| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
fork: do not invoke uffd on fork if error occurs
Patch series "fork: do not expose incomplete mm on fork".
During fork we may place the virtual memory address space into an
inconsistent state before the fork operation is complete.
In addition, we may encounter an error during the fork operation that
indicates that the virtual memory address space is invalidated.
As a result, we should not be exposing it in any way to external machinery
that might interact with the mm or VMAs, machinery that is not designed to
deal with incomplete state.
We specifically update the fork logic to defer khugepaged and ksm to the
end of the operation and only to be invoked if no error arose, and
disallow uffd from observing fork events should an error have occurred.
This patch (of 2):
Currently on fork we expose the virtual address space of a process to
userland unconditionally if uffd is registered in VMAs, regardless of
whether an error arose in the fork.
This is performed in dup_userfaultfd_complete() which is invoked
unconditionally, and performs two duties - invoking registered handlers
for the UFFD_EVENT_FORK event via dup_fctx(), and clearing down
userfaultfd_fork_ctx objects established in dup_userfaultfd().
This is problematic, because the virtual address space may not yet be
correctly initialised if an error arose.
The change in commit d24062914837 ("fork: use __mt_dup() to duplicate
maple tree in dup_mmap()") makes this more pertinent as we may be in a
state where entries in the maple tree are not yet consistent.
We address this by, on fork error, ensuring that we roll back state that
we would otherwise expect to clean up through the event being handled by
userland and perform the memory freeing duty otherwise performed by
dup_userfaultfd_complete().
We do this by implementing a new function, dup_userfaultfd_fail(), which
performs the same loop, only decrementing reference counts.
Note that we perform mmgrab() on the parent and child mm's, however
userfaultfd_ctx_put() will mmdrop() this once the reference count drops to
zero, so we will avoid memory leaks correctly here. |
| Race condition in Lapce v0.2.8 allows an attacker to elevate privileges on the system |
| NVIDIA Container Toolkit for Linux contains a Time-of-Check Time-of-Use (TOCTOU) vulnerability when used with default configuration, where a crafted container image could gain access to the host file system. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering. |
| containerd is a container runtime. A time-of-check to time-of-use (TOCTOU) vulnerability was found in containerd v2.1.0. While unpacking an image during an image pull, specially crafted container images could arbitrarily modify the host file system. The only affected version of containerd is 2.1.0. Other versions of containerd are not affected. This bug has been fixed in containerd 2.1.1. Users should update to this version to resolve the issue. As a workaround, ensure that only trusted images are used and that only trusted users have permissions to import images. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zoned: do not flag ZEROOUT on non-dirty extent buffer
Btrfs clears the content of an extent buffer marked as
EXTENT_BUFFER_ZONED_ZEROOUT before the bio submission. This mechanism is
introduced to prevent a write hole of an extent buffer, which is once
allocated, marked dirty, but turns out unnecessary and cleaned up within
one transaction operation.
Currently, btrfs_clear_buffer_dirty() marks the extent buffer as
EXTENT_BUFFER_ZONED_ZEROOUT, and skips the entry function. If this call
happens while the buffer is under IO (with the WRITEBACK flag set,
without the DIRTY flag), we can add the ZEROOUT flag and clear the
buffer's content just before a bio submission. As a result:
1) it can lead to adding faulty delayed reference item which leads to a
FS corrupted (EUCLEAN) error, and
2) it writes out cleared tree node on disk
The former issue is previously discussed in [1]. The corruption happens
when it runs a delayed reference update. So, on-disk data is safe.
[1] https://lore.kernel.org/linux-btrfs/3f4f2a0ff1a6c818050434288925bdcf3cd719e5.1709124777.git.naohiro.aota@wdc.com/
The latter one can reach on-disk data. But, as that node is already
processed by btrfs_clear_buffer_dirty(), that will be invalidated in the
next transaction commit anyway. So, the chance of hitting the corruption
is relatively small.
Anyway, we should skip flagging ZEROOUT on a non-DIRTY extent buffer, to
keep the content under IO intact. |
| Race condition in the Zoom Workplace VDI Plugin macOS Universal installer for VMware Horizon before version 6.4.10 (or before 6.2.15 and 6.3.12 in their respective tracks) may allow an authenticated user to conduct a disclosure of information via network access. |
| Time-of-check time-of-use (toctou) race condition in Windows Virtual Machine Bus allows an unauthorized attacker to execute code locally. |
| Time-of-check time-of-use (toctou) race condition in Windows Fundamentals allows an authorized attacker to execute code over a network. |
| Velocidex WinPmem versions 4.1 and below suffer from an Improper Input Validation vulnerability whereby an attacker with admin access can trigger a BSOD with a parallel thread changing the memory’s access right under the control of the user-mode application. This is due to verification only being performed at the beginning of the routine allowing the userspace to change page permissions half way through the routine. A valid workaround is a rule to detect unauthorized loading of winpmem outside incident response operations. |
| A race condition in GitHub Enterprise Server allowed an existing admin to maintain permissions on a detached repository by making a GraphQL mutation to alter repository permissions while the repository is detached. This vulnerability affected all versions of GitHub Enterprise Server prior to 3.13 and was fixed in versions 3.9.13, 3.10.10, 3.11.8 and 3.12.1. This vulnerability was reported via the GitHub Bug Bounty program. |
| Race Condition in the Directory Validation Logic in the TeamViewer Full Client and Host prior version 15.69 on Windows allows a local non-admin user to create arbitrary files with SYSTEM privileges, potentially leading to a denial-of-service condition, via symbolic link manipulation during directory verification. |
| There is a race condition in the 'replaced executable' detection that, with the correct local configuration, allow an attacker to execute arbitrary code as root. |
| Time-of-check time-of-use (toctou) race condition in Microsoft Windows QoS scheduler allows an authorized attacker to elevate privileges locally. |
| Time-of-check time-of-use (toctou) race condition in Windows BitLocker allows an unauthorized attacker to bypass a security feature with a physical attack. |
| Time-of-check time-of-use (toctou) race condition in Windows BitLocker allows an unauthorized attacker to bypass a security feature with a physical attack. |
| Symantec Endpoint Protection Windows Agent, running an ERASER Engine prior to 119.1.7.8, may be susceptible to an Elevation of Privilege vulnerability, which may allow an attacker to delete resources that are normally protected from an application or user. |
| Memory corruption occurs during the copying of read data from the EEPROM because the IO configuration is exposed as shared memory. |
| Memory corruption while processing INIT and multimode invoke IOCTL calls on FastRPC. |
| Memory corruption may occur while processing the OIS packet parser. |
| Memory corruption while processing I2C settings in Camera driver. |