| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ice: set tx_tstamps when creating new Tx rings via ethtool
When the user changes the number of queues via ethtool, the driver
allocates new rings. This allocation did not initialize tx_tstamps. This
results in the tx_tstamps field being zero (due to kcalloc allocation), and
would result in a NULL pointer dereference when attempting a transmit
timestamp on the new ring. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: avoid uninit memory read in ath9k_htc_rx_msg()
syzbot is reporting uninit value at ath9k_htc_rx_msg() [1], for
ioctl(USB_RAW_IOCTL_EP_WRITE) can call ath9k_hif_usb_rx_stream() with
pkt_len = 0 but ath9k_hif_usb_rx_stream() uses
__dev_alloc_skb(pkt_len + 32, GFP_ATOMIC) based on an assumption that
pkt_len is valid. As a result, ath9k_hif_usb_rx_stream() allocates skb
with uninitialized memory and ath9k_htc_rx_msg() is reading from
uninitialized memory.
Since bytes accessed by ath9k_htc_rx_msg() is not known until
ath9k_htc_rx_msg() is called, it would be difficult to check minimal valid
pkt_len at "if (pkt_len > 2 * MAX_RX_BUF_SIZE) {" line in
ath9k_hif_usb_rx_stream().
We have two choices. One is to workaround by adding __GFP_ZERO so that
ath9k_htc_rx_msg() sees 0 if pkt_len is invalid. The other is to let
ath9k_htc_rx_msg() validate pkt_len before accessing. This patch chose
the latter.
Note that I'm not sure threshold condition is correct, for I can't find
details on possible packet length used by this protocol. |
| In the Linux kernel, the following vulnerability has been resolved:
HSI: ssi_protocol: fix potential resource leak in ssip_pn_open()
ssip_pn_open() claims the HSI client's port with hsi_claim_port(). When
hsi_register_port_event() gets some error and returns a negetive value,
the HSI client's port should be released with hsi_release_port().
Fix it by calling hsi_release_port() when hsi_register_port_event() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: Delay the unmapping of the buffer
On WCN3990, we are seeing a rare scenario where copy engine hardware is
sending a copy complete interrupt to the host driver while still
processing the buffer that the driver has sent, this is leading into an
SMMU fault triggering kernel panic. This is happening on copy engine
channel 3 (CE3) where the driver normally enqueues WMI commands to the
firmware. Upon receiving a copy complete interrupt, host driver will
immediately unmap and frees the buffer presuming that hardware has
processed the buffer. In the issue case, upon receiving copy complete
interrupt, host driver will unmap and free the buffer but since hardware
is still accessing the buffer (which in this case got unmapped in
parallel), SMMU hardware will trigger an SMMU fault resulting in a
kernel panic.
In order to avoid this, as a work around, add a delay before unmapping
the copy engine source DMA buffer. This is conditionally done for
WCN3990 and only for the CE3 channel where issue is seen.
Below is the crash signature:
wifi smmu error: kernel: [ 10.120965] arm-smmu 15000000.iommu: Unhandled
context fault: fsr=0x402, iova=0x7fdfd8ac0,
fsynr=0x500003,cbfrsynra=0xc1, cb=6 arm-smmu 15000000.iommu: Unhandled
context fault:fsr=0x402, iova=0x7fe06fdc0, fsynr=0x710003,
cbfrsynra=0xc1, cb=6 qcom-q6v5-mss 4080000.remoteproc: fatal error
received: err_qdi.c:1040:EF:wlan_process:0x1:WLAN RT:0x2091:
cmnos_thread.c:3998:Asserted in copy_engine.c:AXI_ERROR_DETECTED:2149
remoteproc remoteproc0: crash detected in
4080000.remoteproc: type fatal error <3> remoteproc remoteproc0:
handling crash #1 in 4080000.remoteproc
pc : __arm_lpae_unmap+0x500/0x514
lr : __arm_lpae_unmap+0x4bc/0x514
sp : ffffffc011ffb530
x29: ffffffc011ffb590 x28: 0000000000000000
x27: 0000000000000000 x26: 0000000000000004
x25: 0000000000000003 x24: ffffffc011ffb890
x23: ffffffa762ef9be0 x22: ffffffa77244ef00
x21: 0000000000000009 x20: 00000007fff7c000
x19: 0000000000000003 x18: 0000000000000000
