Filtered by NVD-CWE-noinfo
Total 33385 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-26783 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/vmscan: fix a bug calling wakeup_kswapd() with a wrong zone index With numa balancing on, when a numa system is running where a numa node doesn't have its local memory so it has no managed zones, the following oops has been observed. It's because wakeup_kswapd() is called with a wrong zone index, -1. Fixed it by checking the index before calling wakeup_kswapd(). > BUG: unable to handle page fault for address: 00000000000033f3 > #PF: supervisor read access in kernel mode > #PF: error_code(0x0000) - not-present page > PGD 0 P4D 0 > Oops: 0000 [#1] PREEMPT SMP NOPTI > CPU: 2 PID: 895 Comm: masim Not tainted 6.6.0-dirty #255 > Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS > rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 > RIP: 0010:wakeup_kswapd (./linux/mm/vmscan.c:7812) > Code: (omitted) > RSP: 0000:ffffc90004257d58 EFLAGS: 00010286 > RAX: ffffffffffffffff RBX: ffff88883fff0480 RCX: 0000000000000003 > RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88883fff0480 > RBP: ffffffffffffffff R08: ff0003ffffffffff R09: ffffffffffffffff > R10: ffff888106c95540 R11: 0000000055555554 R12: 0000000000000003 > R13: 0000000000000000 R14: 0000000000000000 R15: ffff88883fff0940 > FS: 00007fc4b8124740(0000) GS:ffff888827c00000(0000) knlGS:0000000000000000 > CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 > CR2: 00000000000033f3 CR3: 000000026cc08004 CR4: 0000000000770ee0 > DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 > DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 > PKRU: 55555554 > Call Trace: > <TASK> > ? __die > ? page_fault_oops > ? __pte_offset_map_lock > ? exc_page_fault > ? asm_exc_page_fault > ? wakeup_kswapd > migrate_misplaced_page > __handle_mm_fault > handle_mm_fault > do_user_addr_fault > exc_page_fault > asm_exc_page_fault > RIP: 0033:0x55b897ba0808 > Code: (omitted) > RSP: 002b:00007ffeefa821a0 EFLAGS: 00010287 > RAX: 000055b89983acd0 RBX: 00007ffeefa823f8 RCX: 000055b89983acd0 > RDX: 00007fc2f8122010 RSI: 0000000000020000 RDI: 000055b89983acd0 > RBP: 00007ffeefa821a0 R08: 0000000000000037 R09: 0000000000000075 > R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000 > R13: 00007ffeefa82410 R14: 000055b897ba5dd8 R15: 00007fc4b8340000 > </TASK>
CVE-2024-26596 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: dsa: fix netdev_priv() dereference before check on non-DSA netdevice events After the blamed commit, we started doing this dereference for every NETDEV_CHANGEUPPER and NETDEV_PRECHANGEUPPER event in the system. static inline struct dsa_port *dsa_user_to_port(const struct net_device *dev) { struct dsa_user_priv *p = netdev_priv(dev); return p->dp; } Which is obviously bogus, because not all net_devices have a netdev_priv() of type struct dsa_user_priv. But struct dsa_user_priv is fairly small, and p->dp means dereferencing 8 bytes starting with offset 16. Most drivers allocate that much private memory anyway, making our access not fault, and we discard the bogus data quickly afterwards, so this wasn't caught. But the dummy interface is somewhat special in that it calls alloc_netdev() with a priv size of 0. So every netdev_priv() dereference is invalid, and we get this when we emit a NETDEV_PRECHANGEUPPER event with a VLAN as its new upper: $ ip link add dummy1 type dummy $ ip link add link dummy1 name dummy1.100 type vlan id 100 [ 43.309174] ================================================================== [ 43.316456] BUG: KASAN: slab-out-of-bounds in dsa_user_prechangeupper+0x30/0xe8 [ 43.323835] Read of size 8 at addr ffff3f86481d2990 by task ip/374 [ 43.330058] [ 43.342436] Call trace: [ 43.366542] dsa_user_prechangeupper+0x30/0xe8 [ 43.371024] dsa_user_netdevice_event+0xb38/0xee8 [ 43.375768] notifier_call_chain+0xa4/0x210 [ 43.379985] raw_notifier_call_chain+0x24/0x38 [ 43.384464] __netdev_upper_dev_link+0x3ec/0x5d8 [ 43.389120] netdev_upper_dev_link+0x70/0xa8 [ 43.393424] register_vlan_dev+0x1bc/0x310 [ 43.397554] vlan_newlink+0x210/0x248 [ 43.401247] rtnl_newlink+0x9fc/0xe30 [ 43.404942] rtnetlink_rcv_msg+0x378/0x580 Avoid the kernel oops by dereferencing after the type check, as customary.
