| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race between quota rescan and disable leading to NULL pointer deref
If we have one task trying to start the quota rescan worker while another
one is trying to disable quotas, we can end up hitting a race that results
in the quota rescan worker doing a NULL pointer dereference. The steps for
this are the following:
1) Quotas are enabled;
2) Task A calls the quota rescan ioctl and enters btrfs_qgroup_rescan().
It calls qgroup_rescan_init() which returns 0 (success) and then joins a
transaction and commits it;
3) Task B calls the quota disable ioctl and enters btrfs_quota_disable().
It clears the bit BTRFS_FS_QUOTA_ENABLED from fs_info->flags and calls
btrfs_qgroup_wait_for_completion(), which returns immediately since the
rescan worker is not yet running.
Then it starts a transaction and locks fs_info->qgroup_ioctl_lock;
4) Task A queues the rescan worker, by calling btrfs_queue_work();
5) The rescan worker starts, and calls rescan_should_stop() at the start
of its while loop, which results in 0 iterations of the loop, since
the flag BTRFS_FS_QUOTA_ENABLED was cleared from fs_info->flags by
task B at step 3);
6) Task B sets fs_info->quota_root to NULL;
7) The rescan worker tries to start a transaction and uses
fs_info->quota_root as the root argument for btrfs_start_transaction().
This results in a NULL pointer dereference down the call chain of
btrfs_start_transaction(). The stack trace is something like the one
reported in Link tag below:
general protection fault, probably for non-canonical address 0xdffffc0000000041: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000208-0x000000000000020f]
CPU: 1 PID: 34 Comm: kworker/u4:2 Not tainted 6.1.0-syzkaller-13872-gb6bb9676f216 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Workqueue: btrfs-qgroup-rescan btrfs_work_helper
RIP: 0010:start_transaction+0x48/0x10f0 fs/btrfs/transaction.c:564
Code: 48 89 fb 48 (...)
RSP: 0018:ffffc90000ab7ab0 EFLAGS: 00010206
RAX: 0000000000000041 RBX: 0000000000000208 RCX: ffff88801779ba80
RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000
RBP: dffffc0000000000 R08: 0000000000000001 R09: fffff52000156f5d
R10: fffff52000156f5d R11: 1ffff92000156f5c R12: 0000000000000000
R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000003
FS: 0000000000000000(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f2bea75b718 CR3: 000000001d0cc000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
btrfs_qgroup_rescan_worker+0x3bb/0x6a0 fs/btrfs/qgroup.c:3402
btrfs_work_helper+0x312/0x850 fs/btrfs/async-thread.c:280
process_one_work+0x877/0xdb0 kernel/workqueue.c:2289
worker_thread+0xb14/0x1330 kernel/workqueue.c:2436
kthread+0x266/0x300 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308
</TASK>
Modules linked in:
So fix this by having the rescan worker function not attempt to start a
transaction if it didn't do any rescan work. |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/mem: Fix shutdown order
Ira reports that removing cxl_mock_mem causes a crash with the following
trace:
BUG: kernel NULL pointer dereference, address: 0000000000000044
[..]
RIP: 0010:cxl_region_decode_reset+0x7f/0x180 [cxl_core]
[..]
Call Trace:
<TASK>
cxl_region_detach+0xe8/0x210 [cxl_core]
cxl_decoder_kill_region+0x27/0x40 [cxl_core]
cxld_unregister+0x29/0x40 [cxl_core]
devres_release_all+0xb8/0x110
device_unbind_cleanup+0xe/0x70
device_release_driver_internal+0x1d2/0x210
bus_remove_device+0xd7/0x150
device_del+0x155/0x3e0
device_unregister+0x13/0x60
devm_release_action+0x4d/0x90
? __pfx_unregister_port+0x10/0x10 [cxl_core]
delete_endpoint+0x121/0x130 [cxl_core]
devres_release_all+0xb8/0x110
device_unbind_cleanup+0xe/0x70
device_release_driver_internal+0x1d2/0x210
bus_remove_device+0xd7/0x150
device_del+0x155/0x3e0
? lock_release+0x142/0x290
cdev_device_del+0x15/0x50
cxl_memdev_unregister+0x54/0x70 [cxl_core]
This crash is due to the clearing out the cxl_memdev's driver context
(@cxlds) before the subsystem is done with it. This is ultimately due to
the region(s), that this memdev is a member, being torn down and expecting
to be able to de-reference @cxlds, like here:
static int cxl_region_decode_reset(struct cxl_region *cxlr, int count)
...
if (cxlds->rcd)
goto endpoint_reset;
...
