| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: ncm: Fix handling of zero block length packets
While connecting to a Linux host with CDC_NCM_NTB_DEF_SIZE_TX
set to 65536, it has been observed that we receive short packets,
which come at interval of 5-10 seconds sometimes and have block
length zero but still contain 1-2 valid datagrams present.
According to the NCM spec:
"If wBlockLength = 0x0000, the block is terminated by a
short packet. In this case, the USB transfer must still
be shorter than dwNtbInMaxSize or dwNtbOutMaxSize. If
exactly dwNtbInMaxSize or dwNtbOutMaxSize bytes are sent,
and the size is a multiple of wMaxPacketSize for the
given pipe, then no ZLP shall be sent.
wBlockLength= 0x0000 must be used with extreme care, because
of the possibility that the host and device may get out of
sync, and because of test issues.
wBlockLength = 0x0000 allows the sender to reduce latency by
starting to send a very large NTB, and then shortening it when
the sender discovers that there’s not sufficient data to justify
sending a large NTB"
However, there is a potential issue with the current implementation,
as it checks for the occurrence of multiple NTBs in a single
giveback by verifying if the leftover bytes to be processed is zero
or not. If the block length reads zero, we would process the same
NTB infintely because the leftover bytes is never zero and it leads
to a crash. Fix this by bailing out if block length reads zero. |
| In the Linux kernel, the following vulnerability has been resolved:
media: tc358743: register v4l2 async device only after successful setup
Ensure the device has been setup correctly before registering the v4l2
async device, thus allowing userspace to access. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mvpp2: clear BM pool before initialization
Register value persist after booting the kernel using
kexec which results in kernel panic. Thus clear the
BM pool registers before initialisation to fix the issue. |
| EIBIZ i-Media Server Digital Signage 3.8.0 contains an unauthenticated configuration disclosure vulnerability that allows remote attackers to access sensitive configuration files via direct object reference. Attackers can retrieve the SiteConfig.properties file through an HTTP GET request, exposing administrative credentials, database connection details, and system configuration information. |
| QiHang Media Web Digital Signage 3.0.9 contains a cleartext credentials vulnerability that allows unauthenticated attackers to access administrative login information through an unprotected XML file. Attackers can retrieve hardcoded admin credentials by requesting the '/xml/User/User.xml' file, enabling direct authentication bypass. |
| TOTOLINK A3300R V17.0.0cu.557_B20221024 and N200RE V9.3.5u.6448_B20240521 and V9.3.5u.6437_B20230519 are vulnerable to Incorrect Access Control. Attackers can send payloads to the interface without logging in (remote). |
| TOTOLINK N200RE V9.3.5u.6437_B20230519 is vulnerable to command Injection in setOpModeCfg via hostName. |
| TOTOLINK A3300R V17.0.0cu.596_B20250515 is vulnerable to command injection in the function NTPSyncWithHost via the host_time parameter. |
| In the Linux kernel, the following vulnerability has been resolved:
orangefs: Do not truncate file size
'len' is used to store the result of i_size_read(), so making 'len'
a size_t results in truncation to 4GiB on 32-bit systems. |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: hfsc: Address reentrant enqueue adding class to eltree twice
Savino says:
"We are writing to report that this recent patch
(141d34391abbb315d68556b7c67ad97885407547) [1]
can be bypassed, and a UAF can still occur when HFSC is utilized with
NETEM.
The patch only checks the cl->cl_nactive field to determine whether
it is the first insertion or not [2], but this field is only
incremented by init_vf [3].
By using HFSC_RSC (which uses init_ed) [4], it is possible to bypass the
check and insert the class twice in the eltree.
Under normal conditions, this would lead to an infinite loop in
hfsc_dequeue for the reasons we already explained in this report [5].
However, if TBF is added as root qdisc and it is configured with a
very low rate,
it can be utilized to prevent packets from being dequeued.
This behavior can be exploited to perform subsequent insertions in the
HFSC eltree and cause a UAF."
To fix both the UAF and the infinite loop, with netem as an hfsc child,
check explicitly in hfsc_enqueue whether the class is already in the eltree
whenever the HFSC_RSC flag is set.