CVE-2023-52927 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: allow exp not to be removed in nf_ct_find_expectation Currently nf_conntrack_in() calling nf_ct_find_expectation() will remove the exp from the hash table. However, in some scenario, we expect the exp not to be removed when the created ct will not be confirmed, like in OVS and TC conntrack in the following patches. This patch allows exp not to be removed by setting IPS_CONFIRMED in the status of the tmpl.
CVE-2023-36177 1 Badaix 1 Snapcast 2025-11-03 9.8 Critical
An issue was discovered in badaix Snapcast version 0.27.0, allows remote attackers to execute arbitrary code and gain sensitive information via crafted request in JSON-RPC-API.
CVE-2022-4415 2 Redhat, Systemd Project 3 Enterprise Linux, Rhel Eus, Systemd 2025-11-03 5.5 Medium
A vulnerability was found in systemd. This security flaw can cause a local information leak due to systemd-coredump not respecting the fs.suid_dumpable kernel setting.
CVE-2021-45098 2 Debian, Oisf 2 Debian Linux, Suricata 2025-11-03 7.5 High
An issue was discovered in Suricata before 6.0.4. It is possible to bypass/evade any HTTP-based signature by faking an RST TCP packet with random TCP options of the md5header from the client side. After the three-way handshake, it's possible to inject an RST ACK with a random TCP md5header option. Then, the client can send an HTTP GET request with a forbidden URL. The server will ignore the RST ACK and send the response HTTP packet for the client's request. These packets will not trigger a Suricata reject action.
CVE-2021-43666 2 Arm, Debian 2 Mbed Tls, Debian Linux 2025-11-03 7.5 High
A Denial of Service vulnerability exists in mbed TLS 3.0.0 and earlier in the mbedtls_pkcs12_derivation function when an input password's length is 0.
CVE-2020-36309 1 Openresty 1 Lua-nginx-module 2025-11-03 5.3 Medium
ngx_http_lua_module (aka lua-nginx-module) before 0.10.16 in OpenResty allows unsafe characters in an argument when using the API to mutate a URI, or a request or response header.
CVE-2019-11483 2 Apport Project, Canonical 2 Apport, Ubuntu Linux 2025-11-03 7 High
Sander Bos discovered Apport mishandled crash dumps originating from containers. This could be used by a local attacker to generate a crash report for a privileged process that is readable by an unprivileged user.
CVE-2025-43276 1 Apple 2 Macos, Macos Sequoia 2025-11-03 5.3 Medium
A logic error was addressed with improved error handling. This issue is fixed in macOS Sequoia 15.6. iCloud Private Relay may not activate when more than one user is logged in at the same time.
CVE-2025-21994 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix incorrect validation for num_aces field of smb_acl parse_dcal() validate num_aces to allocate posix_ace_state_array. if (num_aces > ULONG_MAX / sizeof(struct smb_ace *)) It is an incorrect validation that we can create an array of size ULONG_MAX. smb_acl has ->size field to calculate actual number of aces in request buffer size. Use this to check invalid num_aces.
