| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: fix race condition UAF in i915_perf_add_config_ioctl
Userspace can guess the id value and try to race oa_config object creation
with config remove, resulting in a use-after-free if we dereference the
object after unlocking the metrics_lock. For that reason, unlocking the
metrics_lock must be done after we are done dereferencing the object.
[tursulin: Manually added stable tag.]
(cherry picked from commit 49f6f6483b652108bcb73accd0204a464b922395) |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Disable preemption in bpf_event_output
We received report [1] of kernel crash, which is caused by
using nesting protection without disabled preemption.
The bpf_event_output can be called by programs executed by
bpf_prog_run_array_cg function that disabled migration but
keeps preemption enabled.
This can cause task to be preempted by another one inside the
nesting protection and lead eventually to two tasks using same
perf_sample_data buffer and cause crashes like:
BUG: kernel NULL pointer dereference, address: 0000000000000001
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
...
? perf_output_sample+0x12a/0x9a0
? finish_task_switch.isra.0+0x81/0x280
? perf_event_output+0x66/0xa0
? bpf_event_output+0x13a/0x190
? bpf_event_output_data+0x22/0x40
? bpf_prog_dfc84bbde731b257_cil_sock4_connect+0x40a/0xacb
? xa_load+0x87/0xe0
? __cgroup_bpf_run_filter_sock_addr+0xc1/0x1a0
? release_sock+0x3e/0x90
? sk_setsockopt+0x1a1/0x12f0
? udp_pre_connect+0x36/0x50
? inet_dgram_connect+0x93/0xa0
? __sys_connect+0xb4/0xe0
? udp_setsockopt+0x27/0x40
? __pfx_udp_push_pending_frames+0x10/0x10
? __sys_setsockopt+0xdf/0x1a0
? __x64_sys_connect+0xf/0x20
? do_syscall_64+0x3a/0x90
? entry_SYSCALL_64_after_hwframe+0x72/0xdc
Fixing this by disabling preemption in bpf_event_output.
[1] https://github.com/cilium/cilium/issues/26756 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/bridge: it6505: Initialize AUX channel in it6505_i2c_probe
During device boot, the HPD interrupt could be triggered before the DRM
subsystem registers it6505 as a DRM bridge. In such cases, the driver
tries to access AUX channel and causes NULL pointer dereference.
Initializing the AUX channel earlier to prevent such error. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: imx93: fix memory leak and missing unwind goto in imx93_clocks_probe
In function probe(), it returns directly without unregistered hws
when error occurs.
Fix this by adding 'goto unregister_hws;' on line 295 and
line 310.
Use devm_kzalloc() instead of kzalloc() to automatically
free the memory using devm_kfree() when error occurs.
Replace of_iomap() with devm_of_iomap() to automatically
handle the unused ioremap region and delete 'iounmap(anatop_base);'
in unregister_hws. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: TC, Fix using eswitch mapping in nic mode
Cited patch is using the eswitch object mapping pool while
in nic mode where it isn't initialized. This results in the
trace below [0].
Fix that by using either nic or eswitch object mapping pool
depending if eswitch is enabled or not.
