Total
318243 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-24314 | 1 Intel | 1 Cip Software | 2025-11-12 | 2 Low |
| Improper access control for some Intel(R) CIP software before version WIN_DCA_2.4.0.11001 within Ring 3: User Applications may allow an information disclosure. Unprivileged software adversary with a privileged user combined with a high complexity attack may enable data exposure. This result may potentially occur via network access when attack requirements are present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (low), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-24327 | 1 Intel | 1 Rapid Storage Technology | 2025-11-12 | 6.7 Medium |
| Insecure inherited permissions for some Intel(R) Rapid Storage Technology Application before version 20.0.1021 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable local code execution. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-24491 | 1 Intel | 1 Killer | 2025-11-12 | 6.7 Medium |
| Uncontrolled search path for some Intel(R) Killer(TM) Performance Suite software before version killer 4.0 40.25.509.1465 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-24918 | 1 Intel | 2 Server Configuration Utility, Server Firmware Update Utility | 2025-11-12 | 6.7 Medium |
| Improper link resolution before file access ('link following') for some Intel(R) Server Configuration Utility software and Intel(R) Server Firmware Update Utility software before version 16.0.12. within Ring 3: User Applications may allow an escalation of privilege. System software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-25059 | 1 Intel | 1 One Boot Flash Update | 2025-11-12 | 6.7 Medium |
| Uncontrolled search path for some Intel(R) One Boot Flash Update (Intel(R) OFU) software before version 14.1.31 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable escalation of privilege. This result may potentially occur via local access when attack requirements are present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (high), integrity (high) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-25216 | 1 Intel | 1 Graphics Drivers | 2025-11-12 | 3.3 Low |
| Improper input validation in some firmware for some Intel(R) Graphics Drivers and Intel LTS kernels within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (low) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-26402 | 1 Intel | 1 Npu Drivers | 2025-11-12 | 6.5 Medium |
| Protection mechanism failure for some Intel(R) NPU Drivers within Ring 3: User Applications may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-26405 | 1 Intel | 1 Npu Drivers | 2025-11-12 | 5.9 Medium |
| Improper control of dynamically-managed code resources for some Intel(R) NPU Drivers within Ring 3: User Applications may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires passive user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-26694 | 2 Intel, Microsoft | 4 Qat Driver, Qat Driver Firmware, Qat Drivers and 1 more | 2025-11-12 | 5.5 Medium |
| Null pointer dereference for some Intel(R) QAT Windows software before version 2.6.0. within Ring 3: User Applications may allow a denial of service. System software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-27249 | 1 Intel | 1 Gaudi Software | 2025-11-12 | 5.5 Medium |
| Uncontrolled resource consumption for some Gaudi software before version 1.21.0 within Ring 3: User Applications may allow a denial of service. System software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-27710 | 2 Intel, Microsoft | 4 Qat Driver, Qat Driver Firmware, Qat Drivers and 1 more | 2025-11-12 | 6.5 Medium |
| Untrusted pointer dereference for some Intel(R) QAT Windows software before version 2.6.0. within Ring 3: User Applications may allow an information disclosure. System software adversary with an authenticated user combined with a low complexity attack may enable data exposure. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (high), integrity (none) and availability (none) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-31146 | 1 Intel | 1 Ethernet Adapter Complete Driver Pack | 2025-11-12 | 6.1 Medium |
