| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: parse_dfs_referrals: prevent oob on malformed input
Malicious SMB server can send invalid reply to FSCTL_DFS_GET_REFERRALS
- reply smaller than sizeof(struct get_dfs_referral_rsp)
- reply with number of referrals smaller than NumberOfReferrals in the
header
Processing of such replies will cause oob.
Return -EINVAL error on such replies to prevent oob-s. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds read in hfsplus_strcasecmp()
The hfsplus_strcasecmp() logic can trigger the issue:
[ 117.317703][ T9855] ==================================================================
[ 117.318353][ T9855] BUG: KASAN: slab-out-of-bounds in hfsplus_strcasecmp+0x1bc/0x490
[ 117.318991][ T9855] Read of size 2 at addr ffff88802160f40c by task repro/9855
[ 117.319577][ T9855]
[ 117.319773][ T9855] CPU: 0 UID: 0 PID: 9855 Comm: repro Not tainted 6.17.0-rc6 #33 PREEMPT(full)
[ 117.319780][ T9855] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 117.319783][ T9855] Call Trace:
[ 117.319785][ T9855] <TASK>
[ 117.319788][ T9855] dump_stack_lvl+0x1c1/0x2a0
[ 117.319795][ T9855] ? __virt_addr_valid+0x1c8/0x5c0
[ 117.319803][ T9855] ? __pfx_dump_stack_lvl+0x10/0x10
[ 117.319808][ T9855] ? rcu_is_watching+0x15/0xb0
[ 117.319816][ T9855] ? lock_release+0x4b/0x3e0
[ 117.319821][ T9855] ? __kasan_check_byte+0x12/0x40
[ 117.319828][ T9855] ? __virt_addr_valid+0x1c8/0x5c0
[ 117.319835][ T9855] ? __virt_addr_valid+0x4a5/0x5c0
[ 117.319842][ T9855] print_report+0x17e/0x7e0
[ 117.319848][ T9855] ? __virt_addr_valid+0x1c8/0x5c0
[ 117.319855][ T9855] ? __virt_addr_valid+0x4a5/0x5c0
[ 117.319862][ T9855] ? __phys_addr+0xd3/0x180
[ 117.319869][ T9855] ? hfsplus_strcasecmp+0x1bc/0x490
[ 117.319876][ T9855] kasan_report+0x147/0x180
[ 117.319882][ T9855] ? hfsplus_strcasecmp+0x1bc/0x490
[ 117.319891][ T9855] hfsplus_strcasecmp+0x1bc/0x490
[ 117.319900][ T9855] ? __pfx_hfsplus_cat_case_cmp_key+0x10/0x10
[ 117.319906][ T9855] hfs_find_rec_by_key+0xa9/0x1e0
[ 117.319913][ T9855] __hfsplus_brec_find+0x18e/0x470
[ 117.319920][ T9855] ? __pfx_hfsplus_bnode_find+0x10/0x10
[ 117.319926][ T9855] ? __pfx_hfs_find_rec_by_key+0x10/0x10
[ 117.319933][ T9855] ? __pfx___hfsplus_brec_find+0x10/0x10
[ 117.319942][ T9855] hfsplus_brec_find+0x28f/0x510
[ 117.319949][ T9855] ? __pfx_hfs_find_rec_by_key+0x10/0x10
[ 117.319956][ T9855] ? __pfx_hfsplus_brec_find+0x10/0x10
[ 117.319963][ T9855] ? __kmalloc_noprof+0x2a9/0x510
[ 117.319969][ T9855] ? hfsplus_find_init+0x8c/0x1d0
[ 117.319976][ T9855] hfsplus_brec_read+0x2b/0x120
[ 117.319983][ T9855] hfsplus_lookup+0x2aa/0x890
[ 117.319990][ T9855] ? __pfx_hfsplus_lookup+0x10/0x10
[ 117.320003][ T9855] ? d_alloc_parallel+0x2f0/0x15e0
[ 117.320008][ T9855] ? __lock_acquire+0xaec/0xd80
[ 117.320013][ T9855] ? __pfx_d_alloc_parallel+0x10/0x10
[ 117.320019][ T9855] ? __raw_spin_lock_init+0x45/0x100
[ 117.320026][ T9855] ? __init_waitqueue_head+0xa9/0x150
[ 117.320034][ T9855] __lookup_slow+0x297/0x3d0
[ 117.320039][ T9855] ? __pfx___lookup_slow+0x10/0x10
[ 117.320045][ T9855] ? down_read+0x1ad/0x2e0
[ 117.320055][ T9855] lookup_slow+0x53/0x70
[ 117.320065][ T9855] walk_component+0x2f0/0x430
[ 117.320073][ T9855] path_lookupat+0x169/0x440
[ 117.320081][ T9855] filename_lookup+0x212/0x590
[ 117.320089][ T9855] ? __pfx_filename_lookup+0x10/0x10
[ 117.320098][ T9855] ? strncpy_from_user+0x150/0x290
[ 117.320105][ T9855] ? getname_flags+0x1e5/0x540
[ 117.320112][ T9855] user_path_at+0x3a/0x60
[ 117.320117][ T9855] __x64_sys_umount+0xee/0x160
[ 117.320123][ T9855] ? __pfx___x64_sys_umount+0x10/0x10
