| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in QEMU. The async nature of hot-unplug enables a race scenario where the net device backend is cleared before the virtio-net pci frontend has been unplugged. A malicious guest could use this time window to trigger an assertion and cause a denial of service. |
| A flaw was found in GLib. GVariant deserialization is vulnerable to an exponential blowup issue where a crafted GVariant can cause excessive processing, leading to denial of service. |
| A flaw was found in glib, where the gvariant deserialization code is vulnerable to a denial of service introduced by additional input validation added to resolve CVE-2023-29499. The offset table validation may be very slow. This bug does not affect any released version of glib but does affect glib distributors who followed the guidance of glib developers to backport the initial fix for CVE-2023-29499. |
| A flaw was found in GLib. GVariant deserialization is vulnerable to a slowdown issue where a crafted GVariant can cause excessive processing, leading to denial of service. |
| The issue was addressed with improved memory handling. This issue is fixed in watchOS 9.3, tvOS 16.3, macOS Ventura 13.2, iOS 16.3 and iPadOS 16.3. Processing web content may lead to arbitrary code execution. |
| A logic issue was addressed with improved validation. This issue is fixed in macOS Ventura 13.3. Content Security Policy to block domains with wildcards may fail. |
| An authentication issue was addressed with improved state management. This issue is fixed in macOS Big Sur 11.7.7, macOS Monterey 12.6.6, macOS Ventura 13.4. An unauthenticated user may be able to access recently printed documents. |
| This issue was addressed with improved redaction of sensitive information. This issue is fixed in iOS 16.7.2 and iPadOS 16.7.2. A user's password may be read aloud by VoiceOver. |
| OpenPrinting CUPS is an open source printing system. In versions 2.4.2 and prior, a heap buffer overflow vulnerability would allow a remote attacker to launch a denial of service (DoS) attack. A buffer overflow vulnerability in the function `format_log_line` could allow remote attackers to cause a DoS on the affected system. Exploitation of the vulnerability can be triggered when the configuration file `cupsd.conf` sets the value of `loglevel `to `DEBUG`. No known patches or workarounds exist at time of publication. |
| A flaw was found in the Linux kernel's ksmbd, a high-performance in-kernel SMB server. The specific flaw exists within the processing of SMB2_TREE_DISCONNECT commands. The issue results from the lack of proper locking when performing operations on an object. An attacker can leverage this vulnerability to execute code in the context of the kernel. |
| A flaw was found in the Linux kernel's ksmbd, a high-performance in-kernel SMB server. The specific flaw exists within the processing of SMB2_SESSION_SETUP commands. The issue results from the lack of proper locking when performing operations on an object. An attacker can leverage this vulnerability to execute code in the context of the kernel. |
| c-ares is an asynchronous resolver library. c-ares is vulnerable to denial of service. If a target resolver sends a query, the attacker forges a malformed UDP packet with a length of 0 and returns them to the target resolver. The target resolver erroneously interprets the 0 length as a graceful shutdown of the connection. This issue has been patched in version 1.19.1. |
| c-ares is an asynchronous resolver library. When /dev/urandom or RtlGenRandom() are unavailable, c-ares uses rand() to generate random numbers used for DNS query ids. This is not a CSPRNG, and it is also not seeded by srand() so will generate predictable output. Input from the random number generator is fed into a non-compilant RC4 implementation and may not be as strong as the original RC4 implementation. No attempt is made to look for modern OS-provided CSPRNGs like arc4random() that is widely available. This issue has been fixed in version 1.19.1. |
| Extremely large RSA keys in certificate chains can cause a client/server to expend significant CPU time verifying signatures. With fix, the size of RSA keys transmitted during handshakes is restricted to <= 8192 bits. Based on a survey of publicly trusted RSA keys, there are currently only three certificates in circulation with keys larger than this, and all three appear to be test certificates that are not actively deployed. It is possible there are larger keys in use in private PKIs, but we target the web PKI, so causing breakage here in the interests of increasing the default safety of users of crypto/tls seems reasonable. |
| The HTTP/1 client does not fully validate the contents of the Host header. A maliciously crafted Host header can inject additional headers or entire requests. With fix, the HTTP/1 client now refuses to send requests containing an invalid Request.Host or Request.URL.Host value. |
| On Unix platforms, the Go runtime does not behave differently when a binary is run with the setuid/setgid bits. This can be dangerous in certain cases, such as when dumping memory state, or assuming the status of standard i/o file descriptors. If a setuid/setgid binary is executed with standard I/O file descriptors closed, opening any files can result in unexpected content being read or written with elevated privileges. Similarly, if a setuid/setgid program is terminated, either via panic or signal, it may leak the contents of its registers. |
| The go command may generate unexpected code at build time when using cgo. This may result in unexpected behavior when running a go program which uses cgo. This may occur when running an untrusted module which contains directories with newline characters in their names. Modules which are retrieved using the go command, i.e. via "go get", are not affected (modules retrieved using GOPATH-mode, i.e. GO111MODULE=off, may be affected). |
| Redis is an open source, in-memory database that persists on disk. Authenticated users can use the `HINCRBYFLOAT` command to create an invalid hash field that will crash Redis on access in affected versions. This issue has been addressed in in versions 7.0.11, 6.2.12, and 6.0.19. Users are advised to upgrade. There are no known workarounds for this issue. |
| Every `named` instance configured to run as a recursive resolver maintains a cache database holding the responses to the queries it has recently sent to authoritative servers. The size limit for that cache database can be configured using the `max-cache-size` statement in the configuration file; it defaults to 90% of the total amount of memory available on the host. When the size of the cache reaches 7/8 of the configured limit, a cache-cleaning algorithm starts to remove expired and/or least-recently used RRsets from the cache, to keep memory use below the configured limit.
It has been discovered that the effectiveness of the cache-cleaning algorithm used in `named` can be severely diminished by querying the resolver for specific RRsets in a certain order, effectively allowing the configured `max-cache-size` limit to be significantly exceeded.
This issue affects BIND 9 versions 9.11.0 through 9.16.41, 9.18.0 through 9.18.15, 9.19.0 through 9.19.13, 9.11.3-S1 through 9.16.41-S1, and 9.18.11-S1 through 9.18.15-S1. |
| A use-after-free issue was addressed with improved memory management. This issue is fixed in iOS 16.4 and iPadOS 16.4, macOS Ventura 13.3. Processing web content may lead to arbitrary code execution. |