[0]:
[ 826.446057] ==================================================================
[ 826.446729] BUG: KASAN: slab-use-after-free in mlx5_add_flow_rules+0x30/0x490 [mlx5_core]
[ 826.447515] Read of size 8 at addr ffff888194485830 by task tc/6233
[ 826.448243] CPU: 16 PID: 6233 Comm: tc Tainted: G W 6.3.0-rc6+ #1
[ 826.448890] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 826.449785] Call Trace:
[ 826.450052] <TASK>
[ 826.450302] dump_stack_lvl+0x33/0x50
[ 826.450650] print_report+0xc2/0x610
[ 826.450998] ? __virt_addr_valid+0xb1/0x130
[ 826.451385] ? mlx5_add_flow_rules+0x30/0x490 [mlx5_core]
[ 826.451935] kasan_report+0xae/0xe0
[ 826.452276] ? mlx5_add_flow_rules+0x30/0x490 [mlx5_core]
[ 826.452829] mlx5_add_flow_rules+0x30/0x490 [mlx5_core]
[ 826.453368] ? __kmalloc_node+0x5a/0x120
[ 826.453733] esw_add_restore_rule+0x20f/0x270 [mlx5_core]
[ 826.454288] ? mlx5_eswitch_add_send_to_vport_meta_rule+0x260/0x260 [mlx5_core]
[ 826.455011] ? mutex_unlock+0x80/0xd0
[ 826.455361] ? __mutex_unlock_slowpath.constprop.0+0x210/0x210
[ 826.455862] ? mapping_add+0x2cb/0x440 [mlx5_core]
[ 826.456425] mlx5e_tc_action_miss_mapping_get+0x139/0x180 [mlx5_core]
[ 826.457058] ? mlx5e_tc_update_skb_nic+0xb0/0xb0 [mlx5_core]
[ 826.457636] ? __kasan_kmalloc+0x77/0x90
[ 826.458000] ? __kmalloc+0x57/0x120
[ 826.458336] mlx5_tc_ct_flow_offload+0x325/0xe40 [mlx5_core]
[ 826.458916] ? ct_kernel_enter.constprop.0+0x48/0xa0
[ 826.459360] ? mlx5_tc_ct_parse_action+0xf0/0xf0 [mlx5_core]
[ 826.459933] ? mlx5e_mod_hdr_attach+0x491/0x520 [mlx5_core]
[ 826.460507] ? mlx5e_mod_hdr_get+0x12/0x20 [mlx5_core]
[ 826.461046] ? mlx5e_tc_attach_mod_hdr+0x154/0x170 [mlx5_core]
[ 826.461635] mlx5e_configure_flower+0x969/0x2110 [mlx5_core]
[ 826.462217] ? _raw_spin_lock_bh+0x85/0xe0
[ 826.462597] ? __mlx5e_add_fdb_flow+0x750/0x750 [mlx5_core]
[ 826.463163] ? kasan_save_stack+0x2e/0x40
[ 826.463534] ? down_read+0x115/0x1b0
[ 826.463878] ? down_write_killable+0x110/0x110
[ 826.464288] ? tc_setup_action.part.0+0x9f/0x3b0
[ 826.464701] ? mlx5e_is_uplink_rep+0x4c/0x90 [mlx5_core]
[ 826.465253] ? mlx5e_tc_reoffload_flows_work+0x130/0x130 [mlx5_core]
[ 826.465878] tc_setup_cb_add+0x112/0x250
[ 826.466247] fl_hw_replace_filter+0x230/0x310 [cls_flower]
[ 826.466724] ? fl_hw_destroy_filter+0x1a0/0x1a0 [cls_flower]
[ 826.467212] fl_change+0x14e1/0x2030 [cls_flower]
[ 826.467636] ? sock_def_readable+0x89/0x120
[ 826.468019] ? fl_tmplt_create+0x2d0/0x2d0 [cls_flower]
[ 826.468509] ? kasan_unpoison+0x23/0x50
[ 826.468873] ? get_random_u16+0x180/0x180
[ 826.469244] ? __radix_tree_lookup+0x2b/0x130
[ 826.469640] ? fl_get+0x7b/0x140 [cls_flower]
[ 826.470042] ? fl_mask_put+0x200/0x200 [cls_flower]
[ 826.470478] ? __mutex_unlock_slowpath.constprop.0+0x210/0x210
[ 826.470973] ? fl_tmplt_create+0x2d0/0x2d0 [cls_flower]
[ 826.471427] tc_new_tfilter+0x644/0x1050
[ 826.471795] ? tc_get_tfilter+0x860/0x860
[ 826.472170] ? __thaw_task+0x130/0x130
[ 826.472525] ? arch_stack_walk+0x98/0xf0
[ 826.472892] ? cap_capable+0x9f/0xd0
[ 826.473235] ? security_capable+0x47/0x60
[ 826.473608] rtnetlink_rcv_msg+0x1d5/0x550
[ 826.473985] ? rtnl_calcit.isra.0+0x1f0/0x1f0
[ 826.474383] ? __stack_depot_save+0x35/0x4c0
[ 826.474779] ? kasan_save_stack+0x2e/0x40
[ 826.475149] ? kasan_save_stack+0x1e/0x40
[ 826.475518] ? __kasan_record_aux_stack+0x9f/0xb0
[ 826.475939] ? task_work_add+0x77/0x1c0
[ 826.476305] netlink_rcv_skb+0xe0/0x210
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zoned: fix memory leak after finding block group with super blocks
At exclude_super_stripes(), if we happen to find a block group that has
super blocks mapped to it and we are on a zoned filesystem, we error out
as this is not supposed to happen, indicating either a bug or maybe some
memory corruption for example. However we are exiting the function without
freeing the memory allocated for the logical address of the super blocks.