[ 117.320129][ T9855] ? do_syscall_64+0xb7/0x3a0
[ 117.320135][ T9855] ? entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 117.320141][ T9855] ? entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 117.320145][ T9855] do_syscall_64+0xf3/0x3a0
[ 117.320150][ T9855] ? exc_page_fault+0x9f/0xf0
[ 117.320154][ T9855] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 117.320158][ T9855] RIP: 0033:0x7f7dd7908b07
[ 117.320163][ T9855] Code: 23 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 31 f6 e9 09 00 00 00 66 0f 1f 84 00 00 08
[ 117.320167][ T9855] RSP: 002b:00007ffd5ebd9698 EFLAGS: 00000202
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_qfq: Fix null-deref in agg_dequeue
To prevent a potential crash in agg_dequeue (net/sched/sch_qfq.c)
when cl->qdisc->ops->peek(cl->qdisc) returns NULL, we check the return
value before using it, similar to the existing approach in sch_hfsc.c.
To avoid code duplication, the following changes are made:
1. Changed qdisc_warn_nonwc(include/net/pkt_sched.h) into a static
inline function.
2. Moved qdisc_peek_len from net/sched/sch_hfsc.c to
include/net/pkt_sched.h so that sch_qfq can reuse it.
3. Applied qdisc_peek_len in agg_dequeue to avoid crashing. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: check the return value of pinmux_ops::get_function_name()
While the API contract in docs doesn't specify it explicitly, the
generic implementation of the get_function_name() callback from struct
pinmux_ops - pinmux_generic_get_function_name() - can fail and return
NULL. This is already checked in pinmux_check_ops() so add a similar
check in pinmux_func_name_to_selector() instead of passing the returned
pointer right down to strcmp() where the NULL can get dereferenced. This
is normal operation when adding new pinfunctions. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: cadence-quadspi: Implement refcount to handle unbind during busy
driver support indirect read and indirect write operation with
assumption no force device removal(unbind) operation. However
force device removal(removal) is still available to root superuser.
Unbinding driver during operation causes kernel crash. This changes
ensure driver able to handle such operation for indirect read and
indirect write by implementing refcount to track attached devices
to the controller and gracefully wait and until attached devices
remove operation completed before proceed with removal operation. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: target_core_configfs: Add length check to avoid buffer overflow
A buffer overflow arises from the usage of snprintf to write into the
buffer "buf" in target_lu_gp_members_show function located in
/drivers/target/target_core_configfs.c. This buffer is allocated with
size LU_GROUP_NAME_BUF (256 bytes).
snprintf(...) formats multiple strings into buf with the HBA name
(hba->hba_group.cg_item), a slash character, a devicename (dev->
dev_group.cg_item) and a newline character, the total formatted string
length may exceed the buffer size of 256 bytes.
Since snprintf() returns the total number of bytes that would have been
written (the length of %s/%sn ), this value may exceed the buffer length
(256 bytes) passed to memcpy(), this will ultimately cause function
memcpy reporting a buffer overflow error.
An additional check of the return value of snprintf() can avoid this
buffer overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Check the helper function is valid in get_helper_proto
kernel test robot reported verifier bug [1] where the helper func
pointer could be NULL due to disabled config option.
