Filtered by vendor Linux Subscriptions
Total 16557 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-68331 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: usb: uas: fix urb unmapping issue when the uas device is remove during ongoing data transfer When a UAS device is unplugged during data transfer, there is a probability of a system panic occurring. The root cause is an access to an invalid memory address during URB callback handling. Specifically, this happens when the dma_direct_unmap_sg() function is called within the usb_hcd_unmap_urb_for_dma() interface, but the sg->dma_address field is 0 and the sg data structure has already been freed. The SCSI driver sends transfer commands by invoking uas_queuecommand_lck() in uas.c, using the uas_submit_urbs() function to submit requests to USB. Within the uas_submit_urbs() implementation, three URBs (sense_urb, data_urb, and cmd_urb) are sequentially submitted. Device removal may occur at any point during uas_submit_urbs execution, which may result in URB submission failure. However, some URBs might have been successfully submitted before the failure, and uas_submit_urbs will return the -ENODEV error code in this case. The current error handling directly calls scsi_done(). In the SCSI driver, this eventually triggers scsi_complete() to invoke scsi_end_request() for releasing the sgtable. The successfully submitted URBs, when being unlinked to giveback, call usb_hcd_unmap_urb_for_dma() in hcd.c, leading to exceptions during sg unmapping operations since the sg data structure has already been freed. This patch modifies the error condition check in the uas_submit_urbs() function. When a UAS device is removed but one or more URBs have already been successfully submitted to USB, it avoids immediately invoking scsi_done() and save the cmnd to devinfo->cmnd array. If the successfully submitted URBs is completed before devinfo->resetting being set, then the scsi_done() function will be called within uas_try_complete() after all pending URB operations are finalized. Otherwise, the scsi_done() function will be called within uas_zap_pending(), which is executed after usb_kill_anchored_urbs(). The error handling only takes effect when uas_queuecommand_lck() calls uas_submit_urbs() and returns the error value -ENODEV . In this case, the device is disconnected, and the flow proceeds to uas_disconnect(), where uas_zap_pending() is invoked to call uas_try_complete().
CVE-2025-68339 1 Linux 1 Linux Kernel 2025-12-23 N/A
In the Linux kernel, the following vulnerability has been resolved: atm/fore200e: Fix possible data race in fore200e_open() Protect access to fore200e->available_cell_rate with rate_mtx lock in the error handling path of fore200e_open() to prevent a data race. The field fore200e->available_cell_rate is a shared resource used to track available bandwidth. It is concurrently accessed by fore200e_open(), fore200e_close(), and fore200e_change_qos(). In fore200e_open(), the lock rate_mtx is correctly held when subtracting vcc->qos.txtp.max_pcr from available_cell_rate to reserve bandwidth. However, if the subsequent call to fore200e_activate_vcin() fails, the function restores the reserved bandwidth by adding back to available_cell_rate without holding the lock. This introduces a race condition because available_cell_rate is a global device resource shared across all VCCs. If the error path in fore200e_open() executes concurrently with operations like fore200e_close() or fore200e_change_qos() on other VCCs, a read-modify-write race occurs. Specifically, the error path reads the rate without the lock. If another CPU acquires the lock and modifies the rate (e.g., releasing bandwidth in fore200e_close()) between this read and the subsequent write, the error path will overwrite the concurrent update with a stale value. This results in incorrect bandwidth accounting.
CVE-2025-68340 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: team: Move team device type change at the end of team_port_add Attempting to add a port device that is already up will expectedly fail, but not before modifying the team device header_ops. In the case of the syzbot reproducer the gre0 device is already in state UP when it attempts to add it as a port device of team0, this fails but before that header_ops->create of team0 is changed from eth_header to ipgre_header in the call to team_dev_type_check_change. Later when we end up in ipgre_header() struct ip_tunnel* points to nonsense as the private data of the device still holds a struct team. Example sequence of iproute2 commands to reproduce the hang/BUG(): ip link add dev team0 type team ip link add dev gre0 type gre ip link set dev gre0 up ip link set dev gre0 master team0 ip link set dev team0 up ping -I team0 1.1.1.1 Move team_dev_type_check_change down where all other checks have passed as it changes the dev type with no way to restore it in case one of the checks that follow it fail. Also make sure to preserve the origial mtu assignment: - If port_dev is not the same type as dev, dev takes mtu from port_dev - If port_dev is the same type as dev, port_dev takes mtu from dev This is done by adding a conditional before the call to dev_set_mtu to prevent it from assigning port_dev->mtu = dev->mtu and instead letting team_dev_type_check_change assign dev->mtu = port_dev->mtu. The conditional is needed because the patch moves the call to team_dev_type_check_change past dev_set_mtu. Testing: - team device driver in-tree selftests - Add/remove various devices as slaves of team device - syzbot
CVE-2025-68341 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: veth: reduce XDP no_direct return section to fix race As explain in commit fa349e396e48 ("veth: Fix race with AF_XDP exposing old or uninitialized descriptors") for veth there is a chance after napi_complete_done() that another CPU can manage start another NAPI instance running veth_pool(). For NAPI this is correctly handled as the napi_schedule_prep() check will prevent multiple instances from getting scheduled, but for the remaining code in veth_pool() this can run concurrent with the newly started NAPI instance. The problem/race is that xdp_clear_return_frame_no_direct() isn't designed to be nested. Prior to commit 401cb7dae813 ("net: Reference bpf_redirect_info via task_struct on PREEMPT_RT.") the temporary BPF net context bpf_redirect_info was stored per CPU, where this wasn't an issue. Since this commit the BPF context is stored in 'current' task_struct. When running veth in threaded-NAPI mode, then the kthread becomes the storage area. Now a race exists between two concurrent veth_pool() function calls one exiting NAPI and one running new NAPI, both using the same BPF net context. Race is when another CPU gets within the xdp_set_return_frame_no_direct() section before exiting veth_pool() calls the clear-function xdp_clear_return_frame_no_direct().