x17: 0000000000000004 x16: ffffffd7a357d9f0
x15: 0000000000000000 x14: 00fd5d4fa7ffffff
x13: 000000000000000e x12: 0000000000000000
x11: 00000000ffffffff x10: 00000000fffffe00
x9 : 000000000000017c x8 : 000000000000000c
x7 : 0000000000000000 x6 : ffffffa762ef9000
x5 : 0000000000000003 x4 : 0000000000000004
x3 : 0000000000001000 x2 : 00000007fff7c000
x1 : ffffffc011ffb890 x0 : 0000000000000000 Call trace:
__arm_lpae_unmap+0x500/0x514
__arm_lpae_unmap+0x4bc/0x514
__arm_lpae_unmap+0x4bc/0x514
arm_lpae_unmap_pages+0x78/0xa4
arm_smmu_unmap_pages+0x78/0x104
__iommu_unmap+0xc8/0x1e4
iommu_unmap_fast+0x38/0x48
__iommu_dma_unmap+0x84/0x104
iommu_dma_free+0x34/0x50
dma_free_attrs+0xa4/0xd0
ath10k_htt_rx_free+0xc4/0xf4 [ath10k_core] ath10k_core_stop+0x64/0x7c
[ath10k_core]
ath10k_halt+0x11c/0x180 [ath10k_core]
ath10k_stop+0x54/0x94 [ath10k_core]
drv_stop+0x48/0x1c8 [mac80211]
ieee80211_do_open+0x638/0x77c [mac80211] ieee80211_open+0x48/0x5c
[mac80211]
__dev_open+0xb4/0x174
__dev_change_flags+0xc4/0x1dc
dev_change_flags+0x3c/0x7c
devinet_ioctl+0x2b4/0x580
inet_ioctl+0xb0/0x1b4
sock_do_ioctl+0x4c/0x16c
compat_ifreq_ioctl+0x1cc/0x35c
compat_sock_ioctl+0x110/0x2ac
__arm64_compat_sys_ioctl+0xf4/0x3e0
el0_svc_common+0xb4/0x17c
el0_svc_compat_handler+0x2c/0x58
el0_svc_compat+0x8/0x2c
Tested-on: WCN3990 hw1.0 SNOC WLAN.HL.2.0-01387-QCAHLSWMTPLZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
mrp: introduce active flags to prevent UAF when applicant uninit
The caller of del_timer_sync must prevent restarting of the timer, If
we have no this synchronization, there is a small probability that the
cancellation will not be successful.
And syzbot report the fellowing crash:
==================================================================
BUG: KASAN: use-after-free in hlist_add_head include/linux/list.h:929 [inline]
BUG: KASAN: use-after-free in enqueue_timer+0x18/0xa4 kernel/time/timer.c:605
Write at addr f9ff000024df6058 by task syz-fuzzer/2256
Pointer tag: [f9], memory tag: [fe]
CPU: 1 PID: 2256 Comm: syz-fuzzer Not tainted 6.1.0-rc5-syzkaller-00008-
ge01d50cbd6ee #0
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace.part.0+0xe0/0xf0 arch/arm64/kernel/stacktrace.c:156
dump_backtrace arch/arm64/kernel/stacktrace.c:162 [inline]
show_stack+0x18/0x40 arch/arm64/kernel/stacktrace.c:163
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x68/0x84 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:284 [inline]
print_report+0x1a8/0x4a0 mm/kasan/report.c:395
kasan_report+0x94/0xb4 mm/kasan/report.c:495
__do_kernel_fault+0x164/0x1e0 arch/arm64/mm/fault.c:320
do_bad_area arch/arm64/mm/fault.c:473 [inline]
do_tag_check_fault+0x78/0x8c arch/arm64/mm/fault.c:749
do_mem_abort+0x44/0x94 arch/arm64/mm/fault.c:825
el1_abort+0x40/0x60 arch/arm64/kernel/entry-common.c:367
el1h_64_sync_handler+0xd8/0xe4 arch/arm64/kernel/entry-common.c:427
el1h_64_sync+0x64/0x68 arch/arm64/kernel/entry.S:576
hlist_add_head include/linux/list.h:929 [inline]
enqueue_timer+0x18/0xa4 kernel/time/timer.c:605
mod_timer+0x14/0x20 kernel/time/timer.c:1161
mrp_periodic_timer_arm net/802/mrp.c:614 [inline]
mrp_periodic_timer+0xa0/0xc0 net/802/mrp.c:627
call_timer_fn.constprop.0+0x24/0x80 kernel/time/timer.c:1474
expire_timers+0x98/0xc4 kernel/time/timer.c:1519
To fix it, we can introduce a new active flags to make sure the timer will
not restart. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Disable preemption in bpf_event_output
We received report [1] of kernel crash, which is caused by
using nesting protection without disabled preemption.
The bpf_event_output can be called by programs executed by
bpf_prog_run_array_cg function that disabled migration but
keeps preemption enabled.
This can cause task to be preempted by another one inside the
nesting protection and lead eventually to two tasks using same
perf_sample_data buffer and cause crashes like:
BUG: kernel NULL pointer dereference, address: 0000000000000001
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
...