CVE-2025-21960 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: eth: bnxt: do not update checksum in bnxt_xdp_build_skb() The bnxt_rx_pkt() updates ip_summed value at the end if checksum offload is enabled. When the XDP-MB program is attached and it returns XDP_PASS, the bnxt_xdp_build_skb() is called to update skb_shared_info. The main purpose of bnxt_xdp_build_skb() is to update skb_shared_info, but it updates ip_summed value too if checksum offload is enabled. This is actually duplicate work. When the bnxt_rx_pkt() updates ip_summed value, it checks if ip_summed is CHECKSUM_NONE or not. It means that ip_summed should be CHECKSUM_NONE at this moment. But ip_summed may already be updated to CHECKSUM_UNNECESSARY in the XDP-MB-PASS path. So the by skb_checksum_none_assert() WARNS about it. This is duplicate work and updating ip_summed in the bnxt_xdp_build_skb() is not needed. Splat looks like: WARNING: CPU: 3 PID: 5782 at ./include/linux/skbuff.h:5155 bnxt_rx_pkt+0x479b/0x7610 [bnxt_en] Modules linked in: bnxt_re bnxt_en rdma_ucm rdma_cm iw_cm ib_cm ib_uverbs veth xt_nat xt_tcpudp xt_conntrack nft_chain_nat xt_MASQUERADE nf_] CPU: 3 UID: 0 PID: 5782 Comm: socat Tainted: G W 6.14.0-rc4+ #27 Tainted: [W]=WARN Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021 RIP: 0010:bnxt_rx_pkt+0x479b/0x7610 [bnxt_en] Code: 54 24 0c 4c 89 f1 4c 89 ff c1 ea 1f ff d3 0f 1f 00 49 89 c6 48 85 c0 0f 84 4c e5 ff ff 48 89 c7 e8 ca 3d a0 c8 e9 8f f4 ff ff <0f> 0b f RSP: 0018:ffff88881ba09928 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 00000000c7590303 RCX: 0000000000000000 RDX: 1ffff1104e7d1610 RSI: 0000000000000001 RDI: ffff8881c91300b8 RBP: ffff88881ba09b28 R08: ffff888273e8b0d0 R09: ffff888273e8b070 R10: ffff888273e8b010 R11: ffff888278b0f000 R12: ffff888273e8b080 R13: ffff8881c9130e00 R14: ffff8881505d3800 R15: ffff888273e8b000 FS: 00007f5a2e7be080(0000) GS:ffff88881ba00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fff2e708ff8 CR3: 000000013e3b0000 CR4: 00000000007506f0 PKRU: 55555554 Call Trace: <IRQ> ? __warn+0xcd/0x2f0 ? bnxt_rx_pkt+0x479b/0x7610 ? report_bug+0x326/0x3c0 ? handle_bug+0x53/0xa0 ? exc_invalid_op+0x14/0x50 ? asm_exc_invalid_op+0x16/0x20 ? bnxt_rx_pkt+0x479b/0x7610 ? bnxt_rx_pkt+0x3e41/0x7610 ? __pfx_bnxt_rx_pkt+0x10/0x10 ? napi_complete_done+0x2cf/0x7d0 __bnxt_poll_work+0x4e8/0x1220 ? __pfx___bnxt_poll_work+0x10/0x10 ? __pfx_mark_lock.part.0+0x10/0x10 bnxt_poll_p5+0x36a/0xfa0 ? __pfx_bnxt_poll_p5+0x10/0x10 __napi_poll.constprop.0+0xa0/0x440 net_rx_action+0x899/0xd00 ... Following ping.py patch adds xdp-mb-pass case. so ping.py is going to be able to reproduce this issue.
