Search Results (328883 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50639 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io-wq: Fix memory leak in worker creation If the CPU mask allocation for a node fails, then the memory allocated for the 'io_wqe' struct of the current node doesn't get freed on the error handling path, since it has not yet been added to the 'wqes' array. This was spotted when fuzzing v6.1-rc1 with Syzkaller: BUG: memory leak unreferenced object 0xffff8880093d5000 (size 1024): comm "syz-executor.2", pid 7701, jiffies 4295048595 (age 13.900s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000cb463369>] __kmem_cache_alloc_node+0x18e/0x720 [<00000000147a3f9c>] kmalloc_node_trace+0x2a/0x130 [<000000004e107011>] io_wq_create+0x7b9/0xdc0 [<00000000c38b2018>] io_uring_alloc_task_context+0x31e/0x59d [<00000000867399da>] __io_uring_add_tctx_node.cold+0x19/0x1ba [<000000007e0e7a79>] io_uring_setup.cold+0x1b80/0x1dce [<00000000b545e9f6>] __x64_sys_io_uring_setup+0x5d/0x80 [<000000008a8a7508>] do_syscall_64+0x5d/0x90 [<000000004ac08bec>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2022-50632 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drivers: perf: marvell_cn10k: Fix hotplug callback leak in tad_pmu_init() tad_pmu_init() won't remove the callback added by cpuhp_setup_state_multi() when platform_driver_register() failed. Remove the callback by cpuhp_remove_multi_state() in fail path. Similar to the handling of arm_ccn_init() in commit 26242b330093 ("bus: arm-ccn: Prevent hotplug callback leak")
CVE-2022-50631 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RISC-V: kexec: Fix memory leak of fdt buffer This is reported by kmemleak detector: unreferenced object 0xff60000082864000 (size 9588): comm "kexec", pid 146, jiffies 4294900634 (age 64.788s) hex dump (first 32 bytes): d0 0d fe ed 00 00 12 ed 00 00 00 48 00 00 11 40 ...........H...@ 00 00 00 28 00 00 00 11 00 00 00 02 00 00 00 00 ...(............ backtrace: [<00000000f95b17c4>] kmemleak_alloc+0x34/0x3e [<00000000b9ec8e3e>] kmalloc_order+0x9c/0xc4 [<00000000a95cf02e>] kmalloc_order_trace+0x34/0xb6 [<00000000f01e68b4>] __kmalloc+0x5c2/0x62a [<000000002bd497b2>] kvmalloc_node+0x66/0xd6 [<00000000906542fa>] of_kexec_alloc_and_setup_fdt+0xa6/0x6ea [<00000000e1166bde>] elf_kexec_load+0x206/0x4ec [<0000000036548e09>] kexec_image_load_default+0x40/0x4c [<0000000079fbe1b4>] sys_kexec_file_load+0x1c4/0x322 [<0000000040c62c03>] ret_from_syscall+0x0/0x2 In elf_kexec_load(), a buffer is allocated via kvmalloc() to store fdt. While it's not freed back to system when kexec kernel is reloaded or unloaded. Then memory leak is caused. Fix it by introducing riscv specific function arch_kimage_file_post_load_cleanup(), and freeing the buffer there.
CVE-2025-11022 2025-12-09 9.6 Critical
Cross-Site Request Forgery (CSRF) vulnerability in Personal Project Panilux allows Cross Site Request Forgery.  This CSRF vulnerability resulting in Command Injection has been identified. This issue affects Panilux: before v.0.10.0. NOTE: The vendor was contacted and responded that they deny ownership of the mentioned product.
