a crafted application, as exploited in the wild in April 2015, aka "Win32k Elevation of Privilege Vulnerability."
CVE-2015-1671 1 Microsoft 11 .net Framework, Live Meeting, Lync and 8 more 2025-10-22 7.8 High
The Windows DirectWrite library, as used in Microsoft .NET Framework 3.0 SP2, 3.5, 3.5.1, 4, 4.5, 4.5.1, and 4.5.2; Office 2007 SP3 and 2010 SP2; Live Meeting 2007 Console; Lync 2010; Lync 2010 Attendee; Lync 2013 SP1; Lync Basic 2013 SP1; Silverlight 5 before 5.1.40416.00; and Silverlight 5 Developer Runtime before 5.1.40416.00, allows remote attackers to execute arbitrary code via a crafted TrueType font, aka "TrueType Font Parsing Vulnerability."
CVE-2014-8361 3 Aterm, Dlink, Realtek 51 W1200ex, W1200ex-ms, W1200ex-ms Firmware and 48 more 2025-10-22 9.8 Critical
The miniigd SOAP service in Realtek SDK allows remote attackers to execute arbitrary code via a crafted NewInternalClient request, as exploited in the wild through 2023.
CVE-2010-5326 1 Sap 1 Netweaver Application Server Java 2025-10-22 10 Critical
The Invoker Servlet on SAP NetWeaver Application Server Java platforms, possibly before 7.3, does not require authentication, which allows remote attackers to execute arbitrary code via an HTTP or HTTPS request, as exploited in the wild in 2013 through 2016, aka a "Detour" attack.
CVE-2025-61958 1 F5 22 Big-ip, Big-ip Access Policy Manager, Big-ip Advanced Firewall Manager and 19 more 2025-10-21 6.5 Medium
A vulnerability exists in the iHealth command that may allow an authenticated attacker with at least a resource administrator role to bypass tmsh restrictions and gain access to a bash shell.  For BIG-IP systems running in Appliance mode, a successful exploit can allow the attacker to cross a security boundary.  Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
CVE-2025-61951 1 F5 22 Big-ip, Big-ip Access Policy Manager, Big-ip Advanced Firewall Manager and 19 more 2025-10-21 7.5 High
Undisclosed traffic can cause the Traffic Management Microkernel (TMM) to terminate.  This issue may occur when a Datagram Transport Layer Security (DTLS) 1.2 virtual server is enabled with a Server SSL profile that is configured with a certificate, key, and the SSL Sign Hash set to ANY, and the backend server is enabled with DTLS 1.2 and client authentication.  Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
CVE-2025-53856 1 F5 22 Big-ip, Big-ip Access Policy Manager, Big-ip Advanced Firewall Manager and 19 more 2025-10-21 7.5 High
When a virtual server, network address translation (NAT) object, or secure network address translation (SNAT) object uses the embedded Packet Velocity Acceleration (ePVA) feature, undisclosed traffic can cause the Traffic Management Microkernel (TMM) to terminate.  To determine which BIG-IP platforms have an ePVA chip refer to K12837: Overview of the ePVA feature https://my.f5.com/manage/s/article/K12837 .  Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
CVE-2025-54854 1 F5 2 Big-ip, Big-ip Access Policy Manager 2025-10-21 7.5 High
When a BIG-IP APM OAuth access profile (Resource Server or Resource Client) is configured on a virtual server, undisclosed traffic can cause the apmd process to terminate.  Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
CVE-2025-53474 1 F5 22 Big-ip, Big-ip Access Policy Manager, Big-ip Advanced Firewall Manager and 19 more 2025-10-21 7.5 High