CVE-2025-21913 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/amd_nb: Use rdmsr_safe() in amd_get_mmconfig_range() Xen doesn't offer MSR_FAM10H_MMIO_CONF_BASE to all guests. This results in the following warning: unchecked MSR access error: RDMSR from 0xc0010058 at rIP: 0xffffffff8101d19f (xen_do_read_msr+0x7f/0xa0) Call Trace: xen_read_msr+0x1e/0x30 amd_get_mmconfig_range+0x2b/0x80 quirk_amd_mmconfig_area+0x28/0x100 pnp_fixup_device+0x39/0x50 __pnp_add_device+0xf/0x150 pnp_add_device+0x3d/0x100 pnpacpi_add_device_handler+0x1f9/0x280 acpi_ns_get_device_callback+0x104/0x1c0 acpi_ns_walk_namespace+0x1d0/0x260 acpi_get_devices+0x8a/0xb0 pnpacpi_init+0x50/0x80 do_one_initcall+0x46/0x2e0 kernel_init_freeable+0x1da/0x2f0 kernel_init+0x16/0x1b0 ret_from_fork+0x30/0x50 ret_from_fork_asm+0x1b/0x30 based on quirks for a "PNP0c01" device. Treating MMCFG as disabled is the right course of action, so no change is needed there. This was most likely exposed by fixing the Xen MSR accessors to not be silently-safe.
CVE-2025-21881 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: uprobes: Reject the shared zeropage in uprobe_write_opcode() We triggered the following crash in syzkaller tests: BUG: Bad page state in process syz.7.38 pfn:1eff3 page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1eff3 flags: 0x3fffff00004004(referenced|reserved|node=0|zone=1|lastcpupid=0x1fffff) raw: 003fffff00004004 ffffe6c6c07bfcc8 ffffe6c6c07bfcc8 0000000000000000 raw: 0000000000000000 0000000000000000 00000000fffffffe 0000000000000000 page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x32/0x50 bad_page+0x69/0xf0 free_unref_page_prepare+0x401/0x500 free_unref_page+0x6d/0x1b0 uprobe_write_opcode+0x460/0x8e0 install_breakpoint.part.0+0x51/0x80 register_for_each_vma+0x1d9/0x2b0 __uprobe_register+0x245/0x300 bpf_uprobe_multi_link_attach+0x29b/0x4f0 link_create+0x1e2/0x280 __sys_bpf+0x75f/0xac0 __x64_sys_bpf+0x1a/0x30 do_syscall_64+0x56/0x100 entry_SYSCALL_64_after_hwframe+0x78/0xe2 BUG: Bad rss-counter state mm:00000000452453e0 type:MM_FILEPAGES val:-1 The following syzkaller test case can be used to reproduce: r2 = creat(&(0x7f0000000000)='./file0\x00', 0x8) write$nbd(r2, &(0x7f0000000580)=ANY=[], 0x10) r4 = openat(0xffffffffffffff9c, &(0x7f0000000040)='./file0\x00', 0x42, 0x0) mmap$IORING_OFF_SQ_RING(&(0x7f0000ffd000/0x3000)=nil, 0x3000, 0x0, 0x12, r4, 0x0) r5 = userfaultfd(0x80801) ioctl$UFFDIO_API(r5, 0xc018aa3f, &(0x7f0000000040)={0xaa, 0x20}) r6 = userfaultfd(0x80801) ioctl$UFFDIO_API(r6, 0xc018aa3f, &(0x7f0000000140)) ioctl$UFFDIO_REGISTER(r6, 0xc020aa00, &(0x7f0000000100)={{&(0x7f0000ffc000/0x4000)=nil, 0x4000}, 0x2}) ioctl$UFFDIO_ZEROPAGE(r5, 0xc020aa04, &(0x7f0000000000)={{&(0x7f0000ffd000/0x1000)=nil, 0x1000}}) r7 = bpf$PROG_LOAD(0x5, &(0x7f0000000140)={0x2, 