Fix it by keeping the driver context valid until memdev-device
unregistration, and subsequently the entire stack of related
dependencies, unwinds. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: split initial and dynamic conditions for extent_cache
Let's allocate the extent_cache tree without dynamic conditions to avoid a
missing condition causing a panic as below.
# create a file w/ a compressed flag
# disable the compression
# panic while updating extent_cache
F2FS-fs (dm-64): Swapfile: last extent is not aligned to section
F2FS-fs (dm-64): Swapfile (3) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(2097152 * N)
Adding 124996k swap on ./swap-file. Priority:0 extents:2 across:17179494468k
==================================================================
BUG: KASAN: null-ptr-deref in instrument_atomic_read_write out/common/include/linux/instrumented.h:101 [inline]
BUG: KASAN: null-ptr-deref in atomic_try_cmpxchg_acquire out/common/include/asm-generic/atomic-instrumented.h:705 [inline]
BUG: KASAN: null-ptr-deref in queued_write_lock out/common/include/asm-generic/qrwlock.h:92 [inline]
BUG: KASAN: null-ptr-deref in __raw_write_lock out/common/include/linux/rwlock_api_smp.h:211 [inline]
BUG: KASAN: null-ptr-deref in _raw_write_lock+0x5a/0x110 out/common/kernel/locking/spinlock.c:295
Write of size 4 at addr 0000000000000030 by task syz-executor154/3327
CPU: 0 PID: 3327 Comm: syz-executor154 Tainted: G O 5.10.185 #1
Hardware name: emulation qemu-x86/qemu-x86, BIOS 2023.01-21885-gb3cc1cd24d 01/01/2023
Call Trace:
__dump_stack out/common/lib/dump_stack.c:77 [inline]
dump_stack_lvl+0x17e/0x1c4 out/common/lib/dump_stack.c:118
__kasan_report+0x16c/0x260 out/common/mm/kasan/report.c:415
kasan_report+0x51/0x70 out/common/mm/kasan/report.c:428
kasan_check_range+0x2f3/0x340 out/common/mm/kasan/generic.c:186
__kasan_check_write+0x14/0x20 out/common/mm/kasan/shadow.c:37
instrument_atomic_read_write out/common/include/linux/instrumented.h:101 [inline]
atomic_try_cmpxchg_acquire out/common/include/asm-generic/atomic-instrumented.h:705 [inline]
queued_write_lock out/common/include/asm-generic/qrwlock.h:92 [inline]
__raw_write_lock out/common/include/linux/rwlock_api_smp.h:211 [inline]
_raw_write_lock+0x5a/0x110 out/common/kernel/locking/spinlock.c:295
__drop_extent_tree+0xdf/0x2f0 out/common/fs/f2fs/extent_cache.c:1155
f2fs_drop_extent_tree+0x17/0x30 out/common/fs/f2fs/extent_cache.c:1172
f2fs_insert_range out/common/fs/f2fs/file.c:1600 [inline]
f2fs_fallocate+0x19fd/0x1f40 out/common/fs/f2fs/file.c:1764
vfs_fallocate+0x514/0x9b0 out/common/fs/open.c:310
ksys_fallocate out/common/fs/open.c:333 [inline]
__do_sys_fallocate out/common/fs/open.c:341 [inline]
__se_sys_fallocate out/common/fs/open.c:339 [inline]
__x64_sys_fallocate+0xb8/0x100 out/common/fs/open.c:339
do_syscall_64+0x35/0x50 out/common/arch/x86/entry/common.c:46 |
| In the Linux kernel, the following vulnerability has been resolved:
IB/IPoIB: Fix legacy IPoIB due to wrong number of queues
The cited commit creates child PKEY interfaces over netlink will
multiple tx and rx queues, but some devices doesn't support more than 1
tx and 1 rx queues. This causes to a crash when traffic is sent over the
PKEY interface due to the parent having a single queue but the child
having multiple queues.
This patch fixes the number of queues to 1 for legacy IPoIB at the
earliest possible point in time.
