Search Results (328250 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53149 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid deadlock in fs reclaim with page writeback Ext4 has a filesystem wide lock protecting ext4_writepages() calls to avoid races with switching of journalled data flag or inode format. This lock can however cause a deadlock like: CPU0 CPU1 ext4_writepages() percpu_down_read(sbi->s_writepages_rwsem); ext4_change_inode_journal_flag() percpu_down_write(sbi->s_writepages_rwsem); - blocks, all readers block from now on ext4_do_writepages() ext4_init_io_end() kmem_cache_zalloc(io_end_cachep, GFP_KERNEL) fs_reclaim frees dentry... dentry_unlink_inode() iput() - last ref => iput_final() - inode dirty => write_inode_now()... ext4_writepages() tries to acquire sbi->s_writepages_rwsem and blocks forever Make sure we cannot recurse into filesystem reclaim from writeback code to avoid the deadlock.
CVE-2023-53147 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: xfrm: add NULL check in xfrm_update_ae_params Normally, x->replay_esn and x->preplay_esn should be allocated at xfrm_alloc_replay_state_esn(...) in xfrm_state_construct(...), hence the xfrm_update_ae_params(...) is okay to update them. However, the current implementation of xfrm_new_ae(...) allows a malicious user to directly dereference a NULL pointer and crash the kernel like below. BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 8253067 P4D 8253067 PUD 8e0e067 PMD 0 Oops: 0002 [#1] PREEMPT SMP KASAN NOPTI CPU: 0 PID: 98 Comm: poc.npd Not tainted 6.4.0-rc7-00072-gdad9774deaf1 #8 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.o4 RIP: 0010:memcpy_orig+0xad/0x140 Code: e8 4c 89 5f e0 48 8d 7f e0 73 d2 83 c2 20 48 29 d6 48 29 d7 83 fa 10 72 34 4c 8b 06 4c 8b 4e 08 c RSP: 0018:ffff888008f57658 EFLAGS: 00000202 RAX: 0000000000000000 RBX: ffff888008bd0000 RCX: ffffffff8238e571 RDX: 0000000000000018 RSI: ffff888007f64844 RDI: 0000000000000000 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff888008f57818 R13: ffff888007f64aa4 R14: 0000000000000000 R15: 0000000000000000 FS: 00000000014013c0(0000) GS:ffff88806d600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000000054d8000 CR4: 00000000000006f0 Call Trace: <TASK> ? __die+0x1f/0x70 ? page_fault_oops+0x1e8/0x500 ? __pfx_is_prefetch.constprop.0+0x10/0x10 ? __pfx_page_fault_oops+0x10/0x10 ? _raw_spin_unlock_irqrestore+0x11/0x40 ? fixup_exception+0x36/0x460 ? _raw_spin_unlock_irqrestore+0x11/0x40 ? exc_page_fault+0x5e/0xc0 ? asm_exc_page_fault+0x26/0x30 ? xfrm_update_ae_params+0xd1/0x260 ? memcpy_orig+0xad/0x140 ? __pfx__raw_spin_lock_bh+0x10/0x10 xfrm_update_ae_params+0xe7/0x260 xfrm_new_ae+0x298/0x4e0 ? __pfx_xfrm_new_ae+0x10/0x10 ? __pfx_xfrm_new_ae+0x10/0x10 xfrm_user_rcv_msg+0x25a/0x410 ? __pfx_xfrm_user_rcv_msg+0x10/0x10 ? __alloc_skb+0xcf/0x210 ? stack_trace_save+0x90/0xd0 ? filter_irq_stacks+0x1c/0x70 ? __stack_depot_save+0x39/0x4e0 ? __kasan_slab_free+0x10a/0x190 ? kmem_cache_free+0x9c/0x340 ? netlink_recvmsg+0x23c/0x660 ? sock_recvmsg+0xeb/0xf0 ? __sys_recvfrom+0x13c/0x1f0 ? __x64_sys_recvfrom+0x71/0x90 ? do_syscall_64+0x3f/0x90 ? entry_SYSCALL_64_after_hwframe+0x72/0xdc ? copyout+0x3e/0x50 netlink_rcv_skb+0xd6/0x210 ? __pfx_xfrm_user_rcv_msg+0x10/0x10 ? __pfx_netlink_rcv_skb+0x10/0x10 ? __pfx_sock_has_perm+0x10/0x10 ? mutex_lock+0x8d/0xe0 ? __pfx_mutex_lock+0x10/0x10 xfrm_netlink_rcv+0x44/0x50 netlink_unicast+0x36f/0x4c0 ? __pfx_netlink_unicast+0x10/0x10 ? netlink_recvmsg+0x500/0x660 netlink_sendmsg+0x3b7/0x700 This Null-ptr-deref bug is assigned CVE-2023-3772. And this commit adds additional NULL check in xfrm_update_ae_params to fix the NPD.
