| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The Everest Backup – WordPress Cloud Backup, Migration, Restore & Cloning Plugin plugin for WordPress is vulnerable to unauthorized access due to a missing capability check on the process_status_unlink() function in all versions up to, and including, 2.3.8. This makes it possible for unauthenticated attackers to delete the back-up progress files and cause a back-up to fail while it is in progress. |
| A fix was made in BlazeMeter Jenkins Plugin version 4.27 to allow users only with certain permissions to see the list of available resources like credential IDs, bzm workspaces and bzm project Ids. Prior to this fix, anyone could see this list as a dropdown on the Jenkins UI. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: directly free partially initialized fs_info in btrfs_check_leaked_roots()
If fs_info->super_copy or fs_info->super_for_commit allocated failed in
btrfs_get_tree_subvol(), then no need to call btrfs_free_fs_info().
Otherwise btrfs_check_leaked_roots() would access NULL pointer because
fs_info->allocated_roots had not been initialised.
syzkaller reported the following information:
------------[ cut here ]------------
BUG: unable to handle page fault for address: fffffffffffffbb0
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 64c9067 P4D 64c9067 PUD 64cb067 PMD 0
Oops: Oops: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 1402 Comm: syz.1.35 Not tainted 6.15.8 #4 PREEMPT(lazy)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), (...)
RIP: 0010:arch_atomic_read arch/x86/include/asm/atomic.h:23 [inline]
RIP: 0010:raw_atomic_read include/linux/atomic/atomic-arch-fallback.h:457 [inline]
RIP: 0010:atomic_read include/linux/atomic/atomic-instrumented.h:33 [inline]
RIP: 0010:refcount_read include/linux/refcount.h:170 [inline]
RIP: 0010:btrfs_check_leaked_roots+0x18f/0x2c0 fs/btrfs/disk-io.c:1230
[...]
Call Trace:
<TASK>
btrfs_free_fs_info+0x310/0x410 fs/btrfs/disk-io.c:1280
btrfs_get_tree_subvol+0x592/0x6b0 fs/btrfs/super.c:2029
btrfs_get_tree+0x63/0x80 fs/btrfs/super.c:2097
vfs_get_tree+0x98/0x320 fs/super.c:1759
do_new_mount+0x357/0x660 fs/namespace.c:3899
path_mount+0x716/0x19c0 fs/namespace.c:4226
do_mount fs/namespace.c:4239 [inline]
__do_sys_mount fs/namespace.c:4450 [inline]
__se_sys_mount fs/namespace.c:4427 [inline]
__x64_sys_mount+0x28c/0x310 fs/namespace.c:4427
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0x92/0x180 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f032eaffa8d
[...] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix kernel panic on partial unmap of a GPU VA region
This commit address a kernel panic issue that can happen if Userspace
tries to partially unmap a GPU virtual region (aka drm_gpuva).
The VM_BIND interface allows partial unmapping of a BO.
Panthor driver pre-allocates memory for the new drm_gpuva structures
that would be needed for the map/unmap operation, done using drm_gpuvm
layer. It expected that only one new drm_gpuva would be needed on umap
but a partial unmap can require 2 new drm_gpuva and that's why it
ended up doing a NULL pointer dereference causing a kernel panic.
Following dump was seen when partial unmap was exercised.