When an iRule using an ILX::call command is configured on a virtual server, undisclosed traffic can cause the Traffic Management Microkernel (TMM) to terminate.  Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
CVE-2025-59481 1 F5 22 Big-ip, Big-ip Access Policy Manager, Big-ip Advanced Firewall Manager and 19 more 2025-10-21 6.5 Medium
A vulnerability exists in an undisclosed iControl REST and BIG-IP TMOS Shell (tmsh) command that may allow an authenticated attacker with at least resource administrator role to execute arbitrary system commands with higher privileges.  A successful exploit can allow the attacker to cross a security boundary.  Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
CVE-2025-57780 1 F5 3 F5os, F5os-a, F5os-c 2025-10-21 7.8 High
A vulnerability exists in F5OS-A and F5OS-C system that may allow an authenticated attacker with local access to escalate their privileges.  A successful exploit may allow the attacker to cross a security boundary.  Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
CVE-2022-49167 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: do not double complete bio on errors during compressed reads I hit some weird panics while fixing up the error handling from btrfs_lookup_bio_sums(). Turns out the compression path will complete the bio we use if we set up any of the compression bios and then return an error, and then btrfs_submit_data_bio() will also call bio_endio() on the bio. Fix this by making btrfs_submit_compressed_read() responsible for calling bio_endio() on the bio if there are any errors. Currently it was only doing it if we created the compression bios, otherwise it was depending on btrfs_submit_data_bio() to do the right thing. This creates the above problem, so fix up btrfs_submit_compressed_read() to always call bio_endio() in case of an error, and then simply return from btrfs_submit_data_bio() if we had to call btrfs_submit_compressed_read().
CVE-2025-58290 1 Huawei 1 Harmonyos 2025-10-21 3.3 Low
Denial of service (DoS) vulnerability in the office service. Successful exploitation of this vulnerability may affect availability.
CVE-2022-49308 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: extcon: Modify extcon device to be created after driver data is set Currently, someone can invoke the sysfs such as state_show() intermittently before dev_set_drvdata() is done. And it can be a cause of kernel Oops because of edev is Null at that time. So modified the driver registration to after setting drviver data. - Oops's backtrace. Backtrace: [<c067865c>] (state_show) from [<c05222e8>] (dev_attr_show) [<c05222c0>] (dev_attr_show) from [<c02c66e0>] (sysfs_kf_seq_show) [<c02c6648>] (sysfs_kf_seq_show) from [<c02c496c>] (kernfs_seq_show) [<c02c4938>] (kernfs_seq_show) from [<c025e2a0>] (seq_read) [<c025e11c>] (seq_read) from [<c02c50a0>] (kernfs_fop_read) [<c02c5064>] (kernfs_fop_read) from [<c0231cac>] (__vfs_read) [<c0231c5c>] (__vfs_read) from [<c0231ee0>] (vfs_read) [<c0231e34>] (vfs_read) from [<c0232464>] (ksys_read) [<c02323f0>] (ksys_read) from [<c02324fc>] (sys_read) [<c02324e4>] (sys_read) from [<c00091d0>] (__sys_trace_return)