CVE-2022-50260 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm: Make .remove and .shutdown HW shutdown consistent Drivers' .remove and .shutdown callbacks are executed on different code paths. The former is called when a device is removed from the bus, while the latter is called at system shutdown time to quiesce the device. This means that some overlap exists between the two, because both have to take care of properly shutting down the hardware. But currently the logic used in these two callbacks isn't consistent in msm drivers, which could lead to kernel panic. For example, on .remove the component is deleted and its .unbind callback leads to the hardware being shutdown but only if the DRM device has been marked as registered. That check doesn't exist in the .shutdown logic and this can lead to the driver calling drm_atomic_helper_shutdown() for a DRM device that hasn't been properly initialized. A situation like this can happen if drivers for expected sub-devices fail to probe, since the .bind callback will never be executed. If that is the case, drm_atomic_helper_shutdown() will attempt to take mutexes that are only initialized if drm_mode_config_init() is called during a device bind. This bug was attempted to be fixed in commit 623f279c7781 ("drm/msm: fix shutdown hook in case GPU components failed to bind"), but unfortunately it still happens in some cases as the one mentioned above, i.e: systemd-shutdown[1]: Powering off. kvm: exiting hardware virtualization platform wifi-firmware.0: Removing from iommu group 12 platform video-firmware.0: Removing from iommu group 10 ------------[ cut here ]------------ WARNING: CPU: 6 PID: 1 at drivers/gpu/drm/drm_modeset_lock.c:317 drm_modeset_lock_all_ctx+0x3c4/0x3d0 ... Hardware name: Google CoachZ (rev3+) (DT) pstate: a0400009 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : drm_modeset_lock_all_ctx+0x3c4/0x3d0 lr : drm_modeset_lock_all_ctx+0x48/0x3d0 sp : ffff80000805bb80 x29: ffff80000805bb80 x28: ffff327c00128000 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000001 x24: ffffc95d820ec030 x23: ffff327c00bbd090 x22: ffffc95d8215eca0 x21: ffff327c039c5800 x20: ffff327c039c5988 x19: ffff80000805bbe8 x18: 0000000000000034 x17: 000000040044ffff x16: ffffc95d80cac920 x15: 0000000000000000 x14: 0000000000000315 x13: 0000000000000315 x12: 0000000000000000 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 x8 : ffff80000805bc28 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : ffff327c00128000 x1 : 0000000000000000 x0 : ffff327c039c59b0 Call trace: drm_modeset_lock_all_ctx+0x3c4/0x3d0 drm_atomic_helper_shutdown+0x70/0x134 msm_drv_shutdown+0x30/0x40 platform_shutdown+0x28/0x40 device_shutdown+0x148/0x350 kernel_power_off+0x38/0x80 __do_sys_reboot+0x288/0x2c0 __arm64_sys_reboot+0x28/0x34 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0x44/0xec do_el0_svc+0x2c/0xc0 el0_svc+0x2c/0x84 el0t_64_sync_handler+0x11c/0x150 el0t_64_sync+0x18c/0x190 ---[ end trace 0000000000000000 ]--- Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004 CM = 0, WnR = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000010eab1000 [0000000000000018] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 96000004 [#1] PREEMPT SMP ... Hardware name: Google CoachZ (rev3+) (DT) pstate: a0400009 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : ww_mutex_lock+0x28/0x32c lr : drm_modeset_lock_all_ctx+0x1b0/0x3d0 sp : ffff80000805bb50 x29: ffff80000805bb50 x28: ffff327c00128000 x27: 0000000000000000 x26: 00000 ---truncated---
CVE-2022-50259 1 Linux 1 Linux Kernel 2025-11-25 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: fix race in sock_map_free() sock_map_free() calls release_sock(sk) without owning a reference on the socket. This can cause use-after-free as syzbot found [1] Jakub Sitnicki already took care of a similar issue in sock_hash_free() in commit 75e68e5bf2c7 ("bpf, sockhash: Synchronize delete from bucket list on map free") [1] refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 0 PID: 3785 at lib/refcount.c:31 refcount_warn_saturate+0x17c/0x1a0 lib/refcount.c:31 Modules linked in: CPU: 0 PID: 3785 Comm: kworker/u4:6 Not tainted 6.1.0-rc7-syzkaller-00103-gef4d3ea40565 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: events_unbound bpf_map_free_deferred RIP: 0010:refcount_warn_saturate+0x17c/0x1a0 lib/refcount.c:31 Code: 68 8b 31 c0 e8 75 71 15 fd 0f 0b e9 64 