CVE-2023-53854 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: mediatek: mt8186: Fix use-after-free in driver remove path When devm runs function in the "remove" path for a device it runs them in the reverse order. That means that if you have parts of your driver that aren't using devm or are using "roll your own" devm w/ devm_add_action_or_reset() you need to keep that in mind. The mt8186 audio driver didn't quite get this right. Specifically, in mt8186_init_clock() it called mt8186_audsys_clk_register() and then went on to call a bunch of other devm function. The caller of mt8186_init_clock() used devm_add_action_or_reset() to call mt8186_deinit_clock() but, because of the intervening devm functions, the order was wrong. Specifically at probe time, the order was: 1. mt8186_audsys_clk_register() 2. afe_priv->clk = devm_kcalloc(...) 3. afe_priv->clk[i] = devm_clk_get(...) At remove time, the order (which should have been 3, 2, 1) was: 1. mt8186_audsys_clk_unregister() 3. Free all of afe_priv->clk[i] 2. Free afe_priv->clk The above seemed to be causing a use-after-free. Luckily, it's easy to fix this by simply using devm more correctly. Let's move the devm_add_action_or_reset() to the right place. In addition to fixing the use-after-free, code inspection shows that this fixes a leak (missing call to mt8186_audsys_clk_unregister()) that would have happened if any of the syscon_regmap_lookup_by_phandle() calls in mt8186_init_clock() had failed.
CVE-2023-53849 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm: fix workqueue leak on bind errors Make sure to destroy the workqueue also in case of early errors during bind (e.g. a subcomponent failing to bind). Since commit c3b790ea07a1 ("drm: Manage drm_mode_config_init with drmm_") the mode config will be freed when the drm device is released also when using the legacy interface, but add an explicit cleanup for consistency and to facilitate backporting. Patchwork: https://patchwork.freedesktop.org/patch/525093/
CVE-2023-53815 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: posix-timers: Prevent RT livelock in itimer_delete() itimer_delete() has a retry loop when the timer is concurrently expired. On non-RT kernels this just spin-waits until the timer callback has completed, except for posix CPU timers which have HAVE_POSIX_CPU_TIMERS_TASK_WORK enabled. In that case and on RT kernels the existing task could live lock when preempting the task which does the timer delivery. Replace spin_unlock() with an invocation of timer_wait_running() to handle it the same way as the other retry loops in the posix timer code.
CVE-2023-53807 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: clocking-wizard: Fix Oops in clk_wzrd_register_divider() Smatch detected this potential error pointer dereference clk_wzrd_register_divider(). If devm_clk_hw_register() fails then it sets "hw" to an error pointer and then dereferences it on the next line. Return the error directly instead.
CVE-2023-53802 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: htc_hst: free skb in ath9k_htc_rx_msg() if there is no callback function It is stated that ath9k_htc_rx_msg() either frees the provided skb or passes its management to another callback function. However, the skb is not freed in case there is no another callback function, and Syzkaller was able to cause a memory leak. Also minor comment fix. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2023-53797 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: HID: wacom: Use ktime_t rather than int when dealing with timestamps Code which interacts with timestamps needs to use the ktime_t type returned by functions like ktime_get. The int type does not offer enough space to store these values, and attempting to use it is a recipe for problems. In this particular case, overflows would occur when calculating/storing timestamps leading to incorrect values being reported to userspace. In some cases these bad timestamps cause input handling in userspace to appear hung.
CVE-2023-53792 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nvme-core: fix memory leak in dhchap_ctrl_secret Free dhchap_secret in nvme_ctrl_dhchap_ctrl_secret_store() before we return when nvme_auth_generate_key() returns error.
CVE-2022-50667 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Fix memory leak in vmw_mksstat_add_ioctl() If the copy of the description string from userspace fails, then the page for the instance descriptor doesn't get freed before returning -EFAULT, which leads to a memleak.