BUG: kernel NULL pointer dereference, address: 000000000000036b
PGD 0 P4D 0
Oops: 0000 [#1] SMP
CPU: 4 PID: 209665 Comm: python3 Not tainted 6.1.0_for_upstream_min_debug_2022_12_12_17_02 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:kmem_cache_alloc+0xcb/0x450
Code: ce 7e 49 8b 50 08 49 83 78 10 00 4d 8b 28 0f 84 cb 02 00 00 4d 85 ed 0f 84 c2 02 00 00 41 8b 44 24 28 48 8d 4a
01 49 8b 3c 24 <49> 8b 5c 05 00 4c 89 e8 65 48 0f c7 0f 0f 94 c0 84 c0 74 b8 41 8b
RSP: 0018:ffff88822acbbab8 EFLAGS: 00010202
RAX: 0000000000000070 RBX: ffff8881c28e3e00 RCX: 00000000064f8dae
RDX: 00000000064f8dad RSI: 0000000000000a20 RDI: 0000000000030d00
RBP: 0000000000000a20 R08: ffff8882f5d30d00 R09: ffff888104032f40
R10: ffff88810fade828 R11: 736f6d6570736575 R12: ffff88810081c000
R13: 00000000000002fb R14: ffffffff817fc865 R15: 0000000000000000
FS: 00007f9324ff9700(0000) GS:ffff8882f5d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000000036b CR3: 00000001125af004 CR4: 0000000000370ea0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
skb_clone+0x55/0xd0
ip6_finish_output2+0x3fe/0x690
ip6_finish_output+0xfa/0x310
ip6_send_skb+0x1e/0x60
udp_v6_send_skb+0x1e5/0x420
udpv6_sendmsg+0xb3c/0xe60
? ip_mc_finish_output+0x180/0x180
? __switch_to_asm+0x3a/0x60
? __switch_to_asm+0x34/0x60
sock_sendmsg+0x33/0x40
__sys_sendto+0x103/0x160
? _copy_to_user+0x21/0x30
? kvm_clock_get_cycles+0xd/0x10
? ktime_get_ts64+0x49/0xe0
__x64_sys_sendto+0x25/0x30
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f9374f1ed14
Code: 42 41 f8 ff 44 8b 4c 24 2c 4c 8b 44 24 20 89 c5 44 8b 54 24 28 48 8b 54 24 18 b8 2c 00 00 00 48 8b 74 24 10 8b
7c 24 08 0f 05 <48> 3d 00 f0 ff ff 77 34 89 ef 48 89 44 24 08 e8 68 41 f8 ff 48 8b
RSP: 002b:00007f9324ff7bd0 EFLAGS: 00000293 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f9324ff7cc8 RCX: 00007f9374f1ed14
RDX: 00000000000002fb RSI: 00007f93000052f0 RDI: 0000000000000030
RBP: 0000000000000000 R08: 00007f9324ff7d40 R09: 000000000000001c
R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000
R13: 000000012a05f200 R14: 0000000000000001 R15: 00007f9374d57bdc
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/fence: Fix oops due to non-matching drm_sched init/fini
Currently amdgpu calls drm_sched_fini() from the fence driver sw fini
routine - such function is expected to be called only after the
respective init function - drm_sched_init() - was executed successfully.
Happens that we faced a driver probe failure in the Steam Deck
recently, and the function drm_sched_fini() was called even without
its counter-part had been previously called, causing the following oops:
amdgpu: probe of 0000:04:00.0 failed with error -110
BUG: kernel NULL pointer dereference, address: 0000000000000090
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 609 Comm: systemd-udevd Not tainted 6.2.0-rc3-gpiccoli #338
Hardware name: Valve Jupiter/Jupiter, BIOS F7A0113 11/04/2022
RIP: 0010:drm_sched_fini+0x84/0xa0 [gpu_sched]
[...]
Call Trace:
<TASK>
amdgpu_fence_driver_sw_fini+0xc8/0xd0 [amdgpu]
amdgpu_device_fini_sw+0x2b/0x3b0 [amdgpu]
amdgpu_driver_release_kms+0x16/0x30 [amdgpu]
devm_drm_dev_init_release+0x49/0x70
[...]
To prevent that, check if the drm_sched was properly initialized for a
given ring before calling its fini counter-part.
Notice ideally we'd use sched.ready for that; such field is set as the latest
thing on drm_sched_init(). But amdgpu seems to "override" the meaning of such
field - in the above oops for example, it was a GFX ring causing the crash, and
the sched.ready field was set to true in the ring init routine, regardless of
the state of the DRM scheduler. Hence, we ended-up using sched.ops as per
Christian's suggestion [0], and also removed the no_scheduler check [1].