CVE-2025-68327 1 Linux 1 Linux Kernel 2025-12-23 N/A
In the Linux kernel, the following vulnerability has been resolved: usb: renesas_usbhs: Fix synchronous external abort on unbind A synchronous external abort occurs on the Renesas RZ/G3S SoC if unbind is executed after the configuration sequence described above: modprobe usb_f_ecm modprobe libcomposite modprobe configfs cd /sys/kernel/config/usb_gadget mkdir -p g1 cd g1 echo "0x1d6b" > idVendor echo "0x0104" > idProduct mkdir -p strings/0x409 echo "0123456789" > strings/0x409/serialnumber echo "Renesas." > strings/0x409/manufacturer echo "Ethernet Gadget" > strings/0x409/product mkdir -p functions/ecm.usb0 mkdir -p configs/c.1 mkdir -p configs/c.1/strings/0x409 echo "ECM" > configs/c.1/strings/0x409/configuration if [ ! -L configs/c.1/ecm.usb0 ]; then ln -s functions/ecm.usb0 configs/c.1 fi echo 11e20000.usb > UDC echo 11e20000.usb > /sys/bus/platform/drivers/renesas_usbhs/unbind The displayed trace is as follows: Internal error: synchronous external abort: 0000000096000010 [#1] SMP CPU: 0 UID: 0 PID: 188 Comm: sh Tainted: G M 6.17.0-rc7-next-20250922-00010-g41050493b2bd #55 PREEMPT Tainted: [M]=MACHINE_CHECK Hardware name: Renesas SMARC EVK version 2 based on r9a08g045s33 (DT) pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : usbhs_sys_function_pullup+0x10/0x40 [renesas_usbhs] lr : usbhsg_update_pullup+0x3c/0x68 [renesas_usbhs] sp : ffff8000838b3920 x29: ffff8000838b3920 x28: ffff00000d585780 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000000 x24: ffff00000c3e3810 x23: ffff00000d5e5c80 x22: ffff00000d5e5d40 x21: 0000000000000000 x20: 0000000000000000 x19: ffff00000d5e5c80 x18: 0000000000000020 x17: 2e30303230316531 x16: 312d7968703a7968 x15: 3d454d414e5f4344 x14: 000000000000002c x13: 0000000000000000 x12: 0000000000000000 x11: ffff00000f358f38 x10: ffff00000f358db0 x9 : ffff00000b41f418 x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d x5 : 8080808000000000 x4 : 000000004b5ccb9d x3 : 0000000000000000 x2 : 0000000000000000 x1 : ffff800083790000 x0 : ffff00000d5e5c80 Call trace: usbhs_sys_function_pullup+0x10/0x40 [renesas_usbhs] (P) usbhsg_pullup+0x4c/0x7c [renesas_usbhs] usb_gadget_disconnect_locked+0x48/0xd4 gadget_unbind_driver+0x44/0x114 device_remove+0x4c/0x80 device_release_driver_internal+0x1c8/0x224 device_release_driver+0x18/0x24 bus_remove_device+0xcc/0x10c device_del+0x14c/0x404 usb_del_gadget+0x88/0xc0 usb_del_gadget_udc+0x18/0x30 usbhs_mod_gadget_remove+0x24/0x44 [renesas_usbhs] usbhs_mod_remove+0x20/0x30 [renesas_usbhs] usbhs_remove+0x98/0xdc [renesas_usbhs] platform_remove+0x20/0x30 device_remove+0x4c/0x80 device_release_driver_internal+0x1c8/0x224 device_driver_detach+0x18/0x24 unbind_store+0xb4/0xb8 drv_attr_store+0x24/0x38 sysfs_kf_write+0x7c/0x94 kernfs_fop_write_iter+0x128/0x1b8 vfs_write+0x2ac/0x350 ksys_write+0x68/0xfc __arm64_sys_write+0x1c/0x28 invoke_syscall+0x48/0x110 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x34/0xf0 el0t_64_sync_handler+0xa0/0xe4 el0t_64_sync+0x198/0x19c Code: 7100003f 1a9f07e1 531c6c22 f9400001 (79400021) ---[ end trace 0000000000000000 ]--- note: sh[188] exited with irqs disabled note: sh[188] exited with preempt_count 1 The issue occurs because usbhs_sys_function_pullup(), which accesses the IP registers, is executed after the USBHS clocks have been disabled. The problem is reproducible on the Renesas RZ/G3S SoC starting with the addition of module stop in the clock enable/disable APIs. With module stop functionality enabled, a bus error is expected if a master accesses a module whose clock has been stopped and module stop activated. Disable the IP clocks at the end of remove.