As Alexei suggested we could check on that in get_helper_proto
directly. Marking tail_call helper func with BPF_PTR_POISON,
because it is unused by design.
[1] https://lore.kernel.org/oe-lkp/[email protected] |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/s390: Make attach succeed when the device was surprise removed
When a PCI device is removed with surprise hotplug, there may still be
attempts to attach the device to the default domain as part of tear down
via (__iommu_release_dma_ownership()), or because the removal happens
during probe (__iommu_probe_device()). In both cases zpci_register_ioat()
fails with a cc value indicating that the device handle is invalid. This
is because the device is no longer part of the instance as far as the
hypervisor is concerned.
Currently this leads to an error return and s390_iommu_attach_device()
fails. This triggers the WARN_ON() in __iommu_group_set_domain_nofail()
because attaching to the default domain must never fail.
With the device fenced by the hypervisor no DMAs to or from memory are
possible and the IOMMU translations have no effect. Proceed as if the
registration was successful and let the hotplug event handling clean up
the device.
This is similar to how devices in the error state are handled since
commit 59bbf596791b ("iommu/s390: Make attach succeed even if the device
is in error state") except that for removal the domain will not be
registered later. This approach was also previously discussed at the
link.
Handle both cases, error state and removal, in a helper which checks if
the error needs to be propagated or ignored. Avoid magic number
condition codes by using the pre-existing, but never used, defines for
PCI load/store condition codes and rename them to reflect that they
apply to all PCI instructions. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: avoid buffer overflow in WID string configuration
Fix the following copy overflow warning identified by Smatch checker.
drivers/net/wireless/microchip/wilc1000/wlan_cfg.c:184 wilc_wlan_parse_response_frame()
error: '__memcpy()' 'cfg->s[i]->str' copy overflow (512 vs 65537)
This patch introduces size check before accessing the memory buffer.
The checks are base on the WID type of received data from the firmware.
For WID string configuration, the size limit is determined by individual
element size in 'struct wilc_cfg_str_vals' that is maintained in 'len' field
of 'struct wilc_cfg_str'. |
| In the Linux kernel, the following vulnerability has been resolved:
dm-stripe: fix a possible integer overflow
There's a possible integer overflow in stripe_io_hints if we have too
large chunk size. Test if the overflow happened, and if it did, don't set
limits->io_min and limits->io_opt; |
| In the Linux kernel, the following vulnerability has been resolved:
fs: writeback: fix use-after-free in __mark_inode_dirty()
An use-after-free issue occurred when __mark_inode_dirty() get the
bdi_writeback that was in the progress of switching.
CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1
......
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __mark_inode_dirty+0x124/0x418
lr : __mark_inode_dirty+0x118/0x418
sp : ffffffc08c9dbbc0
........
Call trace:
__mark_inode_dirty+0x124/0x418
generic_update_time+0x4c/0x60
file_modified+0xcc/0xd0
ext4_buffered_write_iter+0x58/0x124
ext4_file_write_iter+0x54/0x704
vfs_write+0x1c0/0x308
ksys_write+0x74/0x10c
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x40/0xe4
el0t_64_sync_handler+0x120/0x12c
el0t_64_sync+0x194/0x198
Root cause is:
systemd-random-seed kworker
----------------------------------------------------------------------
___mark_inode_dirty inode_switch_wbs_work_fn
spin_lock(&inode->i_lock);
inode_attach_wb
locked_inode_to_wb_and_lock_list
get inode->i_wb
spin_unlock(&inode->i_lock);
spin_lock(&wb->list_lock)
spin_lock(&inode->i_lock)
inode_io_list_move_locked
spin_unlock(&wb->list_lock)
spin_unlock(&inode->i_lock)
spin_lock(&old_wb->list_lock)
inode_do_switch_wbs
spin_lock(&inode->i_lock)
inode->i_wb = new_wb
spin_unlock(&inode->i_lock)
spin_unlock(&old_wb->list_lock)
wb_put_many(old_wb, nr_switched)
cgwb_release
old wb released
wb_wakeup_delayed() accesses wb,
then trigger the use-after-free
issue
Fix this race condition by holding inode spinlock until
wb_wakeup_delayed() finished. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: Remove WARN_ON for device endpoint command timeouts
This commit addresses a rarely observed endpoint command timeout
which causes kernel panic due to warn when 'panic_on_warn' is enabled
and unnecessary call trace prints when 'panic_on_warn' is disabled.