| Time-of-check time-of-use race condition for some Intel Ethernet Adapter Complete Driver Pack software before version 1.5.1.0 within Ring 3: User Applications may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2023-53057 | 1 Linux | 1 Linux Kernel | 2025-11-12 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: HCI: Fix global-out-of-bounds To loop a variable-length array, hci_init_stage_sync(stage) considers that stage[i] is valid as long as stage[i-1].func is valid. Thus, the last element of stage[].func should be intentionally invalid as hci_init0[], le_init2[], and others did. However, amp_init1[] and amp_init2[] have no invalid element, letting hci_init_stage_sync() keep accessing amp_init1[] over its valid range. This patch fixes this by adding {} in the last of amp_init1[] and amp_init2[]. ================================================================== BUG: KASAN: global-out-of-bounds in hci_dev_open_sync ( /v6.2-bzimage/net/bluetooth/hci_sync.c:3154 /v6.2-bzimage/net/bluetooth/hci_sync.c:3343 /v6.2-bzimage/net/bluetooth/hci_sync.c:4418 /v6.2-bzimage/net/bluetooth/hci_sync.c:4609 /v6.2-bzimage/net/bluetooth/hci_sync.c:4689) Read of size 8 at addr ffffffffaed1ab70 by task kworker/u5:0/1032 CPU: 0 PID: 1032 Comm: kworker/u5:0 Not tainted 6.2.0 #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04 Workqueue: hci1 hci_power_on Call Trace: <TASK> dump_stack_lvl (/v6.2-bzimage/lib/dump_stack.c:107 (discriminator 1)) print_report (/v6.2-bzimage/mm/kasan/report.c:307 /v6.2-bzimage/mm/kasan/report.c:417) ? hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:3154 /v6.2-bzimage/net/bluetooth/hci_sync.c:3343 /v6.2-bzimage/net/bluetooth/hci_sync.c:4418 /v6.2-bzimage/net/bluetooth/hci_sync.c:4609 /v6.2-bzimage/net/bluetooth/hci_sync.c:4689) kasan_report (/v6.2-bzimage/mm/kasan/report.c:184 /v6.2-bzimage/mm/kasan/report.c:519) ? hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:3154 /v6.2-bzimage/net/bluetooth/hci_sync.c:3343 /v6.2-bzimage/net/bluetooth/hci_sync.c:4418 /v6.2-bzimage/net/bluetooth/hci_sync.c:4609 /v6.2-bzimage/net/bluetooth/hci_sync.c:4689) hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:3154 /v6.2-bzimage/net/bluetooth/hci_sync.c:3343 /v6.2-bzimage/net/bluetooth/hci_sync.c:4418 /v6.2-bzimage/net/bluetooth/hci_sync.c:4609 /v6.2-bzimage/net/bluetooth/hci_sync.c:4689) ? __pfx_hci_dev_open_sync (/v6.2-bzimage/net/bluetooth/hci_sync.c:4635) ? mutex_lock (/v6.2-bzimage/./arch/x86/include/asm/atomic64_64.h:190 /v6.2-bzimage/./include/linux/atomic/atomic-long.h:443 /v6.2-bzimage/./include/linux/atomic/atomic-instrumented.h:1781 /v6.2-bzimage/kernel/locking/mutex.c:171 /v6.2-bzimage/kernel/locking/mutex.c:285) ? __pfx_mutex_lock (/v6.2-bzimage/kernel/locking/mutex.c:282) hci_power_on (/v6.2-bzimage/net/bluetooth/hci_core.c:485 /v6.2-bzimage/net/bluetooth/hci_core.c:984) ? __pfx_hci_power_on (/v6.2-bzimage/net/bluetooth/hci_core.c:969) ? read_word_at_a_time (/v6.2-bzimage/./include/asm-generic/rwonce.h:85) ? strscpy (/v6.2-bzimage/./arch/x86/include/asm/word-at-a-time.h:62 /v6.2-bzimage/lib/string.c:161) process_one_work (/v6.2-bzimage/kernel/workqueue.c:2294) worker_thread (/v6.2-bzimage/./include/linux/list.h:292 /v6.2-bzimage/kernel/workqueue.c:2437) ? __pfx_worker_thread (/v6.2-bzimage/kernel/workqueue.c:2379) kthread (/v6.2-bzimage/kernel/kthread.c:376) ? __pfx_kthread (/v6.2-bzimage/kernel/kthread.c:331) ret_from_fork (/v6.2-bzimage/arch/x86/entry/entry_64.S:314) </TASK> The buggy address belongs to the variable: amp_init1+0x30/0x60 The buggy address belongs to the physical page: page:000000003a157ec6 refcount:1 mapcount:0 mapping:0000000000000000 ia flags: 0x200000000001000(reserved|node=0|zone=2) raw: 0200000000001000 ffffea0005054688 ffffea0005054688 000000000000000 raw: 0000000000000000 0000000000000000 00000001ffffffff 000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffffffffaed1aa00: f9 f9 f9 f9 00 00 00 00 f9 f9 f9 f9 00 00 00 00 ffffffffaed1aa80: 00 00 00 00 f9 f9 f9 f9 00 00 00 00 00 00 00 00 >ffffffffaed1ab00: 00 f9 f9 f9 f9 f9 f9 f9 00 00 00 00 00 00 f9 f9 ---truncated--- | ||||
| CVE-2023-53065 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-12 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: perf/core: Fix perf_output_begin parameter is incorrectly invoked in perf_event_bpf_output syzkaller reportes a KASAN issue with stack-out-of-bounds. The call trace is as follows: dump_stack+0x9c/0xd3 print_address_description.constprop.0+0x19/0x170 __kasan_report.cold+0x6c/0x84 kasan_report+0x3a/0x50 __perf_event_header__init_id+0x34/0x290 perf_event_header__init_id+0x48/0x60 perf_output_begin+0x4a4/0x560 perf_event_bpf_output+0x161/0x1e0 perf_iterate_sb_cpu+0x29e/0x340 perf_iterate_sb+0x4c/0xc0 perf_event_bpf_event+0x194/0x2c0 __bpf_prog_put.constprop.0+0x55/0xf0 __cls_bpf_delete_prog+0xea/0x120 [cls_bpf] cls_bpf_delete_prog_work+0x1c/0x30 [cls_bpf] process_one_work+0x3c2/0x730 worker_thread+0x93/0x650 kthread+0x1b8/0x210 ret_from_fork+0x1f/0x30 commit 267fb27352b6 ("perf: Reduce stack usage of perf_output_begin()") use on-stack struct perf_sample_data of the caller function. However, perf_event_bpf_output uses incorrect parameter to convert small-sized data (struct perf_bpf_event) into large-sized data (struct perf_sample_data), which causes memory overwriting occurs in __perf_event_header__init_id. | ||||