CVE-2022-50655 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ppp: associate skb with a device at tx Syzkaller triggered flow dissector warning with the following: r0 = openat$ppp(0xffffffffffffff9c, &(0x7f0000000000), 0xc0802, 0x0) ioctl$PPPIOCNEWUNIT(r0, 0xc004743e, &(0x7f00000000c0)) ioctl$PPPIOCSACTIVE(r0, 0x40107446, &(0x7f0000000240)={0x2, &(0x7f0000000180)=[{0x20, 0x0, 0x0, 0xfffff034}, {0x6}]}) pwritev(r0, &(0x7f0000000040)=[{&(0x7f0000000140)='\x00!', 0x2}], 0x1, 0x0, 0x0) [ 9.485814] WARNING: CPU: 3 PID: 329 at net/core/flow_dissector.c:1016 __skb_flow_dissect+0x1ee0/0x1fa0 [ 9.485929] skb_get_poff+0x53/0xa0 [ 9.485937] bpf_skb_get_pay_offset+0xe/0x20 [ 9.485944] ? ppp_send_frame+0xc2/0x5b0 [ 9.485949] ? _raw_spin_unlock_irqrestore+0x40/0x60 [ 9.485958] ? __ppp_xmit_process+0x7a/0xe0 [ 9.485968] ? ppp_xmit_process+0x5b/0xb0 [ 9.485974] ? ppp_write+0x12a/0x190 [ 9.485981] ? do_iter_write+0x18e/0x2d0 [ 9.485987] ? __import_iovec+0x30/0x130 [ 9.485997] ? do_pwritev+0x1b6/0x240 [ 9.486016] ? trace_hardirqs_on+0x47/0x50 [ 9.486023] ? __x64_sys_pwritev+0x24/0x30 [ 9.486026] ? do_syscall_64+0x3d/0x80 [ 9.486031] ? entry_SYSCALL_64_after_hwframe+0x63/0xcd Flow dissector tries to find skb net namespace either via device or via socket. Neigher is set in ppp_send_frame, so let's manually use ppp->dev.
CVE-2022-50435 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid crash when inline data creation follows DIO write When inode is created and written to using direct IO, there is nothing to clear the EXT4_STATE_MAY_INLINE_DATA flag. Thus when inode gets truncated later to say 1 byte and written using normal write, we will try to store the data as inline data. This confuses the code later because the inode now has both normal block and inline data allocated and the confusion manifests for example as: kernel BUG at fs/ext4/inode.c:2721! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 359 Comm: repro Not tainted 5.19.0-rc8-00001-g31ba1e3b8305-dirty #15 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014 RIP: 0010:ext4_writepages+0x363d/0x3660 RSP: 0018:ffffc90000ccf260 EFLAGS: 00010293 RAX: ffffffff81e1abcd RBX: 0000008000000000 RCX: ffff88810842a180 RDX: 0000000000000000 RSI: 0000008000000000 RDI: 0000000000000000 RBP: ffffc90000ccf650 R08: ffffffff81e17d58 R09: ffffed10222c680b R10: dfffe910222c680c R11: 1ffff110222c680a R12: ffff888111634128 R13: ffffc90000ccf880 R14: 0000008410000000 R15: 0000000000000001 FS: 00007f72635d2640(0000) GS:ffff88811b000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000565243379180 CR3: 000000010aa74000 CR4: 0000000000150eb0 Call Trace: <TASK> do_writepages+0x397/0x640 filemap_fdatawrite_wbc+0x151/0x1b0 file_write_and_wait_range+0x1c9/0x2b0 ext4_sync_file+0x19e/0xa00 vfs_fsync_range+0x17b/0x190 ext4_buffered_write_iter+0x488/0x530 ext4_file_write_iter+0x449/0x1b90 vfs_write+0xbcd/0xf40 ksys_write+0x198/0x2c0 __x64_sys_write+0x7b/0x90 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> Fix the problem by clearing EXT4_STATE_MAY_INLINE_DATA when we are doing direct IO write to a file.