It is seen during fast software-controlled connect/disconnect testcases.
The following is one such endpoint command timeout that we observed:
1. Connect
=======
->dwc3_thread_interrupt
->dwc3_ep0_interrupt
->configfs_composite_setup
->composite_setup
->usb_ep_queue
->dwc3_gadget_ep0_queue
->__dwc3_gadget_ep0_queue
->__dwc3_ep0_do_control_data
->dwc3_send_gadget_ep_cmd
2. Disconnect
==========
->dwc3_thread_interrupt
->dwc3_gadget_disconnect_interrupt
->dwc3_ep0_reset_state
->dwc3_ep0_end_control_data
->dwc3_send_gadget_ep_cmd
In the issue scenario, in Exynos platforms, we observed that control
transfers for the previous connect have not yet been completed and end
transfer command sent as a part of the disconnect sequence and
processing of USB_ENDPOINT_HALT feature request from the host timeout.
This maybe an expected scenario since the controller is processing EP
commands sent as a part of the previous connect. It maybe better to
remove WARN_ON in all places where device endpoint commands are sent to
avoid unnecessary kernel panic due to warn. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: Duplicate SPI Handling
The issue originates when Strongswan initiates an XFRM_MSG_ALLOCSPI
Netlink message, which triggers the kernel function xfrm_alloc_spi().
This function is expected to ensure uniqueness of the Security Parameter
Index (SPI) for inbound Security Associations (SAs). However, it can
return success even when the requested SPI is already in use, leading
to duplicate SPIs assigned to multiple inbound SAs, differentiated
only by their destination addresses.
This behavior causes inconsistencies during SPI lookups for inbound packets.
Since the lookup may return an arbitrary SA among those with the same SPI,
packet processing can fail, resulting in packet drops.
According to RFC 4301 section 4.4.2 , for inbound processing a unicast SA
is uniquely identified by the SPI and optionally protocol.
Reproducing the Issue Reliably:
To consistently reproduce the problem, restrict the available SPI range in
charon.conf : spi_min = 0x10000000 spi_max = 0x10000002
This limits the system to only 2 usable SPI values.
Next, create more than 2 Child SA. each using unique pair of src/dst address.
As soon as the 3rd Child SA is initiated, it will be assigned a duplicate
SPI, since the SPI pool is already exhausted.
With a narrow SPI range, the issue is consistently reproducible.
With a broader/default range, it becomes rare and unpredictable.
Current implementation:
xfrm_spi_hash() lookup function computes hash using daddr, proto, and family.
So if two SAs have the same SPI but different destination addresses, then
they will:
a. Hash into different buckets
b. Be stored in different linked lists (byspi + h)
c. Not be seen in the same hlist_for_each_entry_rcu() iteration.
As a result, the lookup will result in NULL and kernel allows that Duplicate SPI
Proposed Change:
xfrm_state_lookup_spi_proto() does a truly global search - across all states,
regardless of hash bucket and matches SPI and proto. |
| In the Linux kernel, the following vulnerability has been resolved:
ARM: tegra: Use I/O memcpy to write to IRAM
Kasan crashes the kernel trying to check boundaries when using the
normal memcpy. |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Drop WARN_ON_ONCE() from flush_cache_vmap
I have observed warning to occassionally trigger. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: APEI: send SIGBUS to current task if synchronous memory error not recovered
If a synchronous error is detected as a result of user-space process
triggering a 2-bit uncorrected error, the CPU will take a synchronous
error exception such as Synchronous External Abort (SEA) on Arm64. The
kernel will queue a memory_failure() work which poisons the related
page, unmaps the page, and then sends a SIGBUS to the process, so that
a system wide panic can be avoided.
However, no memory_failure() work will be queued when abnormal
synchronous errors occur. These errors can include situations like
invalid PA, unexpected severity, no memory failure config support,
invalid GUID section, etc. In such a case, the user-space process will
trigger SEA again. This loop can potentially exceed the platform
firmware threshold or even trigger a kernel hard lockup, leading to a
system reboot.
