Total
715 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2024-56671 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: gpio: graniterapids: Fix vGPIO driver crash Move setting irq_chip.name from probe() function to the initialization of "irq_chip" struct in order to fix vGPIO driver crash during bootup. Crash was caused by unauthorized modification of irq_chip.name field where irq_chip struct was initialized as const. This behavior is a consequence of suboptimal implementation of gpio_irq_chip_set_chip(), which should be changed to avoid casting away const qualifier. Crash log: BUG: unable to handle page fault for address: ffffffffc0ba81c0 /#PF: supervisor write access in kernel mode /#PF: error_code(0x0003) - permissions violation CPU: 33 UID: 0 PID: 1075 Comm: systemd-udevd Not tainted 6.12.0-rc6-00077-g2e1b3cc9d7f7 #1 Hardware name: Intel Corporation Kaseyville RP/Kaseyville RP, BIOS KVLDCRB1.PGS.0026.D73.2410081258 10/08/2024 RIP: 0010:gnr_gpio_probe+0x171/0x220 [gpio_graniterapids] | ||||
| CVE-2024-56656 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix aggregation ID mask to prevent oops on 5760X chips The 5760X (P7) chip's HW GRO/LRO interface is very similar to that of the previous generation (5750X or P5). However, the aggregation ID fields in the completion structures on P7 have been redefined from 16 bits to 12 bits. The freed up 4 bits are redefined for part of the metadata such as the VLAN ID. The aggregation ID mask was not modified when adding support for P7 chips. Including the extra 4 bits for the aggregation ID can potentially cause the driver to store or fetch the packet header of GRO/LRO packets in the wrong TPA buffer. It may hit the BUG() condition in __skb_pull() because the SKB contains no valid packet header: kernel BUG at include/linux/skbuff.h:2766! Oops: invalid opcode: 0000 1 PREEMPT SMP NOPTI CPU: 4 UID: 0 PID: 0 Comm: swapper/4 Kdump: loaded Tainted: G OE 6.12.0-rc2+ #7 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: Dell Inc. PowerEdge R760/0VRV9X, BIOS 1.0.1 12/27/2022 RIP: 0010:eth_type_trans+0xda/0x140 Code: 80 00 00 00 eb c1 8b 47 70 2b 47 74 48 8b 97 d0 00 00 00 83 f8 01 7e 1b 48 85 d2 74 06 66 83 3a ff 74 09 b8 00 04 00 00 eb a5 <0f> 0b b8 00 01 00 00 eb 9c 48 85 ff 74 eb 31 f6 b9 02 00 00 00 48 RSP: 0018:ff615003803fcc28 EFLAGS: 00010283 RAX: 00000000000022d2 RBX: 0000000000000003 RCX: ff2e8c25da334040 RDX: 0000000000000040 RSI: ff2e8c25c1ce8000 RDI: ff2e8c25869f9000 RBP: ff2e8c258c31c000 R08: ff2e8c25da334000 R09: 0000000000000001 R10: ff2e8c25da3342c0 R11: ff2e8c25c1ce89c0 R12: ff2e8c258e0990b0 R13: ff2e8c25bb120000 R14: ff2e8c25c1ce89c0 R15: ff2e8c25869f9000 FS: 0000000000000000(0000) GS:ff2e8c34be300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f05317e4c8 CR3: 000000108bac6006 CR4: 0000000000773ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> ? die+0x33/0x90 ? do_trap+0xd9/0x100 ? eth_type_trans+0xda/0x140 ? do_error_trap+0x65/0x80 ? eth_type_trans+0xda/0x140 ? exc_invalid_op+0x4e/0x70 ? eth_type_trans+0xda/0x140 ? asm_exc_invalid_op+0x16/0x20 ? eth_type_trans+0xda/0x140 bnxt_tpa_end+0x10b/0x6b0 [bnxt_en] ? bnxt_tpa_start+0x195/0x320 [bnxt_en] bnxt_rx_pkt+0x902/0xd90 [bnxt_en] ? __bnxt_tx_int.constprop.0+0x89/0x300 [bnxt_en] ? kmem_cache_free+0x343/0x440 ? __bnxt_tx_int.constprop.0+0x24f/0x300 [bnxt_en] __bnxt_poll_work+0x193/0x370 [bnxt_en] bnxt_poll_p5+0x9a/0x300 [bnxt_en] ? try_to_wake_up+0x209/0x670 __napi_poll+0x29/0x1b0 Fix it by redefining the aggregation ID mask for P5_PLUS chips to be 12 bits. This will work because the maximum aggregation ID is less than 4096 on all P5_PLUS chips. | ||||