CVE-2022-50675 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored Prior to commit 69e3b846d8a7 ("arm64: mte: Sync tags for pages where PTE is untagged"), mte_sync_tags() was only called for pte_tagged() entries (those mapped with PROT_MTE). Therefore mte_sync_tags() could safely use test_and_set_bit(PG_mte_tagged, &page->flags) without inadvertently setting PG_mte_tagged on an untagged page. The above commit was required as guests may enable MTE without any control at the stage 2 mapping, nor a PROT_MTE mapping in the VMM. However, the side-effect was that any page with a PTE that looked like swap (or migration) was getting PG_mte_tagged set automatically. A subsequent page copy (e.g. migration) copied the tags to the destination page even if the tags were owned by KASAN. This issue was masked by the page_kasan_tag_reset() call introduced in commit e5b8d9218951 ("arm64: mte: reset the page tag in page->flags"). When this commit was reverted (20794545c146), KASAN started reporting access faults because the overriding tags in a page did not match the original page->flags (with CONFIG_KASAN_HW_TAGS=y): BUG: KASAN: invalid-access in copy_page+0x10/0xd0 arch/arm64/lib/copy_page.S:26 Read at addr f5ff000017f2e000 by task syz-executor.1/2218 Pointer tag: [f5], memory tag: [f2] Move the PG_mte_tagged bit setting from mte_sync_tags() to the actual place where tags are cleared (mte_sync_page_tags()) or restored (mte_restore_tags()).
CVE-2023-53821 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ip6_vti: fix slab-use-after-free in decode_session6 When ipv6_vti device is set to the qdisc of the sfb type, the cb field of the sent skb may be modified during enqueuing. Then, slab-use-after-free may occur when ipv6_vti device sends IPv6 packets. The stack information is as follows: BUG: KASAN: slab-use-after-free in decode_session6+0x103f/0x1890 Read of size 1 at addr ffff88802e08edc2 by task swapper/0/0 CPU: 0 PID: 0 Comm: swapper/0 Not tainted 6.4.0-next-20230707-00001-g84e2cad7f979 #410 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0xd9/0x150 print_address_description.constprop.0+0x2c/0x3c0 kasan_report+0x11d/0x130 decode_session6+0x103f/0x1890 __xfrm_decode_session+0x54/0xb0 vti6_tnl_xmit+0x3e6/0x1ee0 dev_hard_start_xmit+0x187/0x700 sch_direct_xmit+0x1a3/0xc30 __qdisc_run+0x510/0x17a0 __dev_queue_xmit+0x2215/0x3b10 neigh_connected_output+0x3c2/0x550 ip6_finish_output2+0x55a/0x1550 ip6_finish_output+0x6b9/0x1270 ip6_output+0x1f1/0x540 ndisc_send_skb+0xa63/0x1890 ndisc_send_rs+0x132/0x6f0 addrconf_rs_timer+0x3f1/0x870 call_timer_fn+0x1a0/0x580 expire_timers+0x29b/0x4b0 run_timer_softirq+0x326/0x910 __do_softirq+0x1d4/0x905 irq_exit_rcu+0xb7/0x120 sysvec_apic_timer_interrupt+0x97/0xc0 </IRQ> Allocated by task 9176: kasan_save_stack+0x22/0x40 kasan_set_track+0x25/0x30 __kasan_slab_alloc+0x7f/0x90 kmem_cache_alloc_node+0x1cd/0x410 kmalloc_reserve+0x165/0x270 __alloc_skb+0x129/0x330 netlink_sendmsg+0x9b1/0xe30 sock_sendmsg+0xde/0x190 ____sys_sendmsg+0x739/0x920 ___sys_sendmsg+0x110/0x1b0 __sys_sendmsg+0xf7/0x1c0 do_syscall_64+0x39/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd Freed by task 9176: kasan_save_stack+0x22/0x40 kasan_set_track+0x25/0x30 kasan_save_free_info+0x2b/0x40 ____kasan_slab_free+0x160/0x1c0 slab_free_freelist_hook+0x11b/0x220 kmem_cache_free+0xf0/0x490 skb_free_head+0x17f/0x1b0 skb_release_data+0x59c/0x850 consume_skb+0xd2/0x170 netlink_unicast+0x54f/0x7f0 netlink_sendmsg+0x926/0xe30 sock_sendmsg+0xde/0x190 ____sys_sendmsg+0x739/0x920 ___sys_sendmsg+0x110/0x1b0 __sys_sendmsg+0xf7/0x1c0 do_syscall_64+0x39/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd The buggy address belongs to the object at ffff88802e08ed00 which belongs to the cache skbuff_small_head of size 640 The buggy address is located 194 bytes inside of freed 640-byte region [ffff88802e08ed00, ffff88802e08ef80) As commit f855691975bb ("xfrm6: Fix the nexthdr offset in _decode_session6.") showed, xfrm_decode_session was originally intended only for the receive path. IP6CB(skb)->nhoff is not set during transmission. Therefore, set the cb field in the skb to 0 before sending packets.