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000078
Mem abort info:
ESR = 0x0000000096000046
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
Data abort info:
ISV = 0, ISS = 0x00000046, ISS2 = 0x00000000
CM = 0, WnR = 1, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000088a863000
[000000000000078] pgd=080000088a842003, p4d=080000088a842003, pud=0800000884bf5003, pmd=0000000000000000
Internal error: Oops: 0000000096000046 [#1] PREEMPT SMP
<snip>
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor]
lr : panthor_gpuva_sm_step_remap+0x6c/0x330 [panthor]
sp : ffff800085d43970
x29: ffff800085d43970 x28: ffff00080363e440 x27: ffff0008090c6000
x26: 0000000000000030 x25: ffff800085d439f8 x24: ffff00080d402000
x23: ffff800085d43b60 x22: ffff800085d439e0 x21: ffff00080abdb180
x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000010
x17: 6e656c202c303030 x16: 3666666666646466 x15: 393d61766f69202c
x14: 312d3d7361203a70 x13: 303030323d6e656c x12: ffff80008324bf58
x11: 0000000000000003 x10: 0000000000000002 x9 : ffff8000801a6a9c
x8 : ffff00080360b300 x7 : 0000000000000000 x6 : 000000088aa35fc7
x5 : fff1000080000000 x4 : ffff8000842ddd30 x3 : 0000000000000001
x2 : 0000000100000000 x1 : 0000000000000001 x0 : 0000000000000078
Call trace:
panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor]
op_remap_cb.isra.22+0x50/0x80
__drm_gpuvm_sm_unmap+0x10c/0x1c8
drm_gpuvm_sm_unmap+0x40/0x60
panthor_vm_exec_op+0xb4/0x3d0 [panthor]
panthor_vm_bind_exec_sync_op+0x154/0x278 [panthor]
panthor_ioctl_vm_bind+0x160/0x4a0 [panthor]
drm_ioctl_kernel+0xbc/0x138
drm_ioctl+0x240/0x500
__arm64_sys_ioctl+0xb0/0xf8
invoke_syscall+0x4c/0x110
el0_svc_common.constprop.1+0x98/0xf8
do_el0_svc+0x24/0x38
el0_svc+0x40/0xf8
el0t_64_sync_handler+0xa0/0xc8
el0t_64_sync+0x174/0x178 |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (cgbc-hwmon) Add missing NULL check after devm_kzalloc()
The driver allocates memory for sensor data using devm_kzalloc(), but
did not check if the allocation succeeded. In case of memory allocation
failure, dereferencing the NULL pointer would lead to a kernel crash.
Add a NULL pointer check and return -ENOMEM to handle allocation failure
properly. |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: fix livelock in synchronous file put from fuseblk workers
I observed a hang when running generic/323 against a fuseblk server.
This test opens a file, initiates a lot of AIO writes to that file
descriptor, and closes the file descriptor before the writes complete.
Unsurprisingly, the AIO exerciser threads are mostly stuck waiting for
responses from the fuseblk server:
# cat /proc/372265/task/372313/stack
[<0>] request_wait_answer+0x1fe/0x2a0 [fuse]
[<0>] __fuse_simple_request+0xd3/0x2b0 [fuse]
[<0>] fuse_do_getattr+0xfc/0x1f0 [fuse]
[<0>] fuse_file_read_iter+0xbe/0x1c0 [fuse]
[<0>] aio_read+0x130/0x1e0
[<0>] io_submit_one+0x542/0x860
[<0>] __x64_sys_io_submit+0x98/0x1a0
[<0>] do_syscall_64+0x37/0xf0
[<0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53
But the /weird/ part is that the fuseblk server threads are waiting for
responses from itself:
# cat /proc/372210/task/372232/stack
[<0>] request_wait_answer+0x1fe/0x2a0 [fuse]
[<0>] __fuse_simple_request+0xd3/0x2b0 [fuse]
[<0>] fuse_file_put+0x9a/0xd0 [fuse]
[<0>] fuse_release+0x36/0x50 [fuse]
[<0>] __fput+0xec/0x2b0
[<0>] task_work_run+0x55/0x90
[<0>] syscall_exit_to_user_mode+0xe9/0x100
[<0>] do_syscall_64+0x43/0xf0
[<0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53
The fuseblk server is fuse2fs so there's nothing all that exciting in
the server itself. So why is the fuse server calling fuse_file_put?
The commit message for the fstest sheds some light on that:
"By closing the file descriptor before calling io_destroy, you pretty
much guarantee that the last put on the ioctx will be done in interrupt
context (during I/O completion).