CVE-2022-50409 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: If sock is dead don't access sock's sk_wq in sk_stream_wait_memory Fixes the below NULL pointer dereference: [...] [ 14.471200] Call Trace: [ 14.471562] <TASK> [ 14.471882] lock_acquire+0x245/0x2e0 [ 14.472416] ? remove_wait_queue+0x12/0x50 [ 14.473014] ? _raw_spin_lock_irqsave+0x17/0x50 [ 14.473681] _raw_spin_lock_irqsave+0x3d/0x50 [ 14.474318] ? remove_wait_queue+0x12/0x50 [ 14.474907] remove_wait_queue+0x12/0x50 [ 14.475480] sk_stream_wait_memory+0x20d/0x340 [ 14.476127] ? do_wait_intr_irq+0x80/0x80 [ 14.476704] do_tcp_sendpages+0x287/0x600 [ 14.477283] tcp_bpf_push+0xab/0x260 [ 14.477817] tcp_bpf_sendmsg_redir+0x297/0x500 [ 14.478461] ? __local_bh_enable_ip+0x77/0xe0 [ 14.479096] tcp_bpf_send_verdict+0x105/0x470 [ 14.479729] tcp_bpf_sendmsg+0x318/0x4f0 [ 14.480311] sock_sendmsg+0x2d/0x40 [ 14.480822] ____sys_sendmsg+0x1b4/0x1c0 [ 14.481390] ? copy_msghdr_from_user+0x62/0x80 [ 14.482048] ___sys_sendmsg+0x78/0xb0 [ 14.482580] ? vmf_insert_pfn_prot+0x91/0x150 [ 14.483215] ? __do_fault+0x2a/0x1a0 [ 14.483738] ? do_fault+0x15e/0x5d0 [ 14.484246] ? __handle_mm_fault+0x56b/0x1040 [ 14.484874] ? lock_is_held_type+0xdf/0x130 [ 14.485474] ? find_held_lock+0x2d/0x90 [ 14.486046] ? __sys_sendmsg+0x41/0x70 [ 14.486587] __sys_sendmsg+0x41/0x70 [ 14.487105] ? intel_pmu_drain_pebs_core+0x350/0x350 [ 14.487822] do_syscall_64+0x34/0x80 [ 14.488345] entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] The test scenario has the following flow: thread1 thread2 ----------- --------------- tcp_bpf_sendmsg tcp_bpf_send_verdict tcp_bpf_sendmsg_redir sock_close tcp_bpf_push_locked __sock_release tcp_bpf_push //inet_release do_tcp_sendpages sock->ops->release sk_stream_wait_memory // tcp_close sk_wait_event sk->sk_prot->close release_sock(__sk); *** lock_sock(sk); __tcp_close sock_orphan(sk) sk->sk_wq = NULL release_sock **** lock_sock(__sk); remove_wait_queue(sk_sleep(sk), &wait); sk_sleep(sk) //NULL pointer dereference &rcu_dereference_raw(sk->sk_wq)->wait While waiting for memory in thread1, the socket is released with its wait queue because thread2 has closed it. This caused by tcp_bpf_send_verdict didn't increase the f_count of psock->sk_redir->sk_socket->file in thread1. We should check if SOCK_DEAD flag is set on wakeup in sk_stream_wait_memory before accessing the wait queue.
CVE-2022-50020 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid resizing to a partial cluster size This patch avoids an attempt to resize the filesystem to an unaligned cluster boundary. An online resize to a size that is not integral to cluster size results in the last iteration attempting to grow the fs by a negative amount, which trips a BUG_ON and leaves the fs with a corrupted in-memory superblock.
CVE-2022-50012 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/64: Init jump labels before parse_early_param() On 64-bit, calling jump_label_init() in setup_feature_keys() is too late because static keys may be used in subroutines of parse_early_param() which is again subroutine of early_init_devtree(). For example booting with "threadirqs": static_key_enable_cpuslocked(): static key '0xc000000002953260' used before call to jump_label_init() WARNING: CPU: 0 PID: 0 at kernel/jump_label.c:166 static_key_enable_cpuslocked+0xfc/0x120 ... NIP static_key_enable_cpuslocked+0xfc/0x120 LR static_key_enable_cpuslocked+0xf8/0x120 Call Trace: static_key_enable_cpuslocked+0xf8/0x120 (unreliable) static_key_enable+0x30/0x50 setup_forced_irqthreads+0x28/0x40 do_early_param+0xa0/0x108 parse_args+0x290/0x4e0 parse_early_options+0x48/0x5c parse_early_param+0x58/0x84 early_init_devtree+0xd4/0x518 early_setup+0xb4/0x214 So call jump_label_init() just before parse_early_param() in early_init_devtree(). [mpe: Add call trace to change log and minor wording edits.]