0x3, &(0x7f0000000200)=ANY=[@ANYBLOB="1800000000120000000000000000000095"], &(0x7f0000000000)='GPL\x00', 0x7, 0x0, 0x0, 0x0, 0x0, '\x00', 0x0, @fallback=0x30, 0xffffffffffffffff, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x10, 0x0, @void, @value}, 0x94) bpf$BPF_LINK_CREATE_XDP(0x1c, &(0x7f0000000040)={r7, 0x0, 0x30, 0x1e, @val=@uprobe_multi={&(0x7f0000000080)='./file0\x00', &(0x7f0000000100)=[0x2], 0x0, 0x0, 0x1}}, 0x40) The cause is that zero pfn is set to the PTE without increasing the RSS count in mfill_atomic_pte_zeropage() and the refcount of zero folio does not increase accordingly. Then, the operation on the same pfn is performed in uprobe_write_opcode()->__replace_page() to unconditional decrease the RSS count and old_folio's refcount. Therefore, two bugs are introduced: 1. The RSS count is incorrect, when process exit, the check_mm() report error "Bad rss-count". 2. The reserved folio (zero folio) is freed when folio->refcount is zero, then free_pages_prepare->free_page_is_bad() report error "Bad page state". There is more, the following warning could also theoretically be triggered: __replace_page() -> ... -> folio_remove_rmap_pte() -> VM_WARN_ON_FOLIO(is_zero_folio(folio), folio) Considering that uprobe hit on the zero folio is a very rare case, just reject zero old folio immediately after get_user_page_vma_remote(). [ mingo: Cleaned up the changelog ]
CVE-2025-21872 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: efi: Don't map the entire mokvar table to determine its size Currently, when validating the mokvar table, we (re)map the entire table on each iteration of the loop, adding space as we discover new entries. If the table grows over a certain size, this fails due to limitations of early_memmap(), and we get a failure and traceback: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 0 at mm/early_ioremap.c:139 __early_ioremap+0xef/0x220 ... Call Trace: <TASK> ? __early_ioremap+0xef/0x220 ? __warn.cold+0x93/0xfa ? __early_ioremap+0xef/0x220 ? report_bug+0xff/0x140 ? early_fixup_exception+0x5d/0xb0 ? early_idt_handler_common+0x2f/0x3a ? __early_ioremap+0xef/0x220 ? efi_mokvar_table_init+0xce/0x1d0 ? setup_arch+0x864/0xc10 ? start_kernel+0x6b/0xa10 ? x86_64_start_reservations+0x24/0x30 ? x86_64_start_kernel+0xed/0xf0 ? common_startup_64+0x13e/0x141 </TASK> ---[ end trace 0000000000000000 ]--- mokvar: Failed to map EFI MOKvar config table pa=0x7c4c3000, size=265187. Mapping the entire structure isn't actually necessary, as we don't ever need more than one entry header mapped at once. Changes efi_mokvar_table_init() to only map each entry header, not the entire table, when determining the table size. Since we're not mapping any data past the variable name, it also changes the code to enforce that each variable name is NUL terminated, rather than attempting to verify it in place.