Aha. AIO fgets a new struct file from the fd when it queues the ioctx.
The completion of the FUSE_WRITE command from userspace causes the fuse
server to call the AIO completion function. The completion puts the
struct file, queuing a delayed fput to the fuse server task. When the
fuse server task returns to userspace, it has to run the delayed fput,
which in the case of a fuseblk server, it does synchronously.
Sending the FUSE_RELEASE command sychronously from fuse server threads
is a bad idea because a client program can initiate enough simultaneous
AIOs such that all the fuse server threads end up in delayed_fput, and
now there aren't any threads left to handle the queued fuse commands.
Fix this by only using asynchronous fputs when closing files, and leave
a comment explaining why. |
| In Splunk MCP Server app versions below 0.2.4, a user with access to the "run_splunk_query" Model Context Protocol (MCP) tool could bypass the SPL command allowlist controls in MCP by embedding SPL commands as sub-searches, leading to unauthorized actions beyond the intended MCP restrictions. |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix scx_enable() crash on helper kthread creation failure
A crash was observed when the sched_ext selftests runner was
terminated with Ctrl+\ while test 15 was running:
NIP [c00000000028fa58] scx_enable.constprop.0+0x358/0x12b0
LR [c00000000028fa2c] scx_enable.constprop.0+0x32c/0x12b0
Call Trace:
scx_enable.constprop.0+0x32c/0x12b0 (unreliable)
bpf_struct_ops_link_create+0x18c/0x22c
__sys_bpf+0x23f8/0x3044
sys_bpf+0x2c/0x6c
system_call_exception+0x124/0x320
system_call_vectored_common+0x15c/0x2ec
kthread_run_worker() returns an ERR_PTR() on failure rather than NULL,
but the current code in scx_alloc_and_add_sched() only checks for a NULL
helper. Incase of failure on SIGQUIT, the error is not handled in
scx_alloc_and_add_sched() and scx_enable() ends up dereferencing an
error pointer.
Error handling is fixed in scx_alloc_and_add_sched() to propagate
PTR_ERR() into ret, so that scx_enable() jumps to the existing error
path, avoiding random dereference on failure. |
| In the Linux kernel, the following vulnerability has been resolved:
net: core: prevent NULL deref in generic_hwtstamp_ioctl_lower()
The ethtool tsconfig Netlink path can trigger a null pointer
dereference. A call chain such as:
tsconfig_prepare_data() ->
dev_get_hwtstamp_phylib() ->
vlan_hwtstamp_get() ->
generic_hwtstamp_get_lower() ->
generic_hwtstamp_ioctl_lower()
results in generic_hwtstamp_ioctl_lower() being called with
kernel_cfg->ifr as NULL.
The generic_hwtstamp_ioctl_lower() function does not expect
a NULL ifr and dereferences it, leading to a system crash.
Fix this by adding a NULL check for kernel_cfg->ifr in
generic_hwtstamp_ioctl_lower(). If ifr is NULL, return -EINVAL. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: fix crafted invalid cases for encoded extents
Robert recently reported two corrupted images that can cause system
crashes, which are related to the new encoded extents introduced
in Linux 6.15:
- The first one [1] has plen != 0 (e.g. plen == 0x2000000) but
(plen & Z_EROFS_EXTENT_PLEN_MASK) == 0. It is used to represent
special extents such as sparse extents (!EROFS_MAP_MAPPED), but
previously only plen == 0 was handled;
- The second one [2] has pa 0xffffffffffdcffed and plen 0xb4000,
then "cur [0xfffffffffffff000] += bvec.bv_len [0x1000]" in
"} while ((cur += bvec.bv_len) < end);" wraps around, causing an
out-of-bound access of pcl->compressed_bvecs[] in
z_erofs_submit_queue(). EROFS only supports 48-bit physical block
addresses (up to 1EiB for 4k blocks), so add a sanity check to
enforce this. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: micrel: always set shared->phydev for LAN8814
Currently, during the LAN8814 PTP probe shared->phydev is only set if PTP
clock gets actually set, otherwise the function will return before setting
it.
