| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Out-of-bounds Read vulnerability in Mitsubishi Electric GENESIS64 versions 10.97 to 10.97.1, Mitsubishi Electric Iconics Digital Solutions GENESIS64 versions 10.97 to 10.97.1, Mitsubishi Electric ICONICS Suite versions 10.97 to 10.97.1, Mitsubishi Electric Iconics Digital Solutions ICONICS Suite versions 10.97 to 10.97.1, Mitsubishi Electric GENESIS32 versions 9.7 and prior, Mitsubishi Electric Iconics Digital Solutions GENESIS32 versions 9.7 and prior, and Mitsubishi Electric MC Works64 versions 4.04E and prior allows a remote unauthenticated attacker to disclose information on memory or cause a Denial of Service (DoS) condition by sending specially crafted packets to the GENESIS64, ICONICS Suite, GENESIS32, or MC Works64 server. |
| An information disclosure vulnerability exists in multiple WSO2 products due to improper implementation of the enrich mediator. Authenticated users may be able to view unintended business data from other mediation contexts because the internal state is not properly isolated or cleared between executions.
This vulnerability does not impact user credentials or access tokens but may lead to leakage of sensitive business information handled during message flows. |
| An off-by-one error was found in QEMU's KVM Xen guest support. A malicious guest could use this flaw to trigger out-of-bounds heap accesses in the QEMU process via the emulated Xen physdev hypercall interface, leading to a denial of service or potential memory corruption. |
| In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Fix 1-byte out-of-bounds read in uvc_parse_format()
The buffer length check before calling uvc_parse_format() only ensured
that the buffer has at least 3 bytes (buflen > 2), buf the function
accesses buffer[3], requiring at least 4 bytes.
This can lead to an out-of-bounds read if the buffer has exactly 3 bytes.
Fix it by checking that the buffer has at least 4 bytes in
uvc_parse_format(). |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid out-of-boundary access in dnode page
As Jiaming Zhang reported:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x1c1/0x2a0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x17e/0x800 mm/kasan/report.c:480
kasan_report+0x147/0x180 mm/kasan/report.c:593
data_blkaddr fs/f2fs/f2fs.h:3053 [inline]
f2fs_data_blkaddr fs/f2fs/f2fs.h:3058 [inline]
f2fs_get_dnode_of_data+0x1a09/0x1c40 fs/f2fs/node.c:855
f2fs_reserve_block+0x53/0x310 fs/f2fs/data.c:1195
prepare_write_begin fs/f2fs/data.c:3395 [inline]
f2fs_write_begin+0xf39/0x2190 fs/f2fs/data.c:3594
generic_perform_write+0x2c7/0x910 mm/filemap.c:4112
f2fs_buffered_write_iter fs/f2fs/file.c:4988 [inline]
f2fs_file_write_iter+0x1ec8/0x2410 fs/f2fs/file.c:5216
new_sync_write fs/read_write.c:593 [inline]
vfs_write+0x546/0xa90 fs/read_write.c:686
ksys_write+0x149/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xf3/0x3d0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The root cause is in the corrupted image, there is a dnode has the same
node id w/ its inode, so during f2fs_get_dnode_of_data(), it tries to
access block address in dnode at offset 934, however it parses the dnode
as inode node, so that get_dnode_addr() returns 360, then it tries to
access page address from 360 + 934 * 4 = 4096 w/ 4 bytes.
To fix this issue, let's add sanity check for node id of all direct nodes
during f2fs_get_dnode_of_data(). |
| In the Linux kernel, the following vulnerability has been resolved:
media: venus: Fix OOB read due to missing payload bound check
Currently, The event_seq_changed() handler processes a variable number
of properties sent by the firmware. The number of properties is indicated
by the firmware and used to iterate over the payload. However, the
payload size is not being validated against the actual message length.
This can lead to out-of-bounds memory access if the firmware provides a
property count that exceeds the data available in the payload. Such a
condition can result in kernel crashes or potential information leaks if
memory beyond the buffer is accessed.
Fix this by properly validating the remaining size of the payload before
each property access and updating bounds accordingly as properties are
parsed.