CVE-2025-21839 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Load DR6 with guest value only before entering .vcpu_run() loop Move the conditional loading of hardware DR6 with the guest's DR6 value out of the core .vcpu_run() loop to fix a bug where KVM can load hardware with a stale vcpu->arch.dr6. When the guest accesses a DR and host userspace isn't debugging the guest, KVM disables DR interception and loads the guest's values into hardware on VM-Enter and saves them on VM-Exit. This allows the guest to access DRs at will, e.g. so that a sequence of DR accesses to configure a breakpoint only generates one VM-Exit. For DR0-DR3, the logic/behavior is identical between VMX and SVM, and also identical between KVM_DEBUGREG_BP_ENABLED (userspace debugging the guest) and KVM_DEBUGREG_WONT_EXIT (guest using DRs), and so KVM handles loading DR0-DR3 in common code, _outside_ of the core kvm_x86_ops.vcpu_run() loop. But for DR6, the guest's value doesn't need to be loaded into hardware for KVM_DEBUGREG_BP_ENABLED, and SVM provides a dedicated VMCB field whereas VMX requires software to manually load the guest value, and so loading the guest's value into DR6 is handled by {svm,vmx}_vcpu_run(), i.e. is done _inside_ the core run loop. Unfortunately, saving the guest values on VM-Exit is initiated by common x86, again outside of the core run loop. If the guest modifies DR6 (in hardware, when DR interception is disabled), and then the next VM-Exit is a fastpath VM-Exit, KVM will reload hardware DR6 with vcpu->arch.dr6 and clobber the guest's actual value. The bug shows up primarily with nested VMX because KVM handles the VMX preemption timer in the fastpath, and the window between hardware DR6 being modified (in guest context) and DR6 being read by guest software is orders of magnitude larger in a nested setup. E.g. in non-nested, the VMX preemption timer would need to fire precisely between #DB injection and the #DB handler's read of DR6, whereas with a KVM-on-KVM setup, the window where hardware DR6 is "dirty" extends all the way from L1 writing DR6 to VMRESUME (in L1). L1's view: ========== <L1 disables DR interception> CPU 0/KVM-7289 [023] d.... 2925.640961: kvm_entry: vcpu 0 A: L1 Writes DR6 CPU 0/KVM-7289 [023] d.... 2925.640963: <hack>: Set DRs, DR6 = 0xffff0ff1 B: CPU 0/KVM-7289 [023] d.... 2925.640967: kvm_exit: vcpu 0 reason EXTERNAL_INTERRUPT intr_info 0x800000ec D: L1 reads DR6, arch.dr6 = 0 CPU 0/KVM-7289 [023] d.... 2925.640969: <hack>: Sync DRs, DR6 = 0xffff0ff0 CPU 0/KVM-7289 [023] d.... 2925.640976: kvm_entry: vcpu 0 L2 reads DR6, L1 disables DR interception CPU 0/KVM-7289 [023] d.... 2925.640980: kvm_exit: vcpu 0 reason DR_ACCESS info1 0x0000000000000216 CPU 0/KVM-7289 [023] d.... 2925.640983: kvm_entry: vcpu 0 CPU 0/KVM-7289 [023] d.... 2925.640983: <hack>: Set DRs, DR6 = 0xffff0ff0 L2 detects failure CPU 0/KVM-7289 [023] d.... 2925.640987: kvm_exit: vcpu 0 reason HLT L1 reads DR6 (confirms failure) CPU 0/KVM-7289 [023] d.... 2925.640990: <hack>: Sync DRs, DR6 = 0xffff0ff0 L0's view: ========== L2 reads DR6, arch.dr6 = 0 CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216 CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216 L2 => L1 nested VM-Exit CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit_inject: reason: DR_ACCESS ext_inf1: 0x0000000000000216 CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_entry: vcpu 23 CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_exit: vcpu 23 reason VMREAD CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_entry: vcpu 23 CPU 23/KVM-5046 [001] d.... 3410. ---truncated---