This is an issue as shared->phydev is unconditionally being used when IRQ
is being handled, especially in lan8814_gpio_process_cap and since it was
not set it will cause a NULL pointer exception and crash the kernel.
So, simply always set shared->phydev to avoid the NULL pointer exception. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix IPsec cleanup over MPV device
When we do mlx5e_detach_netdev() we eventually disable blocking events
notifier, among those events are IPsec MPV events from IB to core.
So before disabling those blocking events, make sure to also unregister
the devcom device and mark all this device operations as complete,
in order to prevent the other device from using invalid netdev
during future devcom events which could cause the trace below.
BUG: kernel NULL pointer dereference, address: 0000000000000010
PGD 146427067 P4D 146427067 PUD 146488067 PMD 0
Oops: Oops: 0000 [#1] SMP
CPU: 1 UID: 0 PID: 7735 Comm: devlink Tainted: GW 6.12.0-rc6_for_upstream_min_debug_2024_11_08_00_46 #1
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core]
Code: 00 01 48 83 05 23 32 1e 00 01 41 b8 ed ff ff ff e9 60 ff ff ff 48 83 05 00 32 1e 00 01 eb e3 66 0f 1f 44 00 00 0f 1f 44 00 00 <48> 8b 47 10 48 83 05 5f 32 1e 00 01 48 8b 50 40 48 85 d2 74 05 40
RSP: 0018:ffff88811a5c35f8 EFLAGS: 00010206
RAX: ffff888106e8ab80 RBX: ffff888107d7e200 RCX: ffff88810d6f0a00
RDX: ffff88810d6f0a00 RSI: 0000000000000001 RDI: 0000000000000000
RBP: ffff88811a17e620 R08: 0000000000000040 R09: 0000000000000000
R10: ffff88811a5c3618 R11: 0000000de85d51bd R12: ffff88811a17e600
R13: ffff88810d6f0a00 R14: 0000000000000000 R15: ffff8881034bda80
FS: 00007f27bdf89180(0000) GS:ffff88852c880000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000010f159005 CR4: 0000000000372eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __die+0x20/0x60
? page_fault_oops+0x150/0x3e0
? exc_page_fault+0x74/0x130
? asm_exc_page_fault+0x22/0x30
? mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core]
mlx5e_devcom_event_mpv+0x42/0x60 [mlx5_core]
mlx5_devcom_send_event+0x8c/0x170 [mlx5_core]
blocking_event+0x17b/0x230 [mlx5_core]
notifier_call_chain+0x35/0xa0
blocking_notifier_call_chain+0x3d/0x60
mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core]
mlx5_core_mp_event_replay+0x12/0x20 [mlx5_core]
mlx5_ib_bind_slave_port+0x228/0x2c0 [mlx5_ib]
mlx5_ib_stage_init_init+0x664/0x9d0 [mlx5_ib]
? idr_alloc_cyclic+0x50/0xb0
? __kmalloc_cache_noprof+0x167/0x340
? __kmalloc_noprof+0x1a7/0x430
__mlx5_ib_add+0x34/0xd0 [mlx5_ib]
mlx5r_probe+0xe9/0x310 [mlx5_ib]
? kernfs_add_one+0x107/0x150
? __mlx5_ib_add+0xd0/0xd0 [mlx5_ib]
auxiliary_bus_probe+0x3e/0x90
really_probe+0xc5/0x3a0
? driver_probe_device+0x90/0x90
__driver_probe_device+0x80/0x160
driver_probe_device+0x1e/0x90
__device_attach_driver+0x7d/0x100
bus_for_each_drv+0x80/0xd0
__device_attach+0xbc/0x1f0
bus_probe_device+0x86/0xa0
device_add+0x62d/0x830
__auxiliary_device_add+0x3b/0xa0
? auxiliary_device_init+0x41/0x90
add_adev+0xd1/0x150 [mlx5_core]
mlx5_rescan_drivers_locked+0x21c/0x300 [mlx5_core]
esw_mode_change+0x6c/0xc0 [mlx5_core]
mlx5_devlink_eswitch_mode_set+0x21e/0x640 [mlx5_core]
devlink_nl_eswitch_set_doit+0x60/0xe0
genl_family_rcv_msg_doit+0xd0/0x120
genl_rcv_msg+0x180/0x2b0
? devlink_get_from_attrs_lock+0x170/0x170
? devlink_nl_eswitch_get_doit+0x290/0x290
? devlink_nl_pre_doit_port_optional+0x50/0x50
? genl_family_rcv_msg_dumpit+0xf0/0xf0
netlink_rcv_skb+0x54/0x100
genl_rcv+0x24/0x40
netlink_unicast+0x1fc/0x2d0
netlink_sendmsg+0x1e4/0x410