[0] https://lore.kernel.org/amd-gfx/[email protected]/
[1] https://lore.kernel.org/amd-gfx/[email protected]/ |
| In the Linux kernel, the following vulnerability has been resolved:
serial: 8250_port: Check IRQ data before use
In case the leaf driver wants to use IRQ polling (irq = 0) and
IIR register shows that an interrupt happened in the 8250 hardware
the IRQ data can be NULL. In such a case we need to skip the wake
event as we came to this path from the timer interrupt and quite
likely system is already awake.
Without this fix we have got an Oops:
serial8250: ttyS0 at I/O 0x3f8 (irq = 0, base_baud = 115200) is a 16550A
...
BUG: kernel NULL pointer dereference, address: 0000000000000010
RIP: 0010:serial8250_handle_irq+0x7c/0x240
Call Trace:
? serial8250_handle_irq+0x7c/0x240
? __pfx_serial8250_timeout+0x10/0x10 |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "tty: n_gsm: fix UAF in gsm_cleanup_mux"
This reverts commit 9b9c8195f3f0d74a826077fc1c01b9ee74907239.
The commit above is reverted as it did not solve the original issue.
gsm_cleanup_mux() tries to free up the virtual ttys by calling
gsm_dlci_release() for each available DLCI. There, dlci_put() is called to
decrease the reference counter for the DLCI via tty_port_put() which
finally calls gsm_dlci_free(). This already clears the pointer which is
being checked in gsm_cleanup_mux() before calling gsm_dlci_release().
Therefore, it is not necessary to clear this pointer in gsm_cleanup_mux()
as done in the reverted commit. The commit introduces a null pointer
dereference:
<TASK>
? __die+0x1f/0x70
? page_fault_oops+0x156/0x420
? search_exception_tables+0x37/0x50
? fixup_exception+0x21/0x310
? exc_page_fault+0x69/0x150
? asm_exc_page_fault+0x26/0x30
? tty_port_put+0x19/0xa0
gsmtty_cleanup+0x29/0x80 [n_gsm]
release_one_tty+0x37/0xe0
process_one_work+0x1e6/0x3e0
worker_thread+0x4c/0x3d0
? __pfx_worker_thread+0x10/0x10
kthread+0xe1/0x110
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2f/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The actual issue is that nothing guards dlci_put() from being called
multiple times while the tty driver was triggered but did not yet finished
calling gsm_dlci_free(). |
| In the Linux kernel, the following vulnerability has been resolved:
efivarfs: force RO when remounting if SetVariable is not supported
If SetVariable at runtime is not supported by the firmware we never assign
a callback for that function. At the same time mount the efivarfs as
RO so no one can call that. However, we never check the permission flags
when someone remounts the filesystem as RW. As a result this leads to a
crash looking like this:
$ mount -o remount,rw /sys/firmware/efi/efivars
$ efi-updatevar -f PK.auth PK
[ 303.279166] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[ 303.280482] Mem abort info:
[ 303.280854] ESR = 0x0000000086000004
[ 303.281338] EC = 0x21: IABT (current EL), IL = 32 bits
[ 303.282016] SET = 0, FnV = 0
[ 303.282414] EA = 0, S1PTW = 0
[ 303.282821] FSC = 0x04: level 0 translation fault
[ 303.283771] user pgtable: 4k pages, 48-bit VAs, pgdp=000000004258c000
[ 303.284913] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000
[ 303.286076] Internal error: Oops: 0000000086000004 [#1] PREEMPT SMP
[ 303.286936] Modules linked in: qrtr tpm_tis tpm_tis_core crct10dif_ce arm_smccc_trng rng_core drm fuse ip_tables x_tables ipv6
[ 303.288586] CPU: 1 PID: 755 Comm: efi-updatevar Not tainted 6.3.0-rc1-00108-gc7d0c4695c68 #1
[ 303.289748] Hardware name: Unknown Unknown Product/Unknown Product, BIOS 2023.04-00627-g88336918701d 04/01/2023
[ 303.291150] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 303.292123] pc : 0x0
[ 303.292443] lr : efivar_set_variable_locked+0x74/0xec
[ 303.293156] sp : ffff800008673c10
[ 303.293619] x29: ffff800008673c10 x28: ffff0000037e8000 x27: 0000000000000000
[ 303.294592] x26: 0000000000000800 x25: ffff000002467400 x24: 0000000000000027
[ 303.295572] x23: ffffd49ea9832000 x22: ffff0000020c9800 x21: ffff000002467000
[ 303.296566] x20: 0000000000000001 x19: 00000000000007fc x18: 0000000000000000
[ 303.297531] x17: 0000000000000000 x16: 0000000000000000 x15: 0000aaaac807ab54
[ 303.298495] x14: ed37489f673633c0 x13: 71c45c606de13f80 x12: 47464259e219acf4