Fix this by freeing the logical address. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: imx: disable Ageing Timer interrupt request irq
There maybe pending USR interrupt before requesting irq, however
uart_add_one_port has not executed, so there will be kernel panic:
[ 0.795668] Unable to handle kernel NULL pointer dereference at virtual addre
ss 0000000000000080
[ 0.802701] Mem abort info:
[ 0.805367] ESR = 0x0000000096000004
[ 0.808950] EC = 0x25: DABT (current EL), IL = 32 bits
[ 0.814033] SET = 0, FnV = 0
[ 0.816950] EA = 0, S1PTW = 0
[ 0.819950] FSC = 0x04: level 0 translation fault
[ 0.824617] Data abort info:
[ 0.827367] ISV = 0, ISS = 0x00000004
[ 0.831033] CM = 0, WnR = 0
[ 0.833866] [0000000000000080] user address but active_mm is swapper
[ 0.839951] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[ 0.845953] Modules linked in:
[ 0.848869] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.1.1+g56321e101aca #1
[ 0.855617] Hardware name: Freescale i.MX8MP EVK (DT)
[ 0.860452] pstate: 000000c5 (nzcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 0.867117] pc : __imx_uart_rxint.constprop.0+0x11c/0x2c0
[ 0.872283] lr : imx_uart_int+0xf8/0x1ec
The issue only happends in the inmate linux when Jailhouse hypervisor
enabled. The test procedure is:
while true; do
jailhouse enable imx8mp.cell
jailhouse cell linux xxxx
sleep 10
jailhouse cell destroy 1
jailhouse disable
sleep 5
done
And during the upper test, press keys to the 2nd linux console.
When `jailhouse cell destroy 1`, the 2nd linux has no chance to put
the uart to a quiese state, so USR1/2 may has pending interrupts. Then
when `jailhosue cell linux xx` to start 2nd linux again, the issue
trigger.
In order to disable irqs before requesting them, both UCR1 and UCR2 irqs
should be disabled, so here fix that, disable the Ageing Timer interrupt
in UCR2 as UCR1 does. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: udlfb: Fix endpoint check
The syzbot fuzzer detected a problem in the udlfb driver, caused by an
endpoint not having the expected type:
usb 1-1: Read EDID byte 0 failed: -71
usb 1-1: Unable to get valid EDID from device/display
------------[ cut here ]------------
usb 1-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 0 PID: 9 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880
drivers/usb/core/urb.c:504
Modules linked in:
CPU: 0 PID: 9 Comm: kworker/0:1 Not tainted
6.4.0-rc1-syzkaller-00016-ga4422ff22142 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google
04/28/2023
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504
...
Call Trace:
<TASK>
dlfb_submit_urb+0x92/0x180 drivers/video/fbdev/udlfb.c:1980
dlfb_set_video_mode+0x21f0/0x2950 drivers/video/fbdev/udlfb.c:315
dlfb_ops_set_par+0x2a7/0x8d0 drivers/video/fbdev/udlfb.c:1111
dlfb_usb_probe+0x149a/0x2710 drivers/video/fbdev/udlfb.c:1743
The current approach for this issue failed to catch the problem
because it only checks for the existence of a bulk-OUT endpoint; it
doesn't check whether this endpoint is the one that the driver will
actually use.