| CVE-2025-37880 | 1 Linux | 1 Linux Kernel | 2025-11-12 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: um: work around sched_yield not yielding in time-travel mode sched_yield by a userspace may not actually cause scheduling in time-travel mode as no time has passed. In the case seen it appears to be a badly implemented userspace spinlock in ASAN. Unfortunately, with time-travel it causes an extreme slowdown or even deadlock depending on the kernel configuration (CONFIG_UML_MAX_USERSPACE_ITERATIONS). Work around it by accounting time to the process whenever it executes a sched_yield syscall. | ||||
| CVE-2025-37879 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-11-12 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: 9p/net: fix improper handling of bogus negative read/write replies In p9_client_write() and p9_client_read_once(), if the server incorrectly replies with success but a negative write/read count then we would consider written (negative) <= rsize (positive) because both variables were signed. Make variables unsigned to avoid this problem. The reproducer linked below now fails with the following error instead of a null pointer deref: 9pnet: bogus RWRITE count (4294967295 > 3) | ||||
| CVE-2025-37878 | 1 Linux | 1 Linux Kernel | 2025-11-12 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: perf/core: Fix WARN_ON(!ctx) in __free_event() for partial init Move the get_ctx(child_ctx) call and the child_event->ctx assignment to occur immediately after the child event is allocated. Ensure that child_event->ctx is non-NULL before any subsequent error path within inherit_event calls free_event(), satisfying the assumptions of the cleanup code. Details: There's no clear Fixes tag, because this bug is a side-effect of multiple interacting commits over time (up to 15 years old), not a single regression. The code initially incremented refcount then assigned context immediately after the child_event was created. Later, an early validity check for child_event was added before the refcount/assignment. Even later, a WARN_ON_ONCE() cleanup check was added, assuming event->ctx is valid if the pmu_ctx is valid. The problem is that the WARN_ON_ONCE() could trigger after the initial check passed but before child_event->ctx was assigned, violating its precondition. The solution is to assign child_event->ctx right after its initial validation. This ensures the context exists for any subsequent checks or cleanup routines, resolving the WARN_ON_ONCE(). To resolve it, defer the refcount update and child_event->ctx assignment directly after child_event->pmu_ctx is set but before checking if the parent event is orphaned. The cleanup routine depends on event->pmu_ctx being non-NULL before it verifies event->ctx is non-NULL. This also maintains the author's original intent of passing in child_ctx to find_get_pmu_context before its refcount/assignment. [ mingo: Expanded the changelog from another email by Gabriel Shahrouzi. ] | ||||
| CVE-2025-37877 | 1 Linux | 1 Linux Kernel | 2025-11-12 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: iommu: Clear iommu-dma ops on cleanup If iommu_device_register() encounters an error, it can end up tearing down already-configured groups and default domains, however this currently still leaves devices hooked up to iommu-dma (and even historically the behaviour in this area was at best inconsistent across architectures/drivers...) Although in the case that an IOMMU is present whose driver has failed to probe, users cannot necessarily expect DMA to work anyway, it's still arguable that we should do our best to put things back as if the IOMMU driver was never there at all, and certainly the potential for crashing in iommu-dma itself is undesirable. Make sure we clean up the dev->dma_iommu flag along with everything else. | ||||