? perf_output_sample+0x12a/0x9a0
? finish_task_switch.isra.0+0x81/0x280
? perf_event_output+0x66/0xa0
? bpf_event_output+0x13a/0x190
? bpf_event_output_data+0x22/0x40
? bpf_prog_dfc84bbde731b257_cil_sock4_connect+0x40a/0xacb
? xa_load+0x87/0xe0
? __cgroup_bpf_run_filter_sock_addr+0xc1/0x1a0
? release_sock+0x3e/0x90
? sk_setsockopt+0x1a1/0x12f0
? udp_pre_connect+0x36/0x50
? inet_dgram_connect+0x93/0xa0
? __sys_connect+0xb4/0xe0
? udp_setsockopt+0x27/0x40
? __pfx_udp_push_pending_frames+0x10/0x10
? __sys_setsockopt+0xdf/0x1a0
? __x64_sys_connect+0xf/0x20
? do_syscall_64+0x3a/0x90
? entry_SYSCALL_64_after_hwframe+0x72/0xdc
Fixing this by disabling preemption in bpf_event_output.
[1] https://github.com/cilium/cilium/issues/26756 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921: fix use after free in mt7921_acpi_read()
Don't dereference "sar_root" after it has been freed. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix null pointer panic in tracepoint in __replace_atomic_write_block
We got a kernel panic if old_addr is NULL.
https://bugzilla.kernel.org/show_bug.cgi?id=217266
BUG: kernel NULL pointer dereference, address: 0000000000000000
Call Trace:
<TASK>
f2fs_commit_atomic_write+0x619/0x990 [f2fs a1b985b80f5babd6f3ea778384908880812bfa43]
__f2fs_ioctl+0xd8e/0x4080 [f2fs a1b985b80f5babd6f3ea778384908880812bfa43]
? vfs_write+0x2ae/0x3f0
? vfs_write+0x2ae/0x3f0
__x64_sys_ioctl+0x91/0xd0
do_syscall_64+0x5c/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7f69095fe53f |
| In the Linux kernel, the following vulnerability has been resolved:
pstore/ram: Add check for kstrdup
Add check for the return value of kstrdup() and return the error
if it fails in order to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: fix memory leak in mt7996_mcu_exit
Always purge mcu skb queues in mt7996_mcu_exit routine even if
mt7996_firmware_state fails. |
| In the Linux kernel, the following vulnerability has been resolved:
ipu3-imgu: Fix NULL pointer dereference in imgu_subdev_set_selection()
Calling v4l2_subdev_get_try_crop() and v4l2_subdev_get_try_compose()
with a subdev state of NULL leads to a NULL pointer dereference. This
can currently happen in imgu_subdev_set_selection() when the state
passed in is NULL, as this method first gets pointers to both the "try"
and "active" states and only then decides which to use.
The same issue has been addressed for imgu_subdev_get_selection() with
commit 30d03a0de650 ("ipu3-imgu: Fix NULL pointer dereference in active
selection access"). However the issue still persists in
imgu_subdev_set_selection().
Therefore, apply a similar fix as done in the aforementioned commit to
imgu_subdev_set_selection(). To keep things a bit cleaner, introduce
helper functions for "crop" and "compose" access and use them in both
imgu_subdev_set_selection() and imgu_subdev_get_selection(). |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Don't leak netobj memory when gss_read_proxy_verf() fails |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix blktrace debugfs entries leakage
Commit 99d055b4fd4b ("block: remove per-disk debugfs files in
blk_unregister_queue") moves blk_trace_shutdown() from
blk_release_queue() to blk_unregister_queue(), this is safe if blktrace
is created through sysfs, however, there is a regression in corner
case.
blktrace can still be enabled after del_gendisk() through ioctl if
the disk is opened before del_gendisk(), and if blktrace is not shutdown
through ioctl before closing the disk, debugfs entries will be leaked.
Fix this problem by shutdown blktrace in disk_release(), this is safe
because blk_trace_remove() is reentrant. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: alcor: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and calling mmc_free_host() in the
error path. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: tag_8021q: avoid leaking ctx on dsa_tag_8021q_register() error path
If dsa_tag_8021q_setup() fails, for example due to the inability of the
device to install a VLAN, the tag_8021q context of the switch will leak.