ff ff ff e8 d9 6e 4e fd c6 05 62 9c 3d 0a 01 48 c7 c7 80 bb 68 8b 31 c0 e8 54 71 15 fd <0f> 0b e9 43 ff ff ff 89 d9 80 e1 07 80 c1 03 38 c1 0f 8c a2 fe ff RSP: 0018:ffffc9000456fb60 EFLAGS: 00010246 RAX: eae59bab72dcd700 RBX: 0000000000000004 RCX: ffff8880207057c0 RDX: 0000000000000000 RSI: 0000000000000201 RDI: 0000000000000000 RBP: 0000000000000004 R08: ffffffff816fdabd R09: fffff520008adee5 R10: fffff520008adee5 R11: 1ffff920008adee4 R12: 0000000000000004 R13: dffffc0000000000 R14: ffff88807b1c6c00 R15: 1ffff1100f638dcf FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b30c30000 CR3: 000000000d08e000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __refcount_dec include/linux/refcount.h:344 [inline] refcount_dec include/linux/refcount.h:359 [inline] __sock_put include/net/sock.h:779 [inline] tcp_release_cb+0x2d0/0x360 net/ipv4/tcp_output.c:1092 release_sock+0xaf/0x1c0 net/core/sock.c:3468 sock_map_free+0x219/0x2c0 net/core/sock_map.c:356 process_one_work+0x81c/0xd10 kernel/workqueue.c:2289 worker_thread+0xb14/0x1330 kernel/workqueue.c:2436 kthread+0x266/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306 </TASK>
CVE-2022-50257 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: xen/gntdev: Prevent leaking grants Prior to this commit, if a grant mapping operation failed partially, some of the entries in the map_ops array would be invalid, whereas all of the entries in the kmap_ops array would be valid. This in turn would cause the following logic in gntdev_map_grant_pages to become invalid: for (i = 0; i < map->count; i++) { if (map->map_ops[i].status == GNTST_okay) { map->unmap_ops[i].handle = map->map_ops[i].handle; if (!use_ptemod) alloced++; } if (use_ptemod) { if (map->kmap_ops[i].status == GNTST_okay) { if (map->map_ops[i].status == GNTST_okay) alloced++; map->kunmap_ops[i].handle = map->kmap_ops[i].handle; } } } ... atomic_add(alloced, &map->live_grants); Assume that use_ptemod is true (i.e., the domain mapping the granted pages is a paravirtualized domain). In the code excerpt above, note that the "alloced" variable is only incremented when both kmap_ops[i].status and map_ops[i].status are set to GNTST_okay (i.e., both mapping operations are successful). However, as also noted above, there are cases where a grant mapping operation fails partially, breaking the assumption of the code excerpt above. The aforementioned causes map->live_grants to be incorrectly set. In some cases, all of the map_ops mappings fail, but all of the kmap_ops mappings succeed, meaning that live_grants may remain zero. This in turn makes it impossible to unmap the successfully grant-mapped pages pointed to by kmap_ops, because unmap_grant_pages has the following snippet of code at its beginning: if (atomic_read(&map->live_grants) == 0) return; /* Nothing to do */ In other cases where only some of the map_ops mappings fail but all kmap_ops mappings succeed, live_grants is made positive, but when the user requests unmapping the grant-mapped pages, __unmap_grant_pages_done will then make map->live_grants negative, because the latter function does not check if all of the pages that were requested to be unmapped were actually unmapped, and the same function unconditionally subtracts "data->count" (i.e., a value that can be greater than map->live_grants) from map->live_grants. The side effects of a negative live_grants value have not been studied. The net effect of all of this is that grant references are leaked in one of the above conditions. In Qubes OS v4.1 (which uses Xen's grant mechanism extensively for X11 GUI isolation), this issue manifests itself with warning messages like the following to be printed out by the Linux kernel in the VM that had granted pages (that contain X11 GUI window data) to dom0: "g.e. 0x1234 still pending", especially after the user rapidly resizes GUI VM windows (causing some grant-mapping operations to partially or completely fail, due to the fact that the VM unshares some of the pages as part of the window resizing, making the pages impossible to grant-map from dom0). The fix for this issue involves counting all successful map_ops and kmap_ops mappings separately, and then adding the sum to live_grants. During unmapping, only the number of successfully unmapped grants is subtracted from live_grants. The code is also modified to check for negative live_grants values after the subtraction and warn the user.