We can fix the problem by instead checking that the endpoint used by
the driver does exist and is bulk-OUT. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: move init of percpu reply_cache_stats counters back to nfsd_init_net
Commit f5f9d4a314da ("nfsd: move reply cache initialization into nfsd
startup") moved the initialization of the reply cache into nfsd startup,
but didn't account for the stats counters, which can be accessed before
nfsd is ever started. The result can be a NULL pointer dereference when
someone accesses /proc/fs/nfsd/reply_cache_stats while nfsd is still
shut down.
This is a regression and a user-triggerable oops in the right situation:
- non-x86_64 arch
- /proc/fs/nfsd is mounted in the namespace
- nfsd is not started in the namespace
- unprivileged user calls "cat /proc/fs/nfsd/reply_cache_stats"
Although this is easy to trigger on some arches (like aarch64), on
x86_64, calling this_cpu_ptr(NULL) evidently returns a pointer to the
fixed_percpu_data. That struct looks just enough like a newly
initialized percpu var to allow nfsd_reply_cache_stats_show to access
it without Oopsing.
Move the initialization of the per-net+per-cpu reply-cache counters
back into nfsd_init_net, while leaving the rest of the reply cache
allocations to be done at nfsd startup time.
Kudos to Eirik who did most of the legwork to track this down. |
| In the Linux kernel, the following vulnerability has been resolved:
samples/bpf: Fix buffer overflow in tcp_basertt
Using sizeof(nv) or strlen(nv)+1 is correct. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: Fix leak of dev tracker
At the stage of direction checks, the netdev reference tracker is
already initialized, but released with wrong *_put() call. |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: double free xprt_ctxt while still in use
When an RPC request is deferred, the rq_xprt_ctxt pointer is moved out
of the svc_rqst into the svc_deferred_req.
When the deferred request is revisited, the pointer is copied into
the new svc_rqst - and also remains in the svc_deferred_req.
In the (rare?) case that the request is deferred a second time, the old
svc_deferred_req is reused - it still has all the correct content.
However in that case the rq_xprt_ctxt pointer is NOT cleared so that
when xpo_release_xprt is called, the ctxt is freed (UDP) or possible
added to a free list (RDMA).
When the deferred request is revisited for a second time, it will
reference this ctxt which may be invalid, and the free the object a
second time which is likely to oops.
So change svc_defer() to *always* clear rq_xprt_ctxt, and assert that
the value is now stored in the svc_deferred_req. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries: Rework lppaca_shared_proc() to avoid DEBUG_PREEMPT
lppaca_shared_proc() takes a pointer to the lppaca which is typically
accessed through get_lppaca(). With DEBUG_PREEMPT enabled, this leads
to checking if preemption is enabled, for example:
BUG: using smp_processor_id() in preemptible [00000000] code: grep/10693
caller is lparcfg_data+0x408/0x19a0
CPU: 4 PID: 10693 Comm: grep Not tainted 6.5.0-rc3 #2
Call Trace:
dump_stack_lvl+0x154/0x200 (unreliable)
check_preemption_disabled+0x214/0x220
lparcfg_data+0x408/0x19a0
...
This isn't actually a problem however, as it does not matter which
lppaca is accessed, the shared proc state will be the same.
vcpudispatch_stats_procfs_init() already works around this by disabling
preemption, but the lparcfg code does not, erroring any time
/proc/powerpc/lparcfg is accessed with DEBUG_PREEMPT enabled.
Instead of disabling preemption on the caller side, rework
lppaca_shared_proc() to not take a pointer and instead directly access
the lppaca, bypassing any potential preemption checks.
[mpe: Rework to avoid needing a definition in paca.h and lppaca.h] |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix missing mrioc->evtack_cmds initialization
Commit c1af985d27da ("scsi: mpi3mr: Add Event acknowledgment logic")
introduced an array mrioc->evtack_cmds but initialization of the array
elements was missed. They are just zero cleared. The function
mpi3mr_complete_evt_ack() refers host_tag field of the elements. Due to the
zero value of the host_tag field, the function calls clear_bit() for
mrico->evtack_cmds_bitmap with wrong bit index. This results in memory
access to invalid address and "BUG: KASAN: use-after-free". This BUG was
observed at eHBA-9600 firmware update to version 8.3.1.0. To fix it, add
the missing initialization of mrioc->evtack_cmds. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/srpt: Add a check for valid 'mad_agent' pointer
When unregistering MAD agent, srpt module has a non-null check
for 'mad_agent' pointer before invoking ib_unregister_mad_agent().