CVE-2022-49979 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: fix refcount bug in sk_psock_get (2) Syzkaller reports refcount bug as follows: ------------[ cut here ]------------ refcount_t: saturated; leaking memory. WARNING: CPU: 1 PID: 3605 at lib/refcount.c:19 refcount_warn_saturate+0xf4/0x1e0 lib/refcount.c:19 Modules linked in: CPU: 1 PID: 3605 Comm: syz-executor208 Not tainted 5.18.0-syzkaller-03023-g7e062cda7d90 #0 <TASK> __refcount_add_not_zero include/linux/refcount.h:163 [inline] __refcount_inc_not_zero include/linux/refcount.h:227 [inline] refcount_inc_not_zero include/linux/refcount.h:245 [inline] sk_psock_get+0x3bc/0x410 include/linux/skmsg.h:439 tls_data_ready+0x6d/0x1b0 net/tls/tls_sw.c:2091 tcp_data_ready+0x106/0x520 net/ipv4/tcp_input.c:4983 tcp_data_queue+0x25f2/0x4c90 net/ipv4/tcp_input.c:5057 tcp_rcv_state_process+0x1774/0x4e80 net/ipv4/tcp_input.c:6659 tcp_v4_do_rcv+0x339/0x980 net/ipv4/tcp_ipv4.c:1682 sk_backlog_rcv include/net/sock.h:1061 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2849 release_sock+0x54/0x1b0 net/core/sock.c:3404 inet_shutdown+0x1e0/0x430 net/ipv4/af_inet.c:909 __sys_shutdown_sock net/socket.c:2331 [inline] __sys_shutdown_sock net/socket.c:2325 [inline] __sys_shutdown+0xf1/0x1b0 net/socket.c:2343 __do_sys_shutdown net/socket.c:2351 [inline] __se_sys_shutdown net/socket.c:2349 [inline] __x64_sys_shutdown+0x50/0x70 net/socket.c:2349 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 </TASK> During SMC fallback process in connect syscall, kernel will replaces TCP with SMC. In order to forward wakeup smc socket waitqueue after fallback, kernel will sets clcsk->sk_user_data to origin smc socket in smc_fback_replace_callbacks(). Later, in shutdown syscall, kernel will calls sk_psock_get(), which treats the clcsk->sk_user_data as psock type, triggering the refcnt warning. So, the root cause is that smc and psock, both will use sk_user_data field. So they will mismatch this field easily. This patch solves it by using another bit(defined as SK_USER_DATA_PSOCK) in PTRMASK, to mark whether sk_user_data points to a psock object or not. This patch depends on a PTRMASK introduced in commit f1ff5ce2cd5e ("net, sk_msg: Clear sk_user_data pointer on clone if tagged"). For there will possibly be more flags in the sk_user_data field, this patch also refactor sk_user_data flags code to be more generic to improve its maintainability.
CVE-2022-49772 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Drop snd_BUG_ON() from snd_usbmidi_output_open() snd_usbmidi_output_open() has a check of the NULL port with snd_BUG_ON(). snd_BUG_ON() was used as this shouldn't have happened, but in reality, the NULL port may be seen when the device gives an invalid endpoint setup at the descriptor, hence the driver skips the allocation. That is, the check itself is valid and snd_BUG_ON() should be dropped from there. Otherwise it's confusing as if it were a real bug, as recently syzbot stumbled on it.
CVE-2022-49567 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/mempolicy: fix uninit-value in mpol_rebind_policy() mpol_set_nodemask()(mm/mempolicy.c) does not set up nodemask when pol->mode is MPOL_LOCAL. Check pol->mode before access pol->w.cpuset_mems_allowed in mpol_rebind_policy()(mm/mempolicy.c). BUG: KMSAN: uninit-value in mpol_rebind_policy mm/mempolicy.c:352 [inline] BUG: KMSAN: uninit-value in mpol_rebind_task+0x2ac/0x2c0 mm/mempolicy.c:368 mpol_rebind_policy mm/mempolicy.c:352 [inline] mpol_rebind_task+0x2ac/0x2c0 mm/mempolicy.c:368 cpuset_change_task_nodemask kernel/cgroup/cpuset.c:1711 [inline] cpuset_attach+0x787/0x15e0 kernel/cgroup/cpuset.c:2278 