[ 303.299453] x11: ffff000002af7b01 x10: 0000000000000003 x9 : 0000000000000002
[ 303.300431] x8 : 0000000000000010 x7 : ffffd49ea8973230 x6 : 0000000000a85201
[ 303.301412] x5 : 0000000000000000 x4 : ffff0000020c9800 x3 : 00000000000007fc
[ 303.302370] x2 : 0000000000000027 x1 : ffff000002467400 x0 : ffff000002467000
[ 303.303341] Call trace:
[ 303.303679] 0x0
[ 303.303938] efivar_entry_set_get_size+0x98/0x16c
[ 303.304585] efivarfs_file_write+0xd0/0x1a4
[ 303.305148] vfs_write+0xc4/0x2e4
[ 303.305601] ksys_write+0x70/0x104
[ 303.306073] __arm64_sys_write+0x1c/0x28
[ 303.306622] invoke_syscall+0x48/0x114
[ 303.307156] el0_svc_common.constprop.0+0x44/0xec
[ 303.307803] do_el0_svc+0x38/0x98
[ 303.308268] el0_svc+0x2c/0x84
[ 303.308702] el0t_64_sync_handler+0xf4/0x120
[ 303.309293] el0t_64_sync+0x190/0x194
[ 303.309794] Code: ???????? ???????? ???????? ???????? (????????)
[ 303.310612] ---[ end trace 0000000000000000 ]---
Fix this by adding a .reconfigure() function to the fs operations which
we can use to check the requested flags and deny anything that's not RO
if the firmware doesn't implement SetVariable at runtime. |
| In the Linux kernel, the following vulnerability has been resolved:
can: af_can: fix NULL pointer dereference in can_rcv_filter
Analogue to commit 8aa59e355949 ("can: af_can: fix NULL pointer
dereference in can_rx_register()") we need to check for a missing
initialization of ml_priv in the receive path of CAN frames.
Since commit 4e096a18867a ("net: introduce CAN specific pointer in the
struct net_device") the check for dev->type to be ARPHRD_CAN is not
sufficient anymore since bonding or tun netdevices claim to be CAN
devices but do not initialize ml_priv accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/fair: Fix fault in reweight_entity
Syzbot found a GPF in reweight_entity. This has been bisected to
commit 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an invalid
sched_task_group")
There is a race between sched_post_fork() and setpriority(PRIO_PGRP)
within a thread group that causes a null-ptr-deref in
reweight_entity() in CFS. The scenario is that the main process spawns
number of new threads, which then call setpriority(PRIO_PGRP, 0, -20),
wait, and exit. For each of the new threads the copy_process() gets
invoked, which adds the new task_struct and calls sched_post_fork()
for it.
In the above scenario there is a possibility that
setpriority(PRIO_PGRP) and set_one_prio() will be called for a thread
in the group that is just being created by copy_process(), and for
which the sched_post_fork() has not been executed yet. This will
trigger a null pointer dereference in reweight_entity(), as it will
try to access the run queue pointer, which hasn't been set.
Before the mentioned change the cfs_rq pointer for the task has been
set in sched_fork(), which is called much earlier in copy_process(),
before the new task is added to the thread_group. Now it is done in
the sched_post_fork(), which is called after that. To fix the issue
the remove the update_load param from the update_load param() function
and call reweight_task() only if the task flag doesn't have the
TASK_NEW flag set. |
| In the Linux kernel, the following vulnerability has been resolved:
efi: fix NULL-deref in init error path
In cases where runtime services are not supported or have been disabled,
the runtime services workqueue will never have been allocated.
Do not try to destroy the workqueue unconditionally in the unlikely
event that EFI initialisation fails to avoid dereferencing a NULL
pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: Transitional solution for clcsock race issue
We encountered a crash in smc_setsockopt() and it is caused by
accessing smc->clcsock after clcsock was released.
BUG: kernel NULL pointer dereference, address: 0000000000000020
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 50309 Comm: nginx Kdump: loaded Tainted: G E 5.16.0-rc4+ #53
RIP: 0010:smc_setsockopt+0x59/0x280 [smc]
Call Trace:
<TASK>
__sys_setsockopt+0xfc/0x190
__x64_sys_setsockopt+0x20/0x30
do_syscall_64+0x34/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f16ba83918e
</TASK>
This patch tries to fix it by holding clcsock_release_lock and
checking whether clcsock has already been released before access.