This check can pass if 'mad_agent' variable holds an error value.
The 'mad_agent' can have an error value for a short window when
srpt_add_one() and srpt_remove_one() is executed simultaneously.
In srpt module, added a valid pointer check for 'sport->mad_agent'
before unregistering MAD agent.
This issue can hit when RoCE driver unregisters ib_device
Stack Trace:
------------
BUG: kernel NULL pointer dereference, address: 000000000000004d
PGD 145003067 P4D 145003067 PUD 2324fe067 PMD 0
Oops: 0002 [#1] PREEMPT SMP NOPTI
CPU: 10 PID: 4459 Comm: kworker/u80:0 Kdump: loaded Tainted: P
Hardware name: Dell Inc. PowerEdge R640/06NR82, BIOS 2.5.4 01/13/2020
Workqueue: bnxt_re bnxt_re_task [bnxt_re]
RIP: 0010:_raw_spin_lock_irqsave+0x19/0x40
Call Trace:
ib_unregister_mad_agent+0x46/0x2f0 [ib_core]
IPv6: ADDRCONF(NETDEV_CHANGE): bond0: link becomes ready
? __schedule+0x20b/0x560
srpt_unregister_mad_agent+0x93/0xd0 [ib_srpt]
srpt_remove_one+0x20/0x150 [ib_srpt]
remove_client_context+0x88/0xd0 [ib_core]
bond0: (slave p2p1): link status definitely up, 100000 Mbps full duplex
disable_device+0x8a/0x160 [ib_core]
bond0: active interface up!
? kernfs_name_hash+0x12/0x80
(NULL device *): Bonding Info Received: rdev: 000000006c0b8247
__ib_unregister_device+0x42/0xb0 [ib_core]
(NULL device *): Master: mode: 4 num_slaves:2
ib_unregister_device+0x22/0x30 [ib_core]
(NULL device *): Slave: id: 105069936 name:p2p1 link:0 state:0
bnxt_re_stopqps_and_ib_uninit+0x83/0x90 [bnxt_re]
bnxt_re_alloc_lag+0x12e/0x4e0 [bnxt_re] |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-vdpa: Fix cpumask memory leak in virtio_vdpa_find_vqs()
Free the cpumask allocated by create_affinity_masks() before returning
from the function. |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/pmem: Fix nvdimm registration races
A loop of the form:
while true; do modprobe cxl_pci; modprobe -r cxl_pci; done
...fails with the following crash signature:
BUG: kernel NULL pointer dereference, address: 0000000000000040
[..]
RIP: 0010:cxl_internal_send_cmd+0x5/0xb0 [cxl_core]
[..]
Call Trace:
<TASK>
cxl_pmem_ctl+0x121/0x240 [cxl_pmem]
nvdimm_get_config_data+0xd6/0x1a0 [libnvdimm]
nd_label_data_init+0x135/0x7e0 [libnvdimm]
nvdimm_probe+0xd6/0x1c0 [libnvdimm]
nvdimm_bus_probe+0x7a/0x1e0 [libnvdimm]
really_probe+0xde/0x380
__driver_probe_device+0x78/0x170
driver_probe_device+0x1f/0x90
__device_attach_driver+0x85/0x110
bus_for_each_drv+0x7d/0xc0
__device_attach+0xb4/0x1e0
bus_probe_device+0x9f/0xc0
device_add+0x445/0x9c0
nd_async_device_register+0xe/0x40 [libnvdimm]
async_run_entry_fn+0x30/0x130
...namely that the bottom half of async nvdimm device registration runs
after the CXL has already torn down the context that cxl_pmem_ctl()
needs. Unlike the ACPI NFIT case that benefits from launching multiple
nvdimm device registrations in parallel from those listed in the table,
CXL is already marked PROBE_PREFER_ASYNCHRONOUS. So provide for a
synchronous registration path to preclude this scenario. |
| In the Linux kernel, the following vulnerability has been resolved:
misc: pci_endpoint_test: Free IRQs before removing the device
In pci_endpoint_test_remove(), freeing the IRQs after removing the device
creates a small race window for IRQs to be received with the test device
memory already released, causing the IRQ handler to access invalid memory,
resulting in an oops.