CVE-2022-50256 1 Linux 1 Linux Kernel 2025-11-25 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/meson: remove drm bridges at aggregate driver unbind time drm bridges added by meson_encoder_hdmi_init and meson_encoder_cvbs_init were not manually removed at module unload time, which caused dangling references to freed memory to remain linked in the global bridge_list. When loading the driver modules back in, the same functions would again call drm_bridge_add, and when traversing the global bridge_list, would end up peeking into freed memory. Once again KASAN revealed the problem: [ +0.000095] ============================================================= [ +0.000008] BUG: KASAN: use-after-free in __list_add_valid+0x9c/0x120 [ +0.000018] Read of size 8 at addr ffff00003da291f0 by task modprobe/2483 [ +0.000018] CPU: 3 PID: 2483 Comm: modprobe Tainted: G C O 5.19.0-rc6-lrmbkasan+ #1 [ +0.000011] Hardware name: Hardkernel ODROID-N2Plus (DT) [ +0.000008] Call trace: [ +0.000006] dump_backtrace+0x1ec/0x280 [ +0.000012] show_stack+0x24/0x80 [ +0.000008] dump_stack_lvl+0x98/0xd4 [ +0.000011] print_address_description.constprop.0+0x80/0x520 [ +0.000011] print_report+0x128/0x260 [ +0.000008] kasan_report+0xb8/0xfc [ +0.000008] __asan_report_load8_noabort+0x3c/0x50 [ +0.000009] __list_add_valid+0x9c/0x120 [ +0.000009] drm_bridge_add+0x6c/0x104 [drm] [ +0.000165] dw_hdmi_probe+0x1900/0x2360 [dw_hdmi] [ +0.000022] meson_dw_hdmi_bind+0x520/0x814 [meson_dw_hdmi] [ +0.000014] component_bind+0x174/0x520 [ +0.000012] component_bind_all+0x1a8/0x38c [ +0.000010] meson_drv_bind_master+0x5e8/0xb74 [meson_drm] [ +0.000032] meson_drv_bind+0x20/0x2c [meson_drm] [ +0.000027] try_to_bring_up_aggregate_device+0x19c/0x390 [ +0.000010] component_master_add_with_match+0x1c8/0x284 [ +0.000009] meson_drv_probe+0x274/0x280 [meson_drm] [ +0.000026] platform_probe+0xd0/0x220 [ +0.000009] really_probe+0x3ac/0xa80 [ +0.000009] __driver_probe_device+0x1f8/0x400 [ +0.000009] driver_probe_device+0x68/0x1b0 [ +0.000009] __driver_attach+0x20c/0x480 [ +0.000008] bus_for_each_dev+0x114/0x1b0 [ +0.000009] driver_attach+0x48/0x64 [ +0.000008] bus_add_driver+0x390/0x564 [ +0.000009] driver_register+0x1a8/0x3e4 [ +0.000009] __platform_driver_register+0x6c/0x94 [ +0.000008] meson_drm_platform_driver_init+0x3c/0x1000 [meson_drm] [ +0.000027] do_one_initcall+0xc4/0x2b0 [ +0.000011] do_init_module+0x154/0x570 [ +0.000011] load_module+0x1a78/0x1ea4 [ +0.000008] __do_sys_init_module+0x184/0x1cc [ +0.000009] __arm64_sys_init_module+0x78/0xb0 [ +0.000009] invoke_syscall+0x74/0x260 [ +0.000009] el0_svc_common.constprop.0+0xcc/0x260 [ +0.000008] do_el0_svc+0x50/0x70 [ +0.000007] el0_svc+0x68/0x1a0 [ +0.000012] el0t_64_sync_handler+0x11c/0x150 [ +0.000008] el0t_64_sync+0x18c/0x190 [ +0.000016] Allocated by task 879: [ +0.000008] kasan_save_stack+0x2c/0x5c [ +0.000011] __kasan_kmalloc+0x90/0xd0 [ +0.000007] __kmalloc+0x278/0x4a0 [ +0.000011] mpi_resize+0x13c/0x1d0 [ +0.000011] mpi_powm+0xd24/0x1570 [ +0.000009] rsa_enc+0x1a4/0x30c [ +0.000009] pkcs1pad_verify+0x3f0/0x580 [ +0.000009] public_key_verify_signature+0x7a8/0xba4 [ +0.000010] public_key_verify_signature_2+0x40/0x60 [ +0.000008] verify_signature+0xb4/0x114 [ +0.000008] pkcs7_validate_trust_one.constprop.0+0x3b8/0x574 [ +0.000009] pkcs7_validate_trust+0xb8/0x15c [ +0.000008] verify_pkcs7_message_sig+0xec/0x1b0 [ +0.000012] verify_pkcs7_signature+0x78/0xac [ +0.000007] mod_verify_sig+0x110/0x190 [ +0.000009] module_sig_check+0x114/0x1e0 [ +0.000009] load_module+0xa0/0x1ea4 [ +0.000008] __do_sys_init_module+0x184/0x1cc [ +0.000008] __arm64_sys_init_module+0x78/0xb0 [ +0.000008] invoke_syscall+0x74/0x260 [ +0.000009] el0_svc_common.constprop.0+0x1a8/0x260 [ +0.000008] do_el0_svc+0x50/0x70 [ +0.000007] el0_svc+0x68/0x1a0 [ +0.000009] el0t_64_sync_handler+0x11c/0x150 [ +0.000009] el0t_64 ---truncated---
CVE-2022-50255 1 Linux 1 Linux Kernel 2025-11-25 7.1 High
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix reading strings from synthetic events The follow commands caused a crash: # cd /sys/kernel/tracing # echo 's:open char file[]' > dynamic_events # echo 'hist:keys=common_pid:file=filename:onchange($file).trace(open,$file)' > events/syscalls/sys_enter_openat/trigger' # echo 1 > events/synthetic/open/enable BOOM! The problem is that the synthetic event field "char file[]" will read the value given to it as a string without any memory checks to make sure the address is valid. The above example will pass in the user space address and the sythetic event code will happily call strlen() on it and then strscpy() where either one will cause an oops when accessing user space addresses. Use the helper functions from trace_kprobe and trace_eprobe that can read strings safely (and actually succeed when the address is from user space and the memory is mapped in). Now the above can show: packagekitd-1721 [000] ...2. 104.597170: open: file=/usr/lib/rpm/fileattrs/cmake.attr in:imjournal-978 [006] ...2. 104.599642: open: file=/var/lib/rsyslog/imjournal.state.tmp packagekitd-1721 [000] ...2. 104.626308: open: file=/usr/lib/rpm/fileattrs/debuginfo.attr
CVE-2022-50254 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: ov8865: Fix an error handling path in ov8865_probe() The commit in Fixes also introduced some new error handling which should goto the existing error handling path. Otherwise some resources leak.
CVE-2025-64433 1 Kubevirt 1 Kubevirt 2025-11-25 6.5 Medium
KubeVirt is a virtual machine management add-on for Kubernetes. Prior to 1.5.3 and 1.6.1, a vulnerability was discovered that allows a VM to read arbitrary files from the virt-launcher pod's file system. This issue stems from improper symlink handling when mounting PVC disks into a VM. Specifically, if a malicious user has full or partial control over the contents of a PVC, they can create a symbolic link that points to a file within the virt-launcher pod's file system. Since libvirt can treat regular files as block devices, any file on the pod's file system that is symlinked in this way can be mounted into the VM and subsequently read. Although a security mechanism exists where VMs are executed as an unprivileged user with UID 107 inside the virt-launcher container, limiting the scope of accessible resources, this restriction is bypassed due to a second vulnerability. The latter causes the ownership of any file intended for mounting to be changed to the unprivileged user with UID 107 prior to mounting. As a result, an attacker can gain access to and read arbitrary files located within the virt-launcher pod's file system or on a mounted PVC from within the guest VM. This vulnerability is fixed in 1.5.3 and 1.6.1.