In case that a crash of the same reason happens in smc_getsockopt()
or smc_switch_to_fallback(), this patch also checkes smc->clcsock
in them too. And the caller of smc_switch_to_fallback() will identify
whether fallback succeeds according to the return value. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: musb: dsps: Fix the probe error path
Commit 7c75bde329d7 ("usb: musb: musb_dsps: request_irq() after
initializing musb") has inverted the calls to
dsps_setup_optional_vbus_irq() and dsps_create_musb_pdev() without
updating correctly the error path. dsps_create_musb_pdev() allocates and
registers a new platform device which must be unregistered and freed
with platform_device_unregister(), and this is missing upon
dsps_setup_optional_vbus_irq() error.
While on the master branch it seems not to trigger any issue, I observed
a kernel crash because of a NULL pointer dereference with a v5.10.70
stable kernel where the patch mentioned above was backported. With this
kernel version, -EPROBE_DEFER is returned the first time
dsps_setup_optional_vbus_irq() is called which triggers the probe to
error out without unregistering the platform device. Unfortunately, on
the Beagle Bone Black Wireless, the platform device still living in the
system is being used by the USB Ethernet gadget driver, which during the
boot phase triggers the crash.
My limited knowledge of the musb world prevents me to revert this commit
which was sent to silence a robot warning which, as far as I understand,
does not make sense. The goal of this patch was to prevent an IRQ to
fire before the platform device being registered. I think this cannot
ever happen due to the fact that enabling the interrupts is done by the
->enable() callback of the platform musb device, and this platform
device must be already registered in order for the core or any other
user to use this callback.
Hence, I decided to fix the error path, which might prevent future
errors on mainline kernels while also fixing older ones. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/ipoib: Fix warning caused by destroying non-initial netns
After the commit 5ce2dced8e95 ("RDMA/ipoib: Set rtnl_link_ops for ipoib
interfaces"), if the IPoIB device is moved to non-initial netns,
destroying that netns lets the device vanish instead of moving it back to
the initial netns, This is happening because default_device_exit() skips
the interfaces due to having rtnl_link_ops set.
Steps to reporoduce:
ip netns add foo
ip link set mlx5_ib0 netns foo
ip netns delete foo
WARNING: CPU: 1 PID: 704 at net/core/dev.c:11435 netdev_exit+0x3f/0x50
Modules linked in: xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT
nf_reject_ipv4 nft_compat nft_counter nft_chain_nat nf_nat nf_conntrack
nf_defrag_ipv6 nf_defrag_ipv4 nf_tables nfnetlink tun d
fuse
CPU: 1 PID: 704 Comm: kworker/u64:3 Tainted: G S W 5.13.0-rc1+ #1
Hardware name: Dell Inc. PowerEdge R630/02C2CP, BIOS 2.1.5 04/11/2016
Workqueue: netns cleanup_net
RIP: 0010:netdev_exit+0x3f/0x50
Code: 48 8b bb 30 01 00 00 e8 ef 81 b1 ff 48 81 fb c0 3a 54 a1 74 13 48
8b 83 90 00 00 00 48 81 c3 90 00 00 00 48 39 d8 75 02 5b c3 <0f> 0b 5b
c3 66 66 2e 0f 1f 84 00 00 00 00 00 66 90 0f 1f 44 00
RSP: 0018:ffffb297079d7e08 EFLAGS: 00010206
RAX: ffff8eb542c00040 RBX: ffff8eb541333150 RCX: 000000008010000d
RDX: 000000008010000e RSI: 000000008010000d RDI: ffff8eb440042c00
RBP: ffffb297079d7e48 R08: 0000000000000001 R09: ffffffff9fdeac00
R10: ffff8eb5003be000 R11: 0000000000000001 R12: ffffffffa1545620
R13: ffffffffa1545628 R14: 0000000000000000 R15: ffffffffa1543b20
FS: 0000000000000000(0000) GS:ffff8ed37fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005601b5f4c2e8 CR3: 0000001fc8c10002 CR4: 00000000003706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
ops_exit_list.isra.9+0x36/0x70
cleanup_net+0x234/0x390
process_one_work+0x1cb/0x360
? process_one_work+0x360/0x360
worker_thread+0x30/0x370
? process_one_work+0x360/0x360
kthread+0x116/0x130
? kthread_park+0x80/0x80
ret_from_fork+0x22/0x30
To avoid the above warning and later on the kernel panic that could happen
on shutdown due to a NULL pointer dereference, make sure to set the
netns_refund flag that was introduced by commit 3a5ca857079e ("can: dev:
Move device back to init netns on owning netns delete") to properly
restore the IPoIB interfaces to the initial netns. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Fix a NULL pointer dereference in pnfs_mark_matching_lsegs_return()
Commit de144ff4234f changes _pnfs_return_layout() to call
pnfs_mark_matching_lsegs_return() passing NULL as the struct
pnfs_layout_range argument. Unfortunately,
pnfs_mark_matching_lsegs_return() doesn't check if we have a value here
before dereferencing it, causing an oops.