| CVE-2025-37876 | 1 Linux | 1 Linux Kernel | 2025-11-12 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: netfs: Only create /proc/fs/netfs with CONFIG_PROC_FS When testing a special config: CONFIG_NETFS_SUPPORTS=y CONFIG_PROC_FS=n The system crashes with something like: [ 3.766197] ------------[ cut here ]------------ [ 3.766484] kernel BUG at mm/mempool.c:560! [ 3.766789] Oops: invalid opcode: 0000 [#1] SMP NOPTI [ 3.767123] CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Tainted: G W [ 3.767777] Tainted: [W]=WARN [ 3.767968] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), [ 3.768523] RIP: 0010:mempool_alloc_slab.cold+0x17/0x19 [ 3.768847] Code: 50 fe ff 58 5b 5d 41 5c 41 5d 41 5e 41 5f e9 93 95 13 00 [ 3.769977] RSP: 0018:ffffc90000013998 EFLAGS: 00010286 [ 3.770315] RAX: 000000000000002f RBX: ffff888100ba8640 RCX: 0000000000000000 [ 3.770749] RDX: 0000000000000000 RSI: 0000000000000003 RDI: 00000000ffffffff [ 3.771217] RBP: 0000000000092880 R08: 0000000000000000 R09: ffffc90000013828 [ 3.771664] R10: 0000000000000001 R11: 00000000ffffffea R12: 0000000000092cc0 [ 3.772117] R13: 0000000000000400 R14: ffff8881004b1620 R15: ffffea0004ef7e40 [ 3.772554] FS: 0000000000000000(0000) GS:ffff8881b5f3c000(0000) knlGS:0000000000000000 [ 3.773061] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3.773443] CR2: ffffffff830901b4 CR3: 0000000004296001 CR4: 0000000000770ef0 [ 3.773884] PKRU: 55555554 [ 3.774058] Call Trace: [ 3.774232] <TASK> [ 3.774371] mempool_alloc_noprof+0x6a/0x190 [ 3.774649] ? _printk+0x57/0x80 [ 3.774862] netfs_alloc_request+0x85/0x2ce [ 3.775147] netfs_readahead+0x28/0x170 [ 3.775395] read_pages+0x6c/0x350 [ 3.775623] ? srso_alias_return_thunk+0x5/0xfbef5 [ 3.775928] page_cache_ra_unbounded+0x1bd/0x2a0 [ 3.776247] filemap_get_pages+0x139/0x970 [ 3.776510] ? srso_alias_return_thunk+0x5/0xfbef5 [ 3.776820] filemap_read+0xf9/0x580 [ 3.777054] ? srso_alias_return_thunk+0x5/0xfbef5 [ 3.777368] ? srso_alias_return_thunk+0x5/0xfbef5 [ 3.777674] ? find_held_lock+0x32/0x90 [ 3.777929] ? netfs_start_io_read+0x19/0x70 [ 3.778221] ? netfs_start_io_read+0x19/0x70 [ 3.778489] ? srso_alias_return_thunk+0x5/0xfbef5 [ 3.778800] ? lock_acquired+0x1e6/0x450 [ 3.779054] ? srso_alias_return_thunk+0x5/0xfbef5 [ 3.779379] netfs_buffered_read_iter+0x57/0x80 [ 3.779670] __kernel_read+0x158/0x2c0 [ 3.779927] bprm_execve+0x300/0x7a0 [ 3.780185] kernel_execve+0x10c/0x140 [ 3.780423] ? __pfx_kernel_init+0x10/0x10 [ 3.780690] kernel_init+0xd5/0x150 [ 3.780910] ret_from_fork+0x2d/0x50 [ 3.781156] ? __pfx_kernel_init+0x10/0x10 [ 3.781414] ret_from_fork_asm+0x1a/0x30 [ 3.781677] </TASK> [ 3.781823] Modules linked in: [ 3.782065] ---[ end trace 0000000000000000 ]--- This is caused by the following error path in netfs_init(): if (!proc_mkdir("fs/netfs", NULL)) goto error_proc; Fix this by adding ifdef in netfs_main(), so that /proc/fs/netfs is only created with CONFIG_PROC_FS. | ||||
| CVE-2025-37875 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-11-12 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: igc: fix PTM cycle trigger logic Writing to clear the PTM status 'valid' bit while the PTM cycle is triggered results in unreliable PTM operation. To fix this, clear the PTM 'trigger' and status after each PTM transaction. The issue can be reproduced with the following: $ sudo phc2sys -R 1000 -O 0 -i tsn0 -m Note: 1000 Hz (-R 1000) is unrealistically large, but provides a way to quickly reproduce the issue. PHC2SYS exits with: "ioctl PTP_OFFSET_PRECISE: Connection timed out" when the PTM transaction fails This patch also fixes a hang in igc_probe() when loading the igc driver in the kdump kernel on systems supporting PTM. The igc driver running in the base kernel enables PTM trigger in igc_probe(). Therefore the driver is always in PTM trigger mode, except in brief periods when manually triggering a PTM cycle. When a crash occurs, the NIC is reset while PTM trigger is enabled. Due to a hardware problem, the NIC is subsequently in a bad busmaster state and doesn't handle register reads/writes. When running igc_probe() in the kdump kernel, the first register access to a NIC register hangs driver probing and ultimately breaks kdump. With this patch, igc has PTM trigger disabled most of the time, and the trigger is only enabled for very brief (10 - 100 us) periods when manually triggering a PTM cycle. Chances that a crash occurs during a PTM trigger are not 0, but extremely reduced. | ||||