cgroup_migrate_execute+0x1023/0x1d20 kernel/cgroup/cgroup.c:2515 cgroup_migrate kernel/cgroup/cgroup.c:2771 [inline] cgroup_attach_task+0x540/0x8b0 kernel/cgroup/cgroup.c:2804 __cgroup1_procs_write+0x5cc/0x7a0 kernel/cgroup/cgroup-v1.c:520 cgroup1_tasks_write+0x94/0xb0 kernel/cgroup/cgroup-v1.c:539 cgroup_file_write+0x4c2/0x9e0 kernel/cgroup/cgroup.c:3852 kernfs_fop_write_iter+0x66a/0x9f0 fs/kernfs/file.c:296 call_write_iter include/linux/fs.h:2162 [inline] new_sync_write fs/read_write.c:503 [inline] vfs_write+0x1318/0x2030 fs/read_write.c:590 ksys_write+0x28b/0x510 fs/read_write.c:643 __do_sys_write fs/read_write.c:655 [inline] __se_sys_write fs/read_write.c:652 [inline] __x64_sys_write+0xdb/0x120 fs/read_write.c:652 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x44/0xae Uninit was created at: slab_post_alloc_hook mm/slab.h:524 [inline] slab_alloc_node mm/slub.c:3251 [inline] slab_alloc mm/slub.c:3259 [inline] kmem_cache_alloc+0x902/0x11c0 mm/slub.c:3264 mpol_new mm/mempolicy.c:293 [inline] do_set_mempolicy+0x421/0xb70 mm/mempolicy.c:853 kernel_set_mempolicy mm/mempolicy.c:1504 [inline] __do_sys_set_mempolicy mm/mempolicy.c:1510 [inline] __se_sys_set_mempolicy+0x44c/0xb60 mm/mempolicy.c:1507 __x64_sys_set_mempolicy+0xd8/0x110 mm/mempolicy.c:1507 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x44/0xae KMSAN: uninit-value in mpol_rebind_task (2) https://syzkaller.appspot.com/bug?id=d6eb90f952c2a5de9ea718a1b873c55cb13b59dc This patch seems to fix below bug too. KMSAN: uninit-value in mpol_rebind_mm (2) https://syzkaller.appspot.com/bug?id=f2fecd0d7013f54ec4162f60743a2b28df40926b The uninit-value is pol->w.cpuset_mems_allowed in mpol_rebind_policy(). When syzkaller reproducer runs to the beginning of mpol_new(), mpol_new() mm/mempolicy.c do_mbind() mm/mempolicy.c kernel_mbind() mm/mempolicy.c `mode` is 1(MPOL_PREFERRED), nodes_empty(*nodes) is `true` and `flags` is 0. Then mode = MPOL_LOCAL; ... policy->mode = mode; policy->flags = flags; will be executed. So in mpol_set_nodemask(), mpol_set_nodemask() mm/mempolicy.c do_mbind() kernel_mbind() pol->mode is 4 (MPOL_LOCAL), that `nodemask` in `pol` is not initialized, which will be accessed in mpol_rebind_policy().
CVE-2022-49434 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: Avoid pci_dev_lock() AB/BA deadlock with sriov_numvfs_store() The sysfs sriov_numvfs_store() path acquires the device lock before the config space access lock: sriov_numvfs_store device_lock # A (1) acquire device lock sriov_configure vfio_pci_sriov_configure # (for example) vfio_pci_core_sriov_configure pci_disable_sriov sriov_disable pci_cfg_access_lock pci_wait_cfg # B (4) wait for dev->block_cfg_access == 0 Previously, pci_dev_lock() acquired the config space access lock before the device lock: pci_dev_lock pci_cfg_access_lock dev->block_cfg_access = 1 # B (2) set dev->block_cfg_access = 1 device_lock # A (3) wait for device lock Any path that uses pci_dev_lock(), e.g., pci_reset_function(), may deadlock with sriov_numvfs_store() if the operations occur in the sequence (1) (2) (3) (4). Avoid the deadlock by reversing the order in pci_dev_lock() so it acquires the device lock before the config space access lock, the same as the sriov_numvfs_store() path. [bhelgaas: combined and adapted commit log from Jay Zhou's independent subsequent posting: https://lore.kernel.org/r/[email protected]]
CVE-2022-49280 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: NFSD: prevent underflow in nfssvc_decode_writeargs() Smatch complains: fs/nfsd/nfsxdr.c:341 nfssvc_decode_writeargs() warn: no lower bound on 'args->len' Change the type to unsigned to prevent this issue.
CVE-2022-48919 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: cifs: fix double free race when mount fails in cifs_get_root() When cifs_get_root() fails during cifs_smb3_do_mount() we call deactivate_locked_super() which eventually will call delayed_free() which will free the context. In this situation we should not proceed to enter the out: section in cifs_smb3_do_mount() and free the same resources a second time. [Thu Feb 10 12:59:06 2022] BUG: KASAN: use-after-free in rcu_cblist_dequeue+0x32/0x60 [Thu Feb 10 12:59:06 2022] Read of size 8 at addr ffff888364f4d110 by task swapper/1/0 [Thu Feb 10 12:59:06 2022] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G OE 5.17.0-rc3+ #4 [Thu Feb 10 12:59:06 2022] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.0 12/17/2019 [Thu Feb 10 12:59:06 2022] Call Trace: [Thu Feb 10 12:59:06 2022] <IRQ> [Thu Feb 10 12:59:06 2022] dump_stack_lvl+0x5d/0x78 [Thu Feb 10 12:59:06 2022] print_address_description.constprop.0+0x24/0x150 [Thu Feb 10 12:59:06 2022] ? rcu_cblist_dequeue+0x32/0x60 [Thu Feb 10 12:59:06 2022] kasan_report.cold+0x7d/0x117 [Thu Feb 10 12:59:06 2022] ? rcu_cblist_dequeue+0x32/0x60 [Thu Feb 10 12:59:06 2022] __asan_load8+0x86/0xa0 [Thu Feb 10 12:59:06 2022] rcu_cblist_dequeue+0x32/0x60 [Thu Feb 10 12:59:06 2022] rcu_core+0x547/0xca0 [Thu Feb 10 12:59:06 2022] ? call_rcu+0x3c0/0x3c0 [Thu Feb 10 12:59:06 2022] ? __this_cpu_preempt_check+0x13/0x20 [Thu Feb 10 12:59:06 2022] ? lock_is_held_type+0xea/0x140 [Thu Feb 10 12:59:06 2022] rcu_core_si+0xe/0x10 [Thu Feb 10 12:59:06 2022] __do_softirq+0x1d4/0x67b [Thu Feb 10 12:59:06 2022] __irq_exit_rcu+0x100/0x150 [Thu Feb 10 12:59:06 2022] irq_exit_rcu+0xe/0x30 [Thu Feb 10 12:59:06 2022] sysvec_hyperv_stimer0+0x9d/0xc0 ... [Thu Feb 10 12:59:07 2022] Freed by task 58179: [Thu Feb 10 12:59:07 2022] kasan_save_stack+0x26/0x50 [Thu Feb 10 12:59:07 2022] kasan_set_track+0x25/0x30 [Thu Feb 10 12:59:07 2022] kasan_set_free_info+0x24/0x40 [Thu Feb 10 12:59:07 2022] ____kasan_slab_free+0x137/0x170 [Thu Feb 10 12:59:07 2022] __kasan_slab_free+0x12/0x20 [Thu Feb 10 12:59:07 2022] slab_free_freelist_hook+0xb3/0x1d0 [Thu Feb 10 12:59:07 2022] kfree+0xcd/0x520 [Thu Feb 10 12:59:07 2022] cifs_smb3_do_mount+0x149/0xbe0 [cifs] [Thu Feb 10 12:59:07 2022] smb3_get_tree+0x1a0/0x2e0 [cifs] [Thu Feb 10 12:59:07 2022] vfs_get_tree+0x52/0x140 [Thu Feb 10 12:59:07 2022] path_mount+0x635/0x10c0 [Thu Feb 10 12:59:07 2022] __x64_sys_mount+0x1bf/0x210 [Thu Feb 10 12:59:07 2022] do_syscall_64+0x5c/0xc0 [Thu Feb 10 12:59:07 2022] entry_SYSCALL_64_after_hwframe+0x44/0xae [Thu Feb 10 12:59:07 2022] Last potentially related work creation: [Thu Feb 10 12:59:07 2022] kasan_save_stack+0x26/0x50 [Thu Feb 10 12:59:07 2022] __kasan_record_aux_stack+0xb6/0xc0 [Thu Feb 10 12:59:07 2022] kasan_record_aux_stack_noalloc+0xb/0x10 [Thu Feb 10 12:59:07 2022] call_rcu+0x76/0x3c0 [Thu Feb 10 12:59:07 2022] cifs_umount+0xce/0xe0 [cifs] [Thu Feb 10 12:59:07 2022] cifs_kill_sb+0xc8/0xe0 [cifs] [Thu Feb 10 12:59:07 2022] deactivate_locked_super+0x5d/0xd0 [Thu Feb 10 12:59:07 2022] cifs_smb3_do_mount+0xab9/0xbe0 [cifs] [Thu Feb 10 12:59:07 2022] smb3_get_tree+0x1a0/0x2e0 [cifs] [Thu Feb 10 12:59:07 2022] vfs_get_tree+0x52/0x140 [Thu Feb 10 12:59:07 2022] path_mount+0x635/0x10c0 [Thu Feb 10 12:59:07 2022] __x64_sys_mount+0x1bf/0x210 [Thu Feb 10 12:59:07 2022] do_syscall_64+0x5c/0xc0 [Thu Feb 10 12:59:07 2022] entry_SYSCALL_64_after_hwframe+0x44/0xae
CVE-2022-50678 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix invalid address access when enabling SCAN log level The variable i is changed when setting random MAC address and causes invalid address access when printing the value of pi->reqs[i]->reqid. We replace reqs index with ri to fix the issue. [ 136.726473] Unable to handle kernel access to user memory outside uaccess routines at virtual address 0000000000000000 [ 136.737365] Mem abort info: [ 136.740172] ESR = 0x96000004 [ 136.743359] Exception class = DABT (current EL), IL = 32 bits [ 136.749294] SET = 0, FnV = 0 [ 136.752481] EA = 0, S1PTW = 0 [ 136.755635] Data abort info: [ 