Free the device IRQs before removing the device to avoid this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-usb: m920x: Fix a potential memory leak in m920x_i2c_xfer()
'read' is freed when it is known to be NULL, but not when a read error
occurs.
Revert the logic to avoid a small leak, should a m920x_read() call fail. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix an uninit variable access bug in __ip6_make_skb()
Syzbot reported a bug as following:
=====================================================
BUG: KMSAN: uninit-value in arch_atomic64_inc arch/x86/include/asm/atomic64_64.h:88 [inline]
BUG: KMSAN: uninit-value in arch_atomic_long_inc include/linux/atomic/atomic-long.h:161 [inline]
BUG: KMSAN: uninit-value in atomic_long_inc include/linux/atomic/atomic-instrumented.h:1429 [inline]
BUG: KMSAN: uninit-value in __ip6_make_skb+0x2f37/0x30f0 net/ipv6/ip6_output.c:1956
arch_atomic64_inc arch/x86/include/asm/atomic64_64.h:88 [inline]
arch_atomic_long_inc include/linux/atomic/atomic-long.h:161 [inline]
atomic_long_inc include/linux/atomic/atomic-instrumented.h:1429 [inline]
__ip6_make_skb+0x2f37/0x30f0 net/ipv6/ip6_output.c:1956
ip6_finish_skb include/net/ipv6.h:1122 [inline]
ip6_push_pending_frames+0x10e/0x550 net/ipv6/ip6_output.c:1987
rawv6_push_pending_frames+0xb12/0xb90 net/ipv6/raw.c:579
rawv6_sendmsg+0x297e/0x2e60 net/ipv6/raw.c:922
inet_sendmsg+0x101/0x180 net/ipv4/af_inet.c:827
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
____sys_sendmsg+0xa8e/0xe70 net/socket.c:2476
___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2530
__sys_sendmsg net/socket.c:2559 [inline]
__do_sys_sendmsg net/socket.c:2568 [inline]
__se_sys_sendmsg net/socket.c:2566 [inline]
__x64_sys_sendmsg+0x367/0x540 net/socket.c:2566
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook mm/slab.h:766 [inline]
slab_alloc_node mm/slub.c:3452 [inline]
__kmem_cache_alloc_node+0x71f/0xce0 mm/slub.c:3491
__do_kmalloc_node mm/slab_common.c:967 [inline]
__kmalloc_node_track_caller+0x114/0x3b0 mm/slab_common.c:988
kmalloc_reserve net/core/skbuff.c:492 [inline]
__alloc_skb+0x3af/0x8f0 net/core/skbuff.c:565
alloc_skb include/linux/skbuff.h:1270 [inline]
__ip6_append_data+0x51c1/0x6bb0 net/ipv6/ip6_output.c:1684
ip6_append_data+0x411/0x580 net/ipv6/ip6_output.c:1854
rawv6_sendmsg+0x2882/0x2e60 net/ipv6/raw.c:915
inet_sendmsg+0x101/0x180 net/ipv4/af_inet.c:827
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
____sys_sendmsg+0xa8e/0xe70 net/socket.c:2476
___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2530
__sys_sendmsg net/socket.c:2559 [inline]
__do_sys_sendmsg net/socket.c:2568 [inline]
__se_sys_sendmsg net/socket.c:2566 [inline]
__x64_sys_sendmsg+0x367/0x540 net/socket.c:2566
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
It is because icmp6hdr does not in skb linear region under the scenario
of SOCK_RAW socket. Access icmp6_hdr(skb)->icmp6_type directly will
trigger the uninit variable access bug.
Use a local variable icmp6_type to carry the correct value in different
scenarios. |