This ensures that property parsing is safely bounded within the received
message buffer and protects against malformed or malicious firmware
behavior. |
| In PHP versions:8.1.* before 8.1.34, 8.2.* before 8.2.30, 8.3.* before 8.3.29, 8.4.* before 8.4.16, 8.5.* before 8.5.1, the getimagesize() function may leak uninitialized heap memory into the APPn segments (e.g., APP1) when reading images in multi-chunk mode (such as via php://filter). This occurs due to a bug in php_read_stream_all_chunks() that overwrites the buffer without advancing the pointer, leaving tail bytes uninitialized. This may lead to information disclosure of sensitive heap data and affect the confidentiality of the target server. |
| A weakness has been identified in QuickJS up to eb2c89087def1829ed99630cb14b549d7a98408c. This affects the function js_array_buffer_slice of the file quickjs.c. This manipulation causes buffer over-read. The attack is restricted to local execution. The exploit has been made available to the public and could be exploited. This product adopts a rolling release strategy to maintain continuous delivery Patch name: c6fe5a98fd3ef3b7064e6e0145dfebfe12449fea. To fix this issue, it is recommended to deploy a patch. |
| An integer underflow vulnerability in the Silicon Labs Z-Wave Protocol Controller can lead to out of bounds memory reads. |
| In the Linux kernel, the following vulnerability has been resolved:
smb3: fix for slab out of bounds on mount to ksmbd
With KASAN enabled, it is possible to get a slab out of bounds
during mount to ksmbd due to missing check in parse_server_interfaces()
(see below):
BUG: KASAN: slab-out-of-bounds in
parse_server_interfaces+0x14ee/0x1880 [cifs]
Read of size 4 at addr ffff8881433dba98 by task mount/9827
CPU: 5 UID: 0 PID: 9827 Comm: mount Tainted: G
OE 6.16.0-rc2-kasan #2 PREEMPT(voluntary)
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: Dell Inc. Precision Tower 3620/0MWYPT,
BIOS 2.13.1 06/14/2019
Call Trace:
<TASK>
dump_stack_lvl+0x9f/0xf0
print_report+0xd1/0x670
__virt_addr_valid+0x22c/0x430
? parse_server_interfaces+0x14ee/0x1880 [cifs]
? kasan_complete_mode_report_info+0x2a/0x1f0
? parse_server_interfaces+0x14ee/0x1880 [cifs]
kasan_report+0xd6/0x110
parse_server_interfaces+0x14ee/0x1880 [cifs]
__asan_report_load_n_noabort+0x13/0x20
parse_server_interfaces+0x14ee/0x1880 [cifs]
? __pfx_parse_server_interfaces+0x10/0x10 [cifs]
? trace_hardirqs_on+0x51/0x60
SMB3_request_interfaces+0x1ad/0x3f0 [cifs]
? __pfx_SMB3_request_interfaces+0x10/0x10 [cifs]
? SMB2_tcon+0x23c/0x15d0 [cifs]
smb3_qfs_tcon+0x173/0x2b0 [cifs]
? __pfx_smb3_qfs_tcon+0x10/0x10 [cifs]
? cifs_get_tcon+0x105d/0x2120 [cifs]
? do_raw_spin_unlock+0x5d/0x200
? cifs_get_tcon+0x105d/0x2120 [cifs]
? __pfx_smb3_qfs_tcon+0x10/0x10 [cifs]
cifs_mount_get_tcon+0x369/0xb90 [cifs]
? dfs_cache_find+0xe7/0x150 [cifs]
dfs_mount_share+0x985/0x2970 [cifs]
? check_path.constprop.0+0x28/0x50
? save_trace+0x54/0x370
? __pfx_dfs_mount_share+0x10/0x10 [cifs]
? __lock_acquire+0xb82/0x2ba0
? __kasan_check_write+0x18/0x20
cifs_mount+0xbc/0x9e0 [cifs]
? __pfx_cifs_mount+0x10/0x10 [cifs]
? do_raw_spin_unlock+0x5d/0x200
? cifs_setup_cifs_sb+0x29d/0x810 [cifs]
cifs_smb3_do_mount+0x263/0x1990 [cifs] |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: asix_devices: Fix PHY address mask in MDIO bus initialization
Syzbot reported shift-out-of-bounds exception on MDIO bus initialization.