CVE-2022-49333 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: E-Switch, pair only capable devices OFFLOADS paring using devcom is possible only on devices that support LAG. Filter based on lag capabilities. This fixes an issue where mlx5_get_next_phys_dev() was called without holding the interface lock. This issue was found when commit bc4c2f2e0179 ("net/mlx5: Lag, filter non compatible devices") added an assert that verifies the interface lock is held. WARNING: CPU: 9 PID: 1706 at drivers/net/ethernet/mellanox/mlx5/core/dev.c:642 mlx5_get_next_phys_dev+0xd2/0x100 [mlx5_core] Modules linked in: mlx5_vdpa vringh vhost_iotlb vdpa mlx5_ib mlx5_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_umad ib_ipoib ib_cm ib_uverbs ib_core overlay fuse [last unloaded: mlx5_core] CPU: 9 PID: 1706 Comm: devlink Not tainted 5.18.0-rc7+ #11 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:mlx5_get_next_phys_dev+0xd2/0x100 [mlx5_core] Code: 02 00 75 48 48 8b 85 80 04 00 00 5d c3 31 c0 5d c3 be ff ff ff ff 48 c7 c7 08 41 5b a0 e8 36 87 28 e3 85 c0 0f 85 6f ff ff ff <0f> 0b e9 68 ff ff ff 48 c7 c7 0c 91 cc 84 e8 cb 36 6f e1 e9 4d ff RSP: 0018:ffff88811bf47458 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88811b398000 RCX: 0000000000000001 RDX: 0000000080000000 RSI: ffffffffa05b4108 RDI: ffff88812daaaa78 RBP: ffff88812d050380 R08: 0000000000000001 R09: ffff88811d6b3437 R10: 0000000000000001 R11: 00000000fddd3581 R12: ffff88815238c000 R13: ffff88812d050380 R14: ffff8881018aa7e0 R15: ffff88811d6b3428 FS: 00007fc82e18ae80(0000) GS:ffff88842e080000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f9630d1b421 CR3: 0000000149802004 CR4: 0000000000370ea0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> mlx5_esw_offloads_devcom_event+0x99/0x3b0 [mlx5_core] mlx5_devcom_send_event+0x167/0x1d0 [mlx5_core] esw_offloads_enable+0x1153/0x1500 [mlx5_core] ? mlx5_esw_offloads_controller_valid+0x170/0x170 [mlx5_core] ? wait_for_completion_io_timeout+0x20/0x20 ? mlx5_rescan_drivers_locked+0x318/0x810 [mlx5_core] mlx5_eswitch_enable_locked+0x586/0xc50 [mlx5_core] ? mlx5_eswitch_disable_pf_vf_vports+0x1d0/0x1d0 [mlx5_core] ? mlx5_esw_try_lock+0x1b/0xb0 [mlx5_core] ? mlx5_eswitch_enable+0x270/0x270 [mlx5_core] ? __debugfs_create_file+0x260/0x3e0 mlx5_devlink_eswitch_mode_set+0x27e/0x870 [mlx5_core] ? mutex_lock_io_nested+0x12c0/0x12c0 ? esw_offloads_disable+0x250/0x250 [mlx5_core] ? devlink_nl_cmd_trap_get_dumpit+0x470/0x470 ? rcu_read_lock_sched_held+0x3f/0x70 devlink_nl_cmd_eswitch_set_doit+0x217/0x620
CVE-2022-49336 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/etnaviv: check for reaped mapping in etnaviv_iommu_unmap_gem When the mapping is already reaped the unmap must be a no-op, as we would otherwise try to remove the mapping twice, corrupting the involved data structures.
CVE-2022-49338 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: CT: Fix cleanup of CT before cleanup of TC ct rules CT cleanup assumes that all tc rules were deleted first, and so is free to delete the CT shared resources (e.g the dr_action fwd_action which is shared for all tuples). But currently for uplink, this is happens in reverse, causing the below trace. CT cleanup is called from: mlx5e_cleanup_rep_tx()->mlx5e_cleanup_uplink_rep_tx()-> mlx5e_rep_tc_cleanup()->mlx5e_tc_esw_cleanup()-> mlx5_tc_ct_clean() Only afterwards, tc cleanup is called from: mlx5e_cleanup_rep_tx()->mlx5e_tc_ht_cleanup() which