CVE-2025-21702 1 Linux 1 Linux Kernel 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: pfifo_tail_enqueue: Drop new packet when sch->limit == 0 Expected behaviour: In case we reach scheduler's limit, pfifo_tail_enqueue() will drop a packet in scheduler's queue and decrease scheduler's qlen by one. Then, pfifo_tail_enqueue() enqueue new packet and increase scheduler's qlen by one. Finally, pfifo_tail_enqueue() return `NET_XMIT_CN` status code. Weird behaviour: In case we set `sch->limit == 0` and trigger pfifo_tail_enqueue() on a scheduler that has no packet, the 'drop a packet' step will do nothing. This means the scheduler's qlen still has value equal 0. Then, we continue to enqueue new packet and increase scheduler's qlen by one. In summary, we can leverage pfifo_tail_enqueue() to increase qlen by one and return `NET_XMIT_CN` status code. The problem is: Let's say we have two qdiscs: Qdisc_A and Qdisc_B. - Qdisc_A's type must have '->graft()' function to create parent/child relationship. Let's say Qdisc_A's type is `hfsc`. Enqueue packet to this qdisc will trigger `hfsc_enqueue`. - Qdisc_B's type is pfifo_head_drop. Enqueue packet to this qdisc will trigger `pfifo_tail_enqueue`. - Qdisc_B is configured to have `sch->limit == 0`. - Qdisc_A is configured to route the enqueued's packet to Qdisc_B. Enqueue packet through Qdisc_A will lead to: - hfsc_enqueue(Qdisc_A) -> pfifo_tail_enqueue(Qdisc_B) - Qdisc_B->q.qlen += 1 - pfifo_tail_enqueue() return `NET_XMIT_CN` - hfsc_enqueue() check for `NET_XMIT_SUCCESS` and see `NET_XMIT_CN` => hfsc_enqueue() don't increase qlen of Qdisc_A. The whole process lead to a situation where Qdisc_A->q.qlen == 0 and Qdisc_B->q.qlen == 1. Replace 'hfsc' with other type (for example: 'drr') still lead to the same problem. This violate the design where parent's qlen should equal to the sum of its childrens'qlen. Bug impact: This issue can be used for user->kernel privilege escalation when it is reachable.
CVE-2024-45001 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: mana: Fix RX buf alloc_size alignment and atomic op panic The MANA driver's RX buffer alloc_size is passed into napi_build_skb() to create SKB. skb_shinfo(skb) is located at the end of skb, and its alignment is affected by the alloc_size passed into napi_build_skb(). The size needs to be aligned properly for better performance and atomic operations. Otherwise, on ARM64 CPU, for certain MTU settings like 4000, atomic operations may panic on the skb_shinfo(skb)->dataref due to alignment fault. To fix this bug, add proper alignment to the alloc_size calculation. Sample panic info: [ 253.298819] Unable to handle kernel paging request at virtual address ffff000129ba5cce [ 253.300900] Mem abort info: [ 253.301760] ESR = 0x0000000096000021 [ 253.302825] EC = 0x25: DABT (current EL), IL = 32 bits [ 253.304268] SET = 0, FnV = 0 [ 253.305172] EA = 0, S1PTW = 0 [ 253.306103] FSC = 0x21: alignment fault Call trace: __skb_clone+0xfc/0x198 skb_clone+0x78/0xe0 raw6_local_deliver+0xfc/0x228 ip6_protocol_deliver_rcu+0x80/0x500 ip6_input_finish+0x48/0x80 ip6_input+0x48/0xc0 ip6_sublist_rcv_finish+0x50/0x78 ip6_sublist_rcv+0x1cc/0x2b8 ipv6_list_rcv+0x100/0x150 __netif_receive_skb_list_core+0x180/0x220 netif_receive_skb_list_internal+0x198/0x2a8 __napi_poll+0x138/0x250 net_rx_action+0x148/0x330 handle_softirqs+0x12c/0x3a0
CVE-2023-6602 1 Ffmpeg 1 Ffmpeg 2025-11-03 5.3 Medium
A flaw was found in FFmpeg's TTY Demuxer. This vulnerability allows possible data exfiltration via improper parsing of non-TTY-compliant input files in HLS playlists.
CVE-2023-40184 1 Neutrinolabs 1 Xrdp 2025-11-03 2.6 Low
xrdp is an open source remote desktop protocol (RDP) server. In versions prior to 0.9.23 improper handling of session establishment errors allows bypassing OS-level session restrictions. The `auth_start_session` function can return non-zero (1) value on, e.g., PAM error which may result in in session restrictions such as max concurrent sessions per user by PAM (ex ./etc/security/limits.conf) to be bypassed. Users (administrators) don't use restrictions by PAM are not affected. This issue has been addressed in release version 0.9.23. Users are advised to upgrade. There are no known workarounds for this issue.