CVE-2023-53864 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mxsfb: Disable overlay plane in mxsfb_plane_overlay_atomic_disable() When disabling overlay plane in mxsfb_plane_overlay_atomic_update(), overlay plane's framebuffer pointer is NULL. So, dereferencing it would cause a kernel Oops(NULL pointer dereferencing). Fix the issue by disabling overlay plane in mxsfb_plane_overlay_atomic_disable() instead.
CVE-2025-40328 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in smb2_close_cached_fid() find_or_create_cached_dir() could grab a new reference after kref_put() had seen the refcount drop to zero but before cfid_list_lock is acquired in smb2_close_cached_fid(), leading to use-after-free. Switch to kref_put_lock() so cfid_release() is called with cfid_list_lock held, closing that gap.
CVE-2022-50635 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: powerpc/kprobes: Fix null pointer reference in arch_prepare_kprobe() I found a null pointer reference in arch_prepare_kprobe(): # echo 'p cmdline_proc_show' > kprobe_events # echo 'p cmdline_proc_show+16' >> kprobe_events Kernel attempted to read user page (0) - exploit attempt? (uid: 0) BUG: Kernel NULL pointer dereference on read at 0x00000000 Faulting instruction address: 0xc000000000050bfc Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV Modules linked in: CPU: 0 PID: 122 Comm: sh Not tainted 6.0.0-rc3-00007-gdcf8e5633e2e #10 NIP: c000000000050bfc LR: c000000000050bec CTR: 0000000000005bdc REGS: c0000000348475b0 TRAP: 0300 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e) MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 88002444 XER: 20040006 CFAR: c00000000022d100 DAR: 0000000000000000 DSISR: 40000000 IRQMASK: 0 ... NIP arch_prepare_kprobe+0x10c/0x2d0 LR arch_prepare_kprobe+0xfc/0x2d0 Call Trace: 0xc0000000012f77a0 (unreliable) register_kprobe+0x3c0/0x7a0 __register_trace_kprobe+0x140/0x1a0 __trace_kprobe_create+0x794/0x1040 trace_probe_create+0xc4/0xe0 create_or_delete_trace_kprobe+0x2c/0x80 trace_parse_run_command+0xf0/0x210 probes_write+0x20/0x40 vfs_write+0xfc/0x450 ksys_write+0x84/0x140 system_call_exception+0x17c/0x3a0 system_call_vectored_common+0xe8/0x278 --- interrupt: 3000 at 0x7fffa5682de0 NIP: 00007fffa5682de0 LR: 0000000000000000 CTR: 0000000000000000 REGS: c000000034847e80 TRAP: 3000 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e) MSR: 900000000280f033 <SF,HV,VEC,VSX,EE,PR,FP,ME,IR,DR,RI,LE> CR: 44002408 XER: 00000000 The address being probed has some special: cmdline_proc_show: Probe based on ftrace cmdline_proc_show+16: Probe for the next instruction at the ftrace location The ftrace-based kprobe does not generate kprobe::ainsn::insn, it gets set to NULL. In arch_prepare_kprobe() it will check for: ... prev = get_kprobe(p->addr - 1); preempt_enable_no_resched(); if (prev && ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) { ... If prev is based on ftrace, 'ppc_inst_read(prev->ainsn.insn)' will occur with a null pointer reference. At this point prev->addr will not be a prefixed instruction, so the check can be skipped. Check if prev is ftrace-based kprobe before reading 'prev->ainsn.insn' to fix this problem. [mpe: Trim oops]
CVE-2022-50651 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ethtool: eeprom: fix null-deref on genl_info in dump The similar fix as commit 46cdedf2a0fa ("ethtool: pse-pd: fix null-deref on genl_info in dump") is also needed for ethtool eeprom.