[1] https://web.git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=141d34391abbb315d68556b7c67ad97885407547
[2] https://elixir.bootlin.com/linux/v6.15-rc5/source/net/sched/sch_hfsc.c#L1572
[3] https://elixir.bootlin.com/linux/v6.15-rc5/source/net/sched/sch_hfsc.c#L677
[4] https://elixir.bootlin.com/linux/v6.15-rc5/source/net/sched/sch_hfsc.c#L1574
[5] https://lore.kernel.org/netdev/8DuRWwfqjoRDLDmBMlIfbrsZg9Gx50DHJc1ilxsEBNe2D6NMoigR_eIRIG0LOjMc3r10nUUZtArXx4oZBIdUfZQrwjcQhdinnMis_0G7VEk=@willsroot.io/T/#u |
| QiHang Media Web Digital Signage 3.0.9 contains an unauthenticated remote code execution vulnerability in the QH.aspx file that allows attackers to upload malicious ASPX scripts. Attackers can exploit the file upload functionality by using the 'remotePath' and 'fileToUpload' parameters to write and execute arbitrary system commands on the server. |
| QiHang Media Web Digital Signage 3.0.9 contains an unauthenticated file deletion vulnerability in the QH.aspx endpoint that allows remote attackers to delete files without authentication. Attackers can exploit the 'data' parameter by sending a POST request with file paths to delete arbitrary files with web server permissions using directory traversal sequences. |
| ** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. Reason: This candidate was issued in error. Notes: All references and descriptions in this candidate have been removed to prevent accidental usage. |
| QiHang Media Web Digital Signage 3.0.9 contains an unauthenticated file disclosure vulnerability that allows remote attackers to access sensitive files through unverified 'filename' and 'path' parameters. Attackers can exploit the QH.aspx endpoint to read arbitrary files and directory contents without authentication by manipulating download and getAll actions. |
| Screen SFT DAB 1.9.3 contains an authentication bypass vulnerability that allows attackers to change the admin password without providing the current credentials. Attackers can exploit the userManager.cgx endpoint by sending a crafted JSON request with a new MD5-hashed password to directly modify the admin account. |
| In the Linux kernel, the following vulnerability has been resolved:
rseq: Fix segfault on registration when rseq_cs is non-zero
The rseq_cs field is documented as being set to 0 by user-space prior to
registration, however this is not currently enforced by the kernel. This
can result in a segfault on return to user-space if the value stored in
the rseq_cs field doesn't point to a valid struct rseq_cs.
The correct solution to this would be to fail the rseq registration when
the rseq_cs field is non-zero. However, some older versions of glibc
will reuse the rseq area of previous threads without clearing the
rseq_cs field and will also terminate the process if the rseq
registration fails in a secondary thread. This wasn't caught in testing
because in this case the leftover rseq_cs does point to a valid struct
rseq_cs.
What we can do is clear the rseq_cs field on registration when it's
non-zero which will prevent segfaults on registration and won't break
the glibc versions that reuse rseq areas on thread creation. |
| MailEnable versions prior to 10.54 contain an unsafe DLL loading vulnerability that can lead to local arbitrary code execution. The MailEnable administrative executable attempts to load MEAIDP.DLL from its installation directory without sufficient integrity validation or a secure search order. A local attacker with write access to that directory can plant a malicious MEAIDP.DLL, which is then loaded on execution, resulting in attacker-controlled code running with the privileges of the process. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_set_pipapo_avx2: fix initial map fill
If the first field doesn't cover the entire start map, then we must zero
out the remainder, else we leak those bits into the next match round map.
The early fix was incomplete and did only fix up the generic C
implementation.
A followup patch adds a test case to nft_concat_range.sh. |
| An integer overflow in the psdParser::ReadImageData function of FreeImage v3.18.0 and before allows attackers to cause a Denial of Service (DoS) via supplying a crafted PSD file. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix UAF on mgmt_remove_adv_monitor_complete
This reworks MGMT_OP_REMOVE_ADV_MONITOR to not use mgmt_pending_add to
avoid crashes like bellow:
==================================================================
BUG: KASAN: slab-use-after-free in mgmt_remove_adv_monitor_complete+0xe5/0x540 net/bluetooth/mgmt.c:5406
Read of size 8 at addr ffff88801c53f318 by task kworker/u5:5/5341
CPU: 0 UID: 0 PID: 5341 Comm: kworker/u5:5 Not tainted 6.15.0-syzkaller-10402-g4cb6c8af8591 #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xd2/0x2b0 mm/kasan/report.c:521
kasan_report+0x118/0x150 mm/kasan/report.c:634
mgmt_remove_adv_monitor_complete+0xe5/0x540 net/bluetooth/mgmt.c:5406
hci_cmd_sync_work+0x261/0x3a0 net/bluetooth/hci_sync.c:334
process_one_work kernel/workqueue.c:3238 [inline]
process_scheduled_works+0xade/0x17b0 kernel/workqueue.c:3321
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
kthread+0x711/0x8a0 kernel/kthread.c:464
ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 5987:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4358
kmalloc_noprof include/linux/slab.h:905 [inline]
kzalloc_noprof include/linux/slab.h:1039 [inline]
mgmt_pending_new+0x65/0x240 net/bluetooth/mgmt_util.c:252
mgmt_pending_add+0x34/0x120 net/bluetooth/mgmt_util.c:279
remove_adv_monitor+0x103/0x1b0 net/bluetooth/mgmt.c:5454
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x219/0x270 net/socket.c:727
sock_write_iter+0x258/0x330 net/socket.c:1131
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x548/0xa90 fs/read_write.c:686
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 5989:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2380 [inline]
slab_free mm/slub.c:4642 [inline]
kfree+0x18e/0x440 mm/slub.c:4841
mgmt_pending_foreach+0xc9/0x120 net/bluetooth/mgmt_util.c:242
mgmt_index_removed+0x10d/0x2f0 net/bluetooth/mgmt.c:9366
hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314
__sys_bind_socket net/socket.c:1810 [inline]
__sys_bind+0x2c3/0x3e0 net/socket.c:1841
__do_sys_bind net/socket.c:1846 [inline]
__se_sys_bind net/socket.c:1844 [inline]
__x64_sys_bind+0x7a/0x90 net/socket.c:1844
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f |