Make sure it is freed on the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/restrack: Release MR restrack when delete
The MR restrack also needs to be released when delete it, otherwise it
cause memory leak as the task struct won't be released. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: Avoid use-after-free in dbg for hci_remove_adv_monitor()
KASAN reports that there's a use-after-free in
hci_remove_adv_monitor(). Trawling through the disassembly, you can
see that the complaint is from the access in bt_dev_dbg() under the
HCI_ADV_MONITOR_EXT_MSFT case. The problem case happens because
msft_remove_monitor() can end up freeing the monitor
structure. Specifically:
hci_remove_adv_monitor() ->
msft_remove_monitor() ->
msft_remove_monitor_sync() ->
msft_le_cancel_monitor_advertisement_cb() ->
hci_free_adv_monitor()
Let's fix the problem by just stashing the relevant data when it's
still valid. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix memory leak in lpfc_create_port()
Commit 5e633302ace1 ("scsi: lpfc: vmid: Add support for VMID in mailbox
command") introduced allocations for the VMID resources in
lpfc_create_port() after the call to scsi_host_alloc(). Upon failure on the
VMID allocations, the new code would branch to the 'out' label, which
returns NULL without unwinding anything, thus skipping the call to
scsi_host_put().
Fix the problem by creating a separate label 'out_free_vmid' to unwind the
VMID resources and make the 'out_put_shost' label call only
scsi_host_put(), as was done before the introduction of allocations for
VMID. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: fix a signed-integer-overflow bug in tcp_add_backlog()
The type of sk_rcvbuf and sk_sndbuf in struct sock is int, and
in tcp_add_backlog(), the variable limit is caculated by adding
sk_rcvbuf, sk_sndbuf and 64 * 1024, it may exceed the max value
of int and overflow. This patch reduces the limit budget by
halving the sndbuf to solve this issue since ACK packets are much
smaller than the payload. |
| In the Linux kernel, the following vulnerability has been resolved:
pstore: Avoid kcore oops by vmap()ing with VM_IOREMAP
An oops can be induced by running 'cat /proc/kcore > /dev/null' on
devices using pstore with the ram backend because kmap_atomic() assumes
lowmem pages are accessible with __va().
Unable to handle kernel paging request at virtual address ffffff807ff2b000
Mem abort info:
ESR = 0x96000006
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000081d87000
[ffffff807ff2b000] pgd=180000017fe18003, p4d=180000017fe18003, pud=180000017fe18003, pmd=0000000000000000
Internal error: Oops: 96000006 [#1] PREEMPT SMP
Modules linked in: dm_integrity
CPU: 7 PID: 21179 Comm: perf Not tainted 5.15.67-10882-ge4eb2eb988cd #1 baa443fb8e8477896a370b31a821eb2009f9bfba
Hardware name: Google Lazor (rev3 - 8) (DT)
pstate: a0400009 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __memcpy+0x110/0x260
lr : vread+0x194/0x294
sp : ffffffc013ee39d0
x29: ffffffc013ee39f0 x28: 0000000000001000 x27: ffffff807ff2b000
x26: 0000000000001000 x25: ffffffc0085a2000 x24: ffffff802d4b3000
x23: ffffff80f8a60000 x22: ffffff802d4b3000 x21: ffffffc0085a2000
x20: ffffff8080b7bc68 x19: 0000000000001000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: ffffffd3073f2e60
x14: ffffffffad588000 x13: 0000000000000000 x12: 0000000000000001
x11: 00000000000001a2 x10: 00680000fff2bf0b x9 : 03fffffff807ff2b
x8 : 0000000000000001 x7 : 0000000000000000 x6 : 0000000000000000
x5 : ffffff802d4b4000 x4 : ffffff807ff2c000 x3 : ffffffc013ee3a78
x2 : 0000000000001000 x1 : ffffff807ff2b000 x0 : ffffff802d4b3000
Call trace:
__memcpy+0x110/0x260
read_kcore+0x584/0x778
proc_reg_read+0xb4/0xe4
During early boot, memblock reserves the pages for the ramoops reserved
memory node in DT that would otherwise be part of the direct lowmem
mapping. Pstore's ram backend reuses those reserved pages to change the
memory type (writeback or non-cached) by passing the pages to vmap()
(see pfn_to_page() usage in persistent_ram_vmap() for more details) with
specific flags. When read_kcore() starts iterating over the vmalloc
region, it runs over the virtual address that vmap() returned for
ramoops. In aligned_vread() the virtual address is passed to
vmalloc_to_page() which returns the page struct for the reserved lowmem
area. That lowmem page is passed to kmap_atomic(), which effectively
calls page_to_virt() that assumes a lowmem page struct must be directly
accessible with __va() and friends. These pages are mapped via vmap()
though, and the lowmem mapping was never made, so accessing them via the
lowmem virtual address oopses like above.
Let's side-step this problem by passing VM_IOREMAP to vmap(). This will
tell vread() to not include the ramoops region in the kcore. Instead the
area will look like a bunch of zeros. The alternative is to teach kmap()
about vmalloc areas that intersect with lowmem. Presumably such a change
isn't a one-liner, and there isn't much interest in inspecting the
ramoops region in kcore files anyway, so the most expedient route is
taken for now. |