Fix it by performing a force kill if no memory_failure() work is queued
for synchronous errors.
[ rjw: Changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
usb: core: config: Prevent OOB read in SS endpoint companion parsing
usb_parse_ss_endpoint_companion() checks descriptor type before length,
enabling a potentially odd read outside of the buffer size.
Fix this up by checking the size first before looking at any of the
fields in the descriptor. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Forget ranges when refining tnum after JSET
Syzbot reported a kernel warning due to a range invariant violation on
the following BPF program.
0: call bpf_get_netns_cookie
1: if r0 == 0 goto <exit>
2: if r0 & Oxffffffff goto <exit>
The issue is on the path where we fall through both jumps.
That path is unreachable at runtime: after insn 1, we know r0 != 0, but
with the sign extension on the jset, we would only fallthrough insn 2
if r0 == 0. Unfortunately, is_branch_taken() isn't currently able to
figure this out, so the verifier walks all branches. The verifier then
refines the register bounds using the second condition and we end
up with inconsistent bounds on this unreachable path:
1: if r0 == 0 goto <exit>
r0: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0xffffffffffffffff)
2: if r0 & 0xffffffff goto <exit>
r0 before reg_bounds_sync: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0)
r0 after reg_bounds_sync: u64=[0x1, 0] var_off=(0, 0)
Improving the range refinement for JSET to cover all cases is tricky. We
also don't expect many users to rely on JSET given LLVM doesn't generate
those instructions. So instead of improving the range refinement for
JSETs, Eduard suggested we forget the ranges whenever we're narrowing
tnums after a JSET. This patch implements that approach. |
| In the Linux kernel, the following vulnerability has been resolved:
rcutorture: Fix rcutorture_one_extend_check() splat in RT kernels
For built with CONFIG_PREEMPT_RT=y kernels, running rcutorture
tests resulted in the following splat:
[ 68.797425] rcutorture_one_extend_check during change: Current 0x1 To add 0x1 To remove 0x0 preempt_count() 0x0
[ 68.797533] WARNING: CPU: 2 PID: 512 at kernel/rcu/rcutorture.c:1993 rcutorture_one_extend_check+0x419/0x560 [rcutorture]
[ 68.797601] Call Trace:
[ 68.797602] <TASK>
[ 68.797619] ? lockdep_softirqs_off+0xa5/0x160
[ 68.797631] rcutorture_one_extend+0x18e/0xcc0 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797646] ? local_clock+0x19/0x40
[ 68.797659] rcu_torture_one_read+0xf0/0x280 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797678] ? __pfx_rcu_torture_one_read+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797804] ? __pfx_rcu_torture_timer+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797815] rcu-torture: rcu_torture_reader task started
[ 68.797824] rcu-torture: Creating rcu_torture_reader task
[ 68.797824] rcu_torture_reader+0x238/0x580 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797836] ? kvm_sched_clock_read+0x15/0x30
Disable BH does not change the SOFTIRQ corresponding bits in
preempt_count() for RT kernels, this commit therefore use
softirq_count() to check the if BH is disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
rcu: Fix rcu_read_unlock() deadloop due to IRQ work
During rcu_read_unlock_special(), if this happens during irq_exit(), we
can lockup if an IPI is issued. This is because the IPI itself triggers
the irq_exit() path causing a recursive lock up.
This is precisely what Xiongfeng found when invoking a BPF program on
the trace_tick_stop() tracepoint As shown in the trace below. Fix by
managing the irq_work state correctly.
irq_exit()
__irq_exit_rcu()
/* in_hardirq() returns false after this */
preempt_count_sub(HARDIRQ_OFFSET)
tick_irq_exit()
tick_nohz_irq_exit()
tick_nohz_stop_sched_tick()
trace_tick_stop() /* a bpf prog is hooked on this trace point */
__bpf_trace_tick_stop()
bpf_trace_run2()
rcu_read_unlock_special()
/* will send a IPI to itself */
irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
A simple reproducer can also be obtained by doing the following in
tick_irq_exit(). It will hang on boot without the patch:
static inline void tick_irq_exit(void)
{
+ rcu_read_lock();
+ WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
+ rcu_read_unlock();
+
[neeraj: Apply Frederic's suggested fix for PREEMPT_RT] |