I'm able to hit this crash consistently when running connectathon basic
tests on NFS v4.1/v4.2 against Ontap. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/meson: fix shutdown crash when component not probed
When main component is not probed, by example when the dw-hdmi module is
not loaded yet or in probe defer, the following crash appears on shutdown:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000038
...
pc : meson_drv_shutdown+0x24/0x50
lr : platform_drv_shutdown+0x20/0x30
...
Call trace:
meson_drv_shutdown+0x24/0x50
platform_drv_shutdown+0x20/0x30
device_shutdown+0x158/0x360
kernel_restart_prepare+0x38/0x48
kernel_restart+0x18/0x68
__do_sys_reboot+0x224/0x250
__arm64_sys_reboot+0x24/0x30
...
Simply check if the priv struct has been allocated before using it. |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: Fix NULL pointer in flush_workqueue
Open /dev/nbdX first, the config_refs will be 1 and
the pointers in nbd_device are still null. Disconnect
/dev/nbdX, then reference a null recv_workq. The
protection by config_refs in nbd_genl_disconnect is useless.
[ 656.366194] BUG: kernel NULL pointer dereference, address: 0000000000000020
[ 656.368943] #PF: supervisor write access in kernel mode
[ 656.369844] #PF: error_code(0x0002) - not-present page
[ 656.370717] PGD 10cc87067 P4D 10cc87067 PUD 1074b4067 PMD 0
[ 656.371693] Oops: 0002 [#1] SMP
[ 656.372242] CPU: 5 PID: 7977 Comm: nbd-client Not tainted 5.11.0-rc5-00040-g76c057c84d28 #1
[ 656.373661] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20190727_073836-buildvm-ppc64le-16.ppc.fedoraproject.org-3.fc31 04/01/2014
[ 656.375904] RIP: 0010:mutex_lock+0x29/0x60
[ 656.376627] Code: 00 0f 1f 44 00 00 55 48 89 fd 48 83 05 6f d7 fe 08 01 e8 7a c3 ff ff 48 83 05 6a d7 fe 08 01 31 c0 65 48 8b 14 25 00 6d 01 00 <f0> 48 0f b1 55 d
[ 656.378934] RSP: 0018:ffffc900005eb9b0 EFLAGS: 00010246
[ 656.379350] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ 656.379915] RDX: ffff888104cf2600 RSI: ffffffffaae8f452 RDI: 0000000000000020
[ 656.380473] RBP: 0000000000000020 R08: 0000000000000000 R09: ffff88813bd6b318
[ 656.381039] R10: 00000000000000c7 R11: fefefefefefefeff R12: ffff888102710b40
[ 656.381599] R13: ffffc900005eb9e0 R14: ffffffffb2930680 R15: ffff88810770ef00
[ 656.382166] FS: 00007fdf117ebb40(0000) GS:ffff88813bd40000(0000) knlGS:0000000000000000
[ 656.382806] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 656.383261] CR2: 0000000000000020 CR3: 0000000100c84000 CR4: 00000000000006e0
[ 656.383819] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 656.384370] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 656.384927] Call Trace:
[ 656.385111] flush_workqueue+0x92/0x6c0
[ 656.385395] nbd_disconnect_and_put+0x81/0xd0
[ 656.385716] nbd_genl_disconnect+0x125/0x2a0
[ 656.386034] genl_family_rcv_msg_doit.isra.0+0x102/0x1b0
[ 656.386422] genl_rcv_msg+0xfc/0x2b0
[ 656.386685] ? nbd_ioctl+0x490/0x490
[ 656.386954] ? genl_family_rcv_msg_doit.isra.0+0x1b0/0x1b0
[ 656.387354] netlink_rcv_skb+0x62/0x180
[ 656.387638] genl_rcv+0x34/0x60
[ 656.387874] netlink_unicast+0x26d/0x590
[ 656.388162] netlink_sendmsg+0x398/0x6c0
[ 656.388451] ? netlink_rcv_skb+0x180/0x180
[ 656.388750] ____sys_sendmsg+0x1da/0x320
[ 656.389038] ? ____sys_recvmsg+0x130/0x220
[ 656.389334] ___sys_sendmsg+0x8e/0xf0
[ 656.389605] ? ___sys_recvmsg+0xa2/0xf0
[ 656.389889] ? handle_mm_fault+0x1671/0x21d0
[ 656.390201] __sys_sendmsg+0x6d/0xe0
[ 656.390464] __x64_sys_sendmsg+0x23/0x30
[ 656.390751] do_syscall_64+0x45/0x70
[ 656.391017] entry_SYSCALL_64_after_hwframe+0x44/0xa9
To fix it, just add if (nbd->recv_workq) to nbd_disconnect_and_put(). |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Remove cache tags before disabling ATS
The current implementation removes cache tags after disabling ATS,
leading to potential memory leaks and kernel crashes. Specifically,
CACHE_TAG_DEVTLB type cache tags may still remain in the list even
after the domain is freed, causing a use-after-free condition.