136.758514] ISV = 0, ISS = 0x00000004 [ 136.762487] CM = 0, WnR = 0 [ 136.765522] user pgtable: 4k pages, 48-bit VAs, pgdp = 000000005c4e2577 [ 136.772265] [0000000000000000] pgd=0000000000000000 [ 136.777160] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 136.782732] Modules linked in: brcmfmac(O) brcmutil(O) cfg80211(O) compat(O) [ 136.789788] Process wificond (pid: 3175, stack limit = 0x00000000053048fb) [ 136.796664] CPU: 3 PID: 3175 Comm: wificond Tainted: G O 4.19.42-00001-g531a5f5 #1 [ 136.805532] Hardware name: Freescale i.MX8MQ EVK (DT) [ 136.810584] pstate: 60400005 (nZCv daif +PAN -UAO) [ 136.815429] pc : brcmf_pno_config_sched_scans+0x6cc/0xa80 [brcmfmac] [ 136.821811] lr : brcmf_pno_config_sched_scans+0x67c/0xa80 [brcmfmac] [ 136.828162] sp : ffff00000e9a3880 [ 136.831475] x29: ffff00000e9a3890 x28: ffff800020543400 [ 136.836786] x27: ffff8000b1008880 x26: ffff0000012bf6a0 [ 136.842098] x25: ffff80002054345c x24: ffff800088d22400 [ 136.847409] x23: ffff0000012bf638 x22: ffff0000012bf6d8 [ 136.852721] x21: ffff8000aced8fc0 x20: ffff8000ac164400 [ 136.858032] x19: ffff00000e9a3946 x18: 0000000000000000 [ 136.863343] x17: 0000000000000000 x16: 0000000000000000 [ 136.868655] x15: ffff0000093f3b37 x14: 0000000000000050 [ 136.873966] x13: 0000000000003135 x12: 0000000000000000 [ 136.879277] x11: 0000000000000000 x10: ffff000009a61888 [ 136.884589] x9 : 000000000000000f x8 : 0000000000000008 [ 136.889900] x7 : 303a32303d726464 x6 : ffff00000a1f957d [ 136.895211] x5 : 0000000000000000 x4 : ffff00000e9a3942 [ 136.900523] x3 : 0000000000000000 x2 : ffff0000012cead8 [ 136.905834] x1 : ffff0000012bf6d8 x0 : 0000000000000000 [ 136.911146] Call trace: [ 136.913623] brcmf_pno_config_sched_scans+0x6cc/0xa80 [brcmfmac] [ 136.919658] brcmf_pno_start_sched_scan+0xa4/0x118 [brcmfmac] [ 136.925430] brcmf_cfg80211_sched_scan_start+0x80/0xe0 [brcmfmac] [ 136.931636] nl80211_start_sched_scan+0x140/0x308 [cfg80211] [ 136.937298] genl_rcv_msg+0x358/0x3f4 [ 136.940960] netlink_rcv_skb+0xb4/0x118 [ 136.944795] genl_rcv+0x34/0x48 [ 136.947935] netlink_unicast+0x264/0x300 [ 136.951856] netlink_sendmsg+0x2e4/0x33c [ 136.955781] __sys_sendto+0x120/0x19c
CVE-2022-50673 1 Linux 1 Linux Kernel 2025-12-23 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: fix use-after-free in ext4_orphan_cleanup I caught a issue as follows: ================================================================== BUG: KASAN: use-after-free in __list_add_valid+0x28/0x1a0 Read of size 8 at addr ffff88814b13f378 by task mount/710 CPU: 1 PID: 710 Comm: mount Not tainted 6.1.0-rc3-next #370 Call Trace: <TASK> dump_stack_lvl+0x73/0x9f print_report+0x25d/0x759 kasan_report+0xc0/0x120 __asan_load8+0x99/0x140 __list_add_valid+0x28/0x1a0 ext4_orphan_cleanup+0x564/0x9d0 [ext4] __ext4_fill_super+0x48e2/0x5300 [ext4] ext4_fill_super+0x19f/0x3a0 [ext4] get_tree_bdev+0x27b/0x450 ext4_get_tree+0x19/0x30 [ext4] vfs_get_tree+0x49/0x150 path_mount+0xaae/0x1350 do_mount+0xe2/0x110 __x64_sys_mount+0xf0/0x190 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> [...] ================================================================== Above issue may happen as follows: ------------------------------------- ext4_fill_super ext4_orphan_cleanup --- loop1: assume last_orphan is 12 --- list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan) ext4_truncate --> return 0 ext4_inode_attach_jinode --> return -ENOMEM iput(inode) --> free inode<12> --- loop2: last_orphan is still 12 --- list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); // use inode<12> and trigger UAF To solve this issue, we need to propagate the return value of ext4_inode_attach_jinode() appropriately.
CVE-2022-50664 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: fix leak of memory fw
CVE-2022-50649 1 Linux 1 Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: power: supply: adp5061: fix out-of-bounds read in adp5061_get_chg_type() ADP5061_CHG_STATUS_1_CHG_STATUS is masked with 0x07, which means a length of 8, but adp5061_chg_type array size is 4, may end up reading 4 elements beyond the end of the adp5061_chg_type[] array.