__sock_sendmsg+0x38/0x60
? sockfd_lookup_light+0x12/0x60
__sys_sendto+0x105/0x160
? __sys_recvmsg+0x4e/0x90
__x64_sys_sendto+0x20/0x30
do_syscall_64+0x4c/0x100
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f27bc91b13a
Code: bb 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 8b 05 fa 96 2c 00 45 89 c9 4c 63 d1 48 63 ff 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-net: zero unused hash fields
When GSO tunnel is negotiated virtio_net_hdr_tnl_from_skb() tries to
initialize the tunnel metadata but forget to zero unused rxhash
fields. This may leak information to another side. Fixing this by
zeroing the unused hash fields. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/core: fix potential memory leak by cleaning ops_filter in damon_destroy_scheme
Currently, damon_destroy_scheme() only cleans up the filter list but
leaves ops_filter untouched, which could lead to memory leaks when a
scheme is destroyed.
This patch ensures both filter and ops_filter are properly freed in
damon_destroy_scheme(), preventing potential memory leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Account for failed debug initialization
When the SCMI debug subsystem fails to initialize, the related debug root
will be missing, and the underlying descriptor will be NULL.
Handle this fault condition in the SCMI debug helpers that maintain
metrics counters. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/vaddr: do not repeat pte_offset_map_lock() until success
DAMON's virtual address space operation set implementation (vaddr) calls
pte_offset_map_lock() inside the page table walk callback function. This
is for reading and writing page table accessed bits. If
pte_offset_map_lock() fails, it retries by returning the page table walk
callback function with ACTION_AGAIN.
pte_offset_map_lock() can continuously fail if the target is a pmd
migration entry, though. Hence it could cause an infinite page table walk
if the migration cannot be done until the page table walk is finished.
This indeed caused a soft lockup when CPU hotplugging and DAMON were
running in parallel.
Avoid the infinite loop by simply not retrying the page table walk. DAMON
is promising only a best-effort accuracy, so missing access to such pages
is no problem. |
| RomM (ROM Manager) allows users to scan, enrich, browse and play their game collections with a clean and responsive interface. Prior to 4.4.1 and 4.4.1-beta.2, an Authenticated User can delete collections belonging to other users by directly sending a DELETE request to the collection endpoint. No ownership verification is performed before deleting collections. This vulnerability is fixed in 4.4.1 and 4.4.1-beta.2. |
| The Timetable and Event Schedule by MotoPress WordPress plugin before 2.4.16 does not verify a user has access to a specific event when duplicating, leading to arbitrary event disclosure when to users with a role as low as Contributor. |
| The Autoptimize plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the LCP Image to preload metabox in all versions up to, and including, 3.1.13 due to insufficient input sanitization and output escaping on user-supplied image attributes in the "create_img_preload_tag" function. This makes it possible for authenticated attackers, with contributor level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The CSSIgniter Shortcodes plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'element' shortcode attribute in all versions up to, and including, 2.4.1 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |