| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The kssl_keytab_is_available function in ssl/kssl.c in OpenSSL before 0.9.8n, when Kerberos is enabled but Kerberos configuration files cannot be opened, does not check a certain return value, which allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via SSL cipher negotiation, as demonstrated by a chroot installation of Dovecot or stunnel without Kerberos configuration files inside the chroot. |
| The ssl3_get_record function in ssl/s3_pkt.c in OpenSSL 0.9.8f through 0.9.8m allows remote attackers to cause a denial of service (crash) via a malformed record in a TLS connection that triggers a NULL pointer dereference, related to the minor version number. NOTE: some of these details are obtained from third party information. |
| OpenSSL before 0.9.8l, and 0.9.8m through 1.x, does not properly restrict client-initiated renegotiation within the SSL and TLS protocols, which might make it easier for remote attackers to cause a denial of service (CPU consumption) by performing many renegotiations within a single connection, a different vulnerability than CVE-2011-5094. NOTE: it can also be argued that it is the responsibility of server deployments, not a security library, to prevent or limit renegotiation when it is inappropriate within a specific environment |
| RSA verification recovery in the EVP_PKEY_verify_recover function in OpenSSL 1.x before 1.0.0a, as used by pkeyutl and possibly other applications, returns uninitialized memory upon failure, which might allow context-dependent attackers to bypass intended key requirements or obtain sensitive information via unspecified vectors. NOTE: some of these details are obtained from third party information. |
| The implementation of Cryptographic Message Syntax (CMS) and PKCS #7 in OpenSSL before 0.9.8u and 1.x before 1.0.0h does not properly restrict certain oracle behavior, which makes it easier for context-dependent attackers to decrypt data via a Million Message Attack (MMA) adaptive chosen ciphertext attack. |
| OpenSSL before 0.9.8y, 1.0.0 before 1.0.0k, and 1.0.1 before 1.0.1d does not properly perform signature verification for OCSP responses, which allows remote OCSP servers to cause a denial of service (NULL pointer dereference and application crash) via an invalid key. |
| The ssl_get_algorithm2 function in ssl/s3_lib.c in OpenSSL before 1.0.2 obtains a certain version number from an incorrect data structure, which allows remote attackers to cause a denial of service (daemon crash) via crafted traffic from a TLS 1.2 client. |
| crypto/evp/e_aes_cbc_hmac_sha1.c in the AES-NI functionality in the TLS 1.1 and 1.2 implementations in OpenSSL 1.0.1 before 1.0.1d allows remote attackers to cause a denial of service (application crash) via crafted CBC data. |
| The elliptic curve cryptography (ECC) subsystem in OpenSSL 1.0.0d and earlier, when the Elliptic Curve Digital Signature Algorithm (ECDSA) is used for the ECDHE_ECDSA cipher suite, does not properly implement curves over binary fields, which makes it easier for context-dependent attackers to determine private keys via a timing attack and a lattice calculation. |
| The ephemeral ECDH ciphersuite functionality in OpenSSL 0.9.8 through 0.9.8r and 1.0.x before 1.0.0e does not ensure thread safety during processing of handshake messages from clients, which allows remote attackers to cause a denial of service (daemon crash) via out-of-order messages that violate the TLS protocol. |
| The Diffie-Hellman key-exchange implementation in OpenSSL 0.9.8, when FIPS mode is enabled, does not properly validate a public parameter, which makes it easier for man-in-the-middle attackers to obtain the shared secret key by modifying network traffic, a related issue to CVE-2011-1923. |
| crypto/bn/bn_nist.c in OpenSSL before 0.9.8h on 32-bit platforms, as used in stunnel and other products, in certain circumstances involving ECDH or ECDHE cipher suites, uses an incorrect modular reduction algorithm in its implementation of the P-256 and P-384 NIST elliptic curves, which allows remote attackers to obtain the private key of a TLS server via multiple handshake attempts. |
| The GOST ENGINE in OpenSSL before 1.0.0f does not properly handle invalid parameters for the GOST block cipher, which allows remote attackers to cause a denial of service (daemon crash) via crafted data from a TLS client. |
| The TLS protocol 1.1 and 1.2 and the DTLS protocol 1.0 and 1.2, as used in OpenSSL, OpenJDK, PolarSSL, and other products, do not properly consider timing side-channel attacks on a MAC check requirement during the processing of malformed CBC padding, which allows remote attackers to conduct distinguishing attacks and plaintext-recovery attacks via statistical analysis of timing data for crafted packets, aka the "Lucky Thirteen" issue. |
| Multiple race conditions in ssl/t1_lib.c in OpenSSL 0.9.8f through 0.9.8o, 1.0.0, and 1.0.0a, when multi-threading and internal caching are enabled on a TLS server, might allow remote attackers to execute arbitrary code via client data that triggers a heap-based buffer overflow, related to (1) the TLS server name extension and (2) elliptic curve cryptography. |
| Integer underflow in OpenSSL before 0.9.8x, 1.0.0 before 1.0.0j, and 1.0.1 before 1.0.1c, when TLS 1.1, TLS 1.2, or DTLS is used with CBC encryption, allows remote attackers to cause a denial of service (buffer over-read) or possibly have unspecified other impact via a crafted TLS packet that is not properly handled during a certain explicit IV calculation. |
| ssl/t1_lib.c in OpenSSL 0.9.8h through 0.9.8q and 1.0.0 through 1.0.0c allows remote attackers to cause a denial of service (crash), and possibly obtain sensitive information in applications that use OpenSSL, via a malformed ClientHello handshake message that triggers an out-of-bounds memory access, aka "OCSP stapling vulnerability." |
| OpenSSL before 0.9.8s and 1.x before 1.0.0f, when RFC 3779 support is enabled, allows remote attackers to cause a denial of service (assertion failure) via an X.509 certificate containing certificate-extension data associated with (1) IP address blocks or (2) Autonomous System (AS) identifiers. |
| The Server Gated Cryptography (SGC) implementation in OpenSSL before 0.9.8s and 1.x before 1.0.0f does not properly handle handshake restarts, which allows remote attackers to cause a denial of service (CPU consumption) via unspecified vectors. |
| The asn1_d2i_read_bio function in crypto/asn1/a_d2i_fp.c in OpenSSL before 0.9.8v, 1.0.0 before 1.0.0i, and 1.0.1 before 1.0.1a does not properly interpret integer data, which allows remote attackers to conduct buffer overflow attacks, and cause a denial of service (memory corruption) or possibly have unspecified other impact, via crafted DER data, as demonstrated by an X.509 certificate or an RSA public key. |