The PHY address should be masked to 5 bits (0-31). Without this
mask, invalid PHY addresses could be used, potentially causing issues
with MDIO bus operations.
Fix this by masking the PHY address with 0x1f (31 decimal) to ensure
it stays within the valid range. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Limit access to parser->buffer when trace_get_user failed
When the length of the string written to set_ftrace_filter exceeds
FTRACE_BUFF_MAX, the following KASAN alarm will be triggered:
BUG: KASAN: slab-out-of-bounds in strsep+0x18c/0x1b0
Read of size 1 at addr ffff0000d00bd5ba by task ash/165
CPU: 1 UID: 0 PID: 165 Comm: ash Not tainted 6.16.0-g6bcdbd62bd56-dirty
Hardware name: linux,dummy-virt (DT)
Call trace:
show_stack+0x34/0x50 (C)
dump_stack_lvl+0xa0/0x158
print_address_description.constprop.0+0x88/0x398
print_report+0xb0/0x280
kasan_report+0xa4/0xf0
__asan_report_load1_noabort+0x20/0x30
strsep+0x18c/0x1b0
ftrace_process_regex.isra.0+0x100/0x2d8
ftrace_regex_release+0x484/0x618
__fput+0x364/0xa58
____fput+0x28/0x40
task_work_run+0x154/0x278
do_notify_resume+0x1f0/0x220
el0_svc+0xec/0xf0
el0t_64_sync_handler+0xa0/0xe8
el0t_64_sync+0x1ac/0x1b0
The reason is that trace_get_user will fail when processing a string
longer than FTRACE_BUFF_MAX, but not set the end of parser->buffer to 0.
Then an OOB access will be triggered in ftrace_regex_release->
ftrace_process_regex->strsep->strpbrk. We can solve this problem by
limiting access to parser->buffer when trace_get_user failed. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: pcl726: Prevent invalid irq number
The reproducer passed in an irq number(0x80008000) that was too large,
which triggered the oob.
Added an interrupt number check to prevent users from passing in an irq
number that was too large.
If `it->options[1]` is 31, then `1 << it->options[1]` is still invalid
because it shifts a 1-bit into the sign bit (which is UB in C).
Possible solutions include reducing the upper bound on the
`it->options[1]` value to 30 or lower, or using `1U << it->options[1]`.
The old code would just not attempt to request the IRQ if the
`options[1]` value were invalid. And it would still configure the
device without interrupts even if the call to `request_irq` returned an
error. So it would be better to combine this test with the test below. |
| Buffer Over-read vulnerability in Mitsubishi Electric MC Works64 versions 4.00A to 4.04E, Mitsubishi Electric GENESIS64 versions 10.97 and prior, Mitsubishi Electric Iconics Digital Solutions GENESIS64 versions 10.97 and prior, Mitsubishi Electric ICONICS Suite versions 10.97 and prior, Mitsubishi Electric Iconics Digital Solutions ICONICS Suite versions 10.97 and prior, Mitsubishi Electric GENESIS32 versions 9.7 and prior, and Mitsubishi Electric Iconics Digital Solutions GENESIS32 versions 9.7 and prior allows an attacker to cause a DoS condition in the database server by getting a legitimate user to import a configuration file containing specially crafted stored procedures into GENESIS64, ICONICS Suite, MC Works64, or GENESIS32 and execute commands against the database from GENESIS64, ICONICS Suite, MC Works64, or GENESIS32. |
| A vulnerability has been identified in the libarchive library. This flaw can be triggered when file streams are piped into bsdtar, potentially allowing for reading past the end of the file. This out-of-bounds read can lead to unintended consequences, including unpredictable program behavior, memory corruption, or a denial-of-service condition. |
| Out-of-bounds read in Windows Defender Firewall Service allows an authorized attacker to disclose information locally. |
| Out-of-bounds read in Windows Projected File System allows an authorized attacker to elevate privileges locally. |
| Out-of-bounds read in Application Information Services allows an authorized attacker to elevate privileges locally. |
| Out-of-bounds read in Microsoft Office Excel allows an unauthorized attacker to execute code locally. |
| Out-of-bounds read in Windows Cloud Files Mini Filter Driver allows an authorized attacker to elevate privileges locally. |