CVE-2025-13115 1 Macrozheng 2 Mall, Mall-swarm 2025-11-25 4.3 Medium
A security flaw has been discovered in macrozheng mall-swarm and mall up to 1.0.3. This impacts the function detail of the file /order/detail/ of the component Order Details Handler. Performing manipulation of the argument orderId results in improper authorization. It is possible to initiate the attack remotely. The exploit has been released to the public and may be exploited. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2025-13118 1 Macrozheng 2 Mall, Mall-swarm 2025-11-25 6.3 Medium
A vulnerability was detected in macrozheng mall-swarm and mall up to 1.0.3. Affected by this issue is the function paySuccess of the file /order/paySuccess. The manipulation of the argument orderID results in improper authorization. The attack can be launched remotely. The exploit is now public and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2025-13117 1 Macrozheng 2 Mall, Mall-swarm 2025-11-25 5.4 Medium
A security vulnerability has been detected in macrozheng mall-swarm and mall up to 1.0.3. Affected by this vulnerability is the function cancelOrder of the file /order/cancelOrder. The manipulation of the argument orderId leads to improper authorization. The attack can be initiated remotely. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2024-48949 2 Indutny, Redhat 7 Elliptic, Acm, Multicluster Engine and 4 more 2025-11-25 9.1 Critical
The verify function in lib/elliptic/eddsa/index.js in the Elliptic package before 6.5.6 for Node.js omits "sig.S().gte(sig.eddsa.curve.n) || sig.S().isNeg()" validation.
CVE-2024-48948 2 Indutny, Nodejs 2 Elliptic, Elliptic 2025-11-25 4.8 Medium
The Elliptic package 6.5.7 for Node.js, in its for ECDSA implementation, does not correctly verify valid signatures if the hash contains at least four leading 0 bytes and when the order of the elliptic curve's base point is smaller than the hash, because of an _truncateToN anomaly. This leads to valid signatures being rejected. Legitimate transactions or communications may be incorrectly flagged as invalid.
CVE-2025-64432 1 Kubevirt 1 Kubevirt 2025-11-25 4.7 Medium
KubeVirt is a virtual machine management add-on for Kubernetes. Versions 1.5.3 and below, and 1.6.0 contained a flawed implementation of the Kubernetes aggregation layer's authentication flow which could enable bypass of RBAC controls. It was discovered that the virt-api component fails to correctly authenticate the client when receiving API requests over mTLS. In particular, it fails to validate the CN (Common Name) field in the received client TLS certificates against the set of allowed values defined in the extension-apiserver-authentication configmap. Failre to validate certain fields in the client TLS certificate may allow an attacker to bypass existing RBAC controls by directly communicating with the aggregated API server, impersonating the Kubernetes API server and its aggregator component. This issue is fixed in versions 1.5.3 and 1.6.1.
CVE-2025-63889 1 Thinkphp 1 Thinkphp 2025-11-25 7.5 High
The fetch function in file thinkphp\library\think\Template.php in ThinkPHP 5.0.24 allows attackers to read arbitrary files via crafted file path in a template value.
CVE-2025-63888 1 Thinkphp 1 Thinkphp 2025-11-25 9.8 Critical
The read function in file thinkphp\library\think\template\driver\File.php in ThinkPHP 5.0.24 contains a remote code execution vulnerability.
CVE-2025-65031 1 Rallly 1 Rallly 2025-11-25 6.5 Medium
Rallly is an open-source scheduling and collaboration tool. Prior to version 4.5.4, an improper authorization flaw in the comment creation endpoint allows authenticated users to impersonate any other user by altering the authorName field in the API request. This enables attackers to post comments under arbitrary usernames, including privileged ones such as administrators, potentially misleading other users and enabling phishing or social engineering attacks. This issue has been patched in version 4.5.4.
CVE-2025-65030 1 Rallly 1 Rallly 2025-11-25 7.1 High
Rallly is an open-source scheduling and collaboration tool. Prior to version 4.5.4, an authorization flaw in the comment deletion API allows any authenticated user to delete comments belonging to other users, including poll owners and administrators. The endpoint relies solely on the comment ID for deletion and does not validate whether the requesting user owns the comment or has permission to remove it. This issue has been patched in version 4.5.4.
CVE-2025-65029 1 Rallly 1 Rallly 2025-11-25 8.1 High
Rallly is an open-source scheduling and collaboration tool. Prior to version 4.5.4, an insecure direct object reference (IDOR) vulnerability allows any authenticated user to delete arbitrary participants from polls without ownership verification. The endpoint relies solely on a participant ID to authorize deletions, enabling attackers to remove other users (including poll owners) from polls. This impacts the integrity and availability of poll participation data. This issue has been patched in version 4.5.4.