| CVE-2025-8011 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-09-26 | 8.8 High |
| Type Confusion in V8 in Google Chrome prior to 138.0.7204.168 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) | ||||
| CVE-2025-8010 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-09-26 | 8.8 High |
| Type Confusion in V8 in Google Chrome prior to 138.0.7204.168 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) | ||||
| CVE-2025-55236 | 1 Microsoft | 10 Windows 10 1809, Windows 10 21h2, Windows 10 22h2 and 7 more | 2025-09-25 | 7.3 High |
| Time-of-check time-of-use (toctou) race condition in Graphics Kernel allows an authorized attacker to execute code locally. | ||||
| CVE-2023-4194 | 4 Debian, Fedoraproject, Linux and 1 more | 5 Debian Linux, Fedora, Linux Kernel and 2 more | 2025-09-25 | 5.5 Medium |
| A flaw was found in the Linux kernel's TUN/TAP functionality. This issue could allow a local user to bypass network filters and gain unauthorized access to some resources. The original patches fixing CVE-2023-1076 are incorrect or incomplete. The problem is that the following upstream commits - a096ccca6e50 ("tun: tun_chr_open(): correctly initialize socket uid"), - 66b2c338adce ("tap: tap_open(): correctly initialize socket uid"), pass "inode->i_uid" to sock_init_data_uid() as the last parameter and that turns out to not be accurate. | ||||
| CVE-2025-21632 | 1 Linux | 1 Linux Kernel | 2025-09-24 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Ensure shadow stack is active before "getting" registers The x86 shadow stack support has its own set of registers. Those registers are XSAVE-managed, but they are "supervisor state components" which means that userspace can not touch them with XSAVE/XRSTOR. It also means that they are not accessible from the existing ptrace ABI for XSAVE state. Thus, there is a new ptrace get/set interface for it. The regset code that ptrace uses provides an ->active() handler in addition to the get/set ones. For shadow stack this ->active() handler verifies that shadow stack is enabled via the ARCH_SHSTK_SHSTK bit in the thread struct. The ->active() handler is checked from some call sites of the regset get/set handlers, but not the ptrace ones. This was not understood when shadow stack support was put in place. As a result, both the set/get handlers can be called with XFEATURE_CET_USER in its init state, which would cause get_xsave_addr() to return NULL and trigger a WARN_ON(). The ssp_set() handler luckily has an ssp_active() check to avoid surprising the kernel with shadow stack behavior when the kernel is not ready for it (ARCH_SHSTK_SHSTK==0). That check just happened to avoid the warning. But the ->get() side wasn't so lucky. It can be called with shadow stacks disabled, triggering the warning in practice, as reported by Christina Schimpe: WARNING: CPU: 5 PID: 1773 at arch/x86/kernel/fpu/regset.c:198 ssp_get+0x89/0xa0 [...] Call Trace: <TASK> ? show_regs+0x6e/0x80 ? ssp_get+0x89/0xa0 ? __warn+0x91/0x150 ? ssp_get+0x89/0xa0 ? report_bug+0x19d/0x1b0 ? handle_bug+0x46/0x80 ? exc_invalid_op+0x1d/0x80 ? asm_exc_invalid_op+0x1f/0x30 ? __pfx_ssp_get+0x10/0x10 ? ssp_get+0x89/0xa0 ? ssp_get+0x52/0xa0 __regset_get+0xad/0xf0 copy_regset_to_user+0x52/0xc0 ptrace_regset+0x119/0x140 ptrace_request+0x13c/0x850 ? wait_task_inactive+0x142/0x1d0 ? do_syscall_64+0x6d/0x90 arch_ptrace+0x102/0x300 [...] Ensure that shadow stacks are active in a thread before looking them up in the XSAVE buffer. Since ARCH_SHSTK_SHSTK and user_ssp[SHSTK_EN] are set at the same time, the active check ensures that there will be something to find in the XSAVE buffer. [ dhansen: changelog/subject tweaks ] | ||||