CVE-2022-50637 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cpufreq: qcom-hw: Fix memory leak in qcom_cpufreq_hw_read_lut() If "cpu_dev" fails to get opp table in qcom_cpufreq_hw_read_lut(), the program will return, resulting in "table" resource is not released.
CVE-2023-53865 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix warning when putting transaction with qgroups enabled after abort If we have a transaction abort with qgroups enabled we get a warning triggered when doing the final put on the transaction, like this: [552.6789] ------------[ cut here ]------------ [552.6815] WARNING: CPU: 4 PID: 81745 at fs/btrfs/transaction.c:144 btrfs_put_transaction+0x123/0x130 [btrfs] [552.6817] Modules linked in: btrfs blake2b_generic xor (...) [552.6819] CPU: 4 PID: 81745 Comm: btrfs-transacti Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1 [552.6819] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [552.6819] RIP: 0010:btrfs_put_transaction+0x123/0x130 [btrfs] [552.6821] Code: bd a0 01 00 (...) [552.6821] RSP: 0018:ffffa168c0527e28 EFLAGS: 00010286 [552.6821] RAX: ffff936042caed00 RBX: ffff93604a3eb448 RCX: 0000000000000000 [552.6821] RDX: ffff93606421b028 RSI: ffffffff92ff0878 RDI: ffff93606421b010 [552.6821] RBP: ffff93606421b000 R08: 0000000000000000 R09: ffffa168c0d07c20 [552.6821] R10: 0000000000000000 R11: ffff93608dc52950 R12: ffffa168c0527e70 [552.6821] R13: ffff93606421b000 R14: ffff93604a3eb420 R15: ffff93606421b028 [552.6821] FS: 0000000000000000(0000) GS:ffff93675fb00000(0000) knlGS:0000000000000000 [552.6821] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [552.6821] CR2: 0000558ad262b000 CR3: 000000014feda005 CR4: 0000000000370ee0 [552.6822] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [552.6822] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [552.6822] Call Trace: [552.6822] <TASK> [552.6822] ? __warn+0x80/0x130 [552.6822] ? btrfs_put_transaction+0x123/0x130 [btrfs] [552.6824] ? report_bug+0x1f4/0x200 [552.6824] ? handle_bug+0x42/0x70 [552.6824] ? exc_invalid_op+0x14/0x70 [552.6824] ? asm_exc_invalid_op+0x16/0x20 [552.6824] ? btrfs_put_transaction+0x123/0x130 [btrfs] [552.6826] btrfs_cleanup_transaction+0xe7/0x5e0 [btrfs] [552.6828] ? _raw_spin_unlock_irqrestore+0x23/0x40 [552.6828] ? try_to_wake_up+0x94/0x5e0 [552.6828] ? __pfx_process_timeout+0x10/0x10 [552.6828] transaction_kthread+0x103/0x1d0 [btrfs] [552.6830] ? __pfx_transaction_kthread+0x10/0x10 [btrfs] [552.6832] kthread+0xee/0x120 [552.6832] ? __pfx_kthread+0x10/0x10 [552.6832] ret_from_fork+0x29/0x50 [552.6832] </TASK> [552.6832] ---[ end trace 0000000000000000 ]--- This corresponds to this line of code: void btrfs_put_transaction(struct btrfs_transaction *transaction) { (...) WARN_ON(!RB_EMPTY_ROOT( &transaction->delayed_refs.dirty_extent_root)); (...) } The warning happens because btrfs_qgroup_destroy_extent_records(), called in the transaction abort path, we free all entries from the rbtree "dirty_extent_root" with rbtree_postorder_for_each_entry_safe(), but we don't actually empty the rbtree - it's still pointing to nodes that were freed. So set the rbtree's root node to NULL to avoid this warning (assign RB_ROOT).