This issue really shows up when multiple VFs from different PFs
passed through to a single user-space process via vfio-pci. In such
cases, the kernel may crash with kernel messages like:
BUG: kernel NULL pointer dereference, address: 0000000000000014
PGD 19036a067 P4D 1940a3067 PUD 136c9b067 PMD 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 74 UID: 0 PID: 3183 Comm: testCli Not tainted 6.11.9 #2
RIP: 0010:cache_tag_flush_range+0x9b/0x250
Call Trace:
<TASK>
? __die+0x1f/0x60
? page_fault_oops+0x163/0x590
? exc_page_fault+0x72/0x190
? asm_exc_page_fault+0x22/0x30
? cache_tag_flush_range+0x9b/0x250
? cache_tag_flush_range+0x5d/0x250
intel_iommu_tlb_sync+0x29/0x40
intel_iommu_unmap_pages+0xfe/0x160
__iommu_unmap+0xd8/0x1a0
vfio_unmap_unpin+0x182/0x340 [vfio_iommu_type1]
vfio_remove_dma+0x2a/0xb0 [vfio_iommu_type1]
vfio_iommu_type1_ioctl+0xafa/0x18e0 [vfio_iommu_type1]
Move cache_tag_unassign_domain() before iommu_disable_pci_caps() to fix
it. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Cancel RTC work during ufshcd_remove()
Currently, RTC work is only cancelled during __ufshcd_wl_suspend(). When
ufshcd is removed in ufshcd_remove(), RTC work is not cancelled. Due to
this, any further trigger of the RTC work after ufshcd_remove() would
result in a NULL pointer dereference as below:
Unable to handle kernel NULL pointer dereference at virtual address 00000000000002a4
Workqueue: events ufshcd_rtc_work
Call trace:
_raw_spin_lock_irqsave+0x34/0x8c
pm_runtime_get_if_active+0x24/0xb4
ufshcd_rtc_work+0x124/0x19c
process_scheduled_works+0x18c/0x2d8
worker_thread+0x144/0x280
kthread+0x11c/0x128
ret_from_fork+0x10/0x20
Since RTC work accesses the ufshcd internal structures, it should be cancelled
when ufshcd is removed. So do that in ufshcd_remove(), as per the order in
ufshcd_init(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: qcom: Only free platform MSIs when ESI is enabled
Otherwise, it will result in a NULL pointer dereference as below:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
Call trace:
mutex_lock+0xc/0x54
platform_device_msi_free_irqs_all+0x14/0x20
ufs_qcom_remove+0x34/0x48 [ufs_qcom]
platform_remove+0x28/0x44
device_remove+0x4c/0x80
device_release_driver_internal+0xd8/0x178
driver_detach+0x50/0x9c
bus_remove_driver+0x6c/0xbc
driver_unregister+0x30/0x60
platform_driver_unregister+0x14/0x20
ufs_qcom_pltform_exit+0x18/0xb94 [ufs_qcom]
__arm64_sys_delete_module+0x180/0x260
invoke_syscall+0x44/0x100
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x34/0xdc
el0t_64_sync_handler+0xc0/0xc4
el0t_64_sync+0x190/0x194 |