| CVE-2025-7995 | 1 Ashlar | 1 Cobalt | 2025-09-22 | N/A |
| Ashlar-Vellum Cobalt CO File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25981. | ||||
| CVE-2025-7999 | 1 Ashlar | 1 Cobalt | 2025-09-22 | N/A |
| Ashlar-Vellum Cobalt AR File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of AR files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26049. | ||||
| CVE-2025-8000 | 1 Ashlar | 1 Cobalt | 2025-09-22 | N/A |
| Ashlar-Vellum Cobalt LI File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of LI files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26051. | ||||
| CVE-2025-8002 | 1 Ashlar | 1 Cobalt | 2025-09-22 | N/A |
| Ashlar-Vellum Cobalt CO File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26233. | ||||
| CVE-2025-8005 | 1 Ashlar | 1 Cobalt | 2025-09-22 | N/A |
| Ashlar-Vellum Cobalt XE File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of XE files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26237. | ||||
| CVE-2025-30383 | 1 Microsoft | 5 365 Apps, Excel, Office and 2 more | 2025-09-10 | 7.8 High |
| Access of resource using incompatible type ('type confusion') in Microsoft Office Excel allows an unauthorized attacker to execute code locally. | ||||
| CVE-2025-30375 | 1 Microsoft | 5 365 Apps, Excel, Office and 2 more | 2025-09-10 | 7.8 High |
| Access of resource using incompatible type ('type confusion') in Microsoft Office Excel allows an unauthorized attacker to execute code locally. | ||||
| CVE-2025-21326 | 1 Microsoft | 2 Windows Server 2022 23h2, Windows Server 2025 | 2025-09-09 | 7.8 High |
| Internet Explorer Remote Code Execution Vulnerability | ||||
| CVE-2025-21225 | 1 Microsoft | 5 Windows Server 2016, Windows Server 2019, Windows Server 2022 and 2 more | 2025-09-09 | 5.9 Medium |
| Windows Remote Desktop Gateway (RD Gateway) Denial of Service Vulnerability | ||||
| CVE-2025-21356 | 1 Microsoft | 3 365 Apps, Office, Office Long Term Servicing Channel | 2025-09-09 | 7.8 High |
| Microsoft Office Visio Remote Code Execution Vulnerability | ||||
| CVE-2023-31322 | 1 Amd | 3 Radeon, Radeon Pro W7000, Radeon Rx 7000 | 2025-09-09 | 8.7 High |
| Type confusion in the ASP could allow an attacker to pass a malformed argument to the Reliability, Availability, and Serviceability trusted application (RAS TA) potentially leading to a read or write to shared memory resulting in loss of confidentiality, integrity, or availability. | ||||
| CVE-2025-22435 | 1 Google | 1 Android | 2025-09-04 | 9.8 Critical |
| In avdt_msg_ind of avdt_msg.cc, there is a possible memory corruption due to type confusion. This could lead to paired device escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. | ||||
| CVE-2024-13275 | 1 Security Kit Project | 1 Security Kit | 2025-09-02 | 5.3 Medium |
| Access of Resource Using Incompatible Type ('Type Confusion') vulnerability in Drupal Security Kit allows HTTP DoS.This issue affects Security Kit: from 0.0.0 before 2.0.3. | ||||