would have deleted all the tc ct rules, and so delete all the offloaded tuples. Fix this reversing the order of init and on cleanup, which will result in tc cleanup then ct cleanup. [ 9443.593347] WARNING: CPU: 2 PID: 206774 at drivers/net/ethernet/mellanox/mlx5/core/steering/dr_action.c:1882 mlx5dr_action_destroy+0x188/0x1a0 [mlx5_core] [ 9443.593349] Modules linked in: act_ct nf_flow_table rdma_ucm(O) rdma_cm(O) iw_cm(O) ib_ipoib(O) ib_cm(O) ib_umad(O) mlx5_core(O-) mlxfw(O) mlxdevm(O) auxiliary(O) ib_uverbs(O) psample ib_core(O) mlx_compat(O) ip_gre gre ip_tunnel act_vlan bonding geneve esp6_offload esp6 esp4_offload esp4 act_tunnel_key vxlan ip6_udp_tunnel udp_tunnel act_mirred act_skbedit act_gact cls_flower sch_ingress nfnetlink_cttimeout nfnetlink xfrm_user xfrm_algo 8021q garp stp ipmi_devintf mrp ipmi_msghandler llc openvswitch nsh nf_conncount nf_nat mst_pciconf(O) dm_multipath sbsa_gwdt uio_pdrv_genirq uio mlxbf_pmc mlxbf_pka mlx_trio mlx_bootctl(O) bluefield_edac sch_fq_codel ip_tables ipv6 crc_ccitt btrfs zstd_compress raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor xor_neon raid6_pq raid1 raid0 crct10dif_ce i2c_mlxbf gpio_mlxbf2 mlxbf_gige aes_neon_bs aes_neon_blk [last unloaded: mlx5_ib] [ 9443.593419] CPU: 2 PID: 206774 Comm: modprobe Tainted: G O 5.4.0-1023.24.gc14613d-bluefield #1 [ 9443.593422] Hardware name: https://www.mellanox.com BlueField SoC/BlueField SoC, BIOS BlueField:143ebaf Jan 11 2022 [ 9443.593424] pstate: 20000005 (nzCv daif -PAN -UAO) [ 9443.593489] pc : mlx5dr_action_destroy+0x188/0x1a0 [mlx5_core] [ 9443.593545] lr : mlx5_ct_fs_smfs_destroy+0x24/0x30 [mlx5_core] [ 9443.593546] sp : ffff8000135dbab0 [ 9443.593548] x29: ffff8000135dbab0 x28: ffff0003a6ab8e80 [ 9443.593550] x27: 0000000000000000 x26: ffff0003e07d7000 [ 9443.593552] x25: ffff800009609de0 x24: ffff000397fb2120 [ 9443.593554] x23: ffff0003975c0000 x22: 0000000000000000 [ 9443.593556] x21: ffff0003975f08c0 x20: ffff800009609de0 [ 9443.593558] x19: ffff0003c8a13380 x18: 0000000000000014 [ 9443.593560] x17: 0000000067f5f125 x16: 000000006529c620 [ 9443.593561] x15: 000000000000000b x14: 0000000000000000 [ 9443.593563] x13: 0000000000000002 x12: 0000000000000001 [ 9443.593565] x11: ffff800011108868 x10: 0000000000000000 [ 9443.593567] x9 : 0000000000000000 x8 : ffff8000117fb270 [ 9443.593569] x7 : ffff0003ebc01288 x6 : 0000000000000000 [ 9443.593571] x5 : ffff800009591ab8 x4 : fffffe000f6d9a20 [ 9443.593572] x3 : 0000000080040001 x2 : fffffe000f6d9a20 [ 9443.593574] x1 : ffff8000095901d8 x0 : 0000000000000025 [ 9443.593577] Call trace: [ 9443.593634] mlx5dr_action_destroy+0x188/0x1a0 [mlx5_core] [ 9443.593688] mlx5_ct_fs_smfs_destroy+0x24/0x30 [mlx5_core] [ 9443.593743] mlx5_tc_ct_clean+0x34/0xa8 [mlx5_core] [ 9443.593797] mlx5e_tc_esw_cleanup+0x58/0x88 [mlx5_core] [ 9443.593851] mlx5e_rep_tc_cleanup+0x24/0x30 [mlx5_core] [ 9443.593905] mlx5e_cleanup_rep_tx+0x6c/0x78 [mlx5_core] [ 9443.593959] mlx5e_detach_netdev+0x74/0x98 [mlx5_core] [ 9443.594013] mlx5e_netdev_change_profile+0x70/0x180 [mlx5_core] [ 9443.594067] mlx5e_netdev_attach_nic_profile+0x34/0x40 [mlx5_core] [ 9443.594122] mlx5e_vport_rep_unload+0x15c/0x1a8 [mlx5_core] [ 9443.594177] mlx5_eswitch_unregister_vport_reps+0x228/0x298 [mlx5_core] [ 9443.594231] mlx5e_rep_remove+0x2c/0x38 ---truncated---