| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
slab: Avoid race on slab->obj_exts in alloc_slab_obj_exts
If two competing threads enter alloc_slab_obj_exts() and one of them
fails to allocate the object extension vector, it might override the
valid slab->obj_exts allocated by the other thread with
OBJEXTS_ALLOC_FAIL. This will cause the thread that lost this race and
expects a valid pointer to dereference a NULL pointer later on.
Update slab->obj_exts atomically using cmpxchg() to avoid
slab->obj_exts overrides by racing threads.
Thanks for Vlastimil and Suren's help with debugging. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: RX, Fix generating skb from non-linear xdp_buff for striding RQ
XDP programs can change the layout of an xdp_buff through
bpf_xdp_adjust_tail() and bpf_xdp_adjust_head(). Therefore, the driver
cannot assume the size of the linear data area nor fragments. Fix the
bug in mlx5 by generating skb according to xdp_buff after XDP programs
run.
Currently, when handling multi-buf XDP, the mlx5 driver assumes the
layout of an xdp_buff to be unchanged. That is, the linear data area
continues to be empty and fragments remain the same. This may cause
the driver to generate erroneous skb or triggering a kernel
warning. When an XDP program added linear data through
bpf_xdp_adjust_head(), the linear data will be ignored as
mlx5e_build_linear_skb() builds an skb without linear data and then
pull data from fragments to fill the linear data area. When an XDP
program has shrunk the non-linear data through bpf_xdp_adjust_tail(),
the delta passed to __pskb_pull_tail() may exceed the actual nonlinear
data size and trigger the BUG_ON in it.
To fix the issue, first record the original number of fragments. If the
number of fragments changes after the XDP program runs, rewind the end
fragment pointer by the difference and recalculate the truesize. Then,
build the skb with the linear data area matching the xdp_buff. Finally,
only pull data in if there is non-linear data and fill the linear part
up to 256 bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/mellanox: mlxbf-pmc: add sysfs_attr_init() to count_clock init
The lock-related debug logic (CONFIG_LOCK_STAT) in the kernel is noting
the following warning when the BlueField-3 SOC is booted:
BUG: key ffff00008a3402a8 has not been registered!
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 4 PID: 592 at kernel/locking/lockdep.c:4801 lockdep_init_map_type+0x1d4/0x2a0
<snip>
Call trace:
lockdep_init_map_type+0x1d4/0x2a0
__kernfs_create_file+0x84/0x140
sysfs_add_file_mode_ns+0xcc/0x1cc
internal_create_group+0x110/0x3d4
internal_create_groups.part.0+0x54/0xcc
sysfs_create_groups+0x24/0x40
device_add+0x6e8/0x93c
device_register+0x28/0x40
__hwmon_device_register+0x4b0/0x8a0
devm_hwmon_device_register_with_groups+0x7c/0xe0
mlxbf_pmc_probe+0x1e8/0x3e0 [mlxbf_pmc]
platform_probe+0x70/0x110
The mlxbf_pmc driver must call sysfs_attr_init() during the
initialization of the "count_clock" data structure to avoid
this warning. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda/hdmi: Fix breakage at probing nvhdmi-mcp driver
After restructuring and splitting the HDMI codec driver code, each
HDMI codec driver contains the own build_controls and build_pcms ops.
A copy-n-paste error put the wrong entries for nvhdmi-mcp driver; both
build_controls and build_pcms are swapped. Unfortunately both
callbacks have the very same form, and the compiler didn't complain
it, either. This resulted in a NULL dereference because the PCM
instance hasn't been initialized at calling the build_controls
callback.
Fix it by passing the proper entries. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: avoid infinite loop due to incomplete zstd-compressed data
Currently, the decompression logic incorrectly spins if compressed
data is truncated in crafted (deliberately corrupted) images. |
| In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Do not warn in ring_buffer_map_get_reader() when reader catches up
The function ring_buffer_map_get_reader() is a bit more strict than the
other get reader functions, and except for certain situations the
rb_get_reader_page() should not return NULL. If it does, it triggers a
warning.
This warning was triggering but after looking at why, it was because
another acceptable situation was happening and it wasn't checked for.
If the reader catches up to the writer and there's still data to be read
on the reader page, then the rb_get_reader_page() will return NULL as
there's no new page to get.
In this situation, the reader page should not be updated and no warning
should trigger. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/guc: Synchronize Dead CT worker with unbind
Cancel and wait for any Dead CT worker to complete before continuing
with device unbinding. Else the worker will end up using resources freed
by the undind operation.
(cherry picked from commit 492671339114e376aaa38626d637a2751cdef263) |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: stacktrace: Disable KASAN checks for non-current tasks
Unwinding the stack of a task other than current, KASAN would report
"BUG: KASAN: out-of-bounds in walk_stackframe+0x41c/0x460"
There is a same issue on x86 and has been resolved by the commit
84936118bdf3 ("x86/unwind: Disable KASAN checks for non-current tasks")
The solution could be applied to RISC-V too.
This patch also can solve the issue:
https://seclists.org/oss-sec/2025/q4/23
[[email protected]: clean up checkpatch issues] |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix general protection fault in __smc_diag_dump
The syzbot report a crash:
Oops: general protection fault, probably for non-canonical address 0xfbd5a5d5a0000003: 0000 [#1] SMP KASAN NOPTI
KASAN: maybe wild-memory-access in range [0xdead4ead00000018-0xdead4ead0000001f]
CPU: 1 UID: 0 PID: 6949 Comm: syz.0.335 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025
RIP: 0010:smc_diag_msg_common_fill net/smc/smc_diag.c:44 [inline]
RIP: 0010:__smc_diag_dump.constprop.0+0x3ca/0x2550 net/smc/smc_diag.c:89
Call Trace:
<TASK>
smc_diag_dump_proto+0x26d/0x420 net/smc/smc_diag.c:217
smc_diag_dump+0x27/0x90 net/smc/smc_diag.c:234
netlink_dump+0x539/0xd30 net/netlink/af_netlink.c:2327
__netlink_dump_start+0x6d6/0x990 net/netlink/af_netlink.c:2442
netlink_dump_start include/linux/netlink.h:341 [inline]
smc_diag_handler_dump+0x1f9/0x240 net/smc/smc_diag.c:251
__sock_diag_cmd net/core/sock_diag.c:249 [inline]
sock_diag_rcv_msg+0x438/0x790 net/core/sock_diag.c:285
netlink_rcv_skb+0x158/0x420 net/netlink/af_netlink.c:2552
netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline]
netlink_unicast+0x5a7/0x870 net/netlink/af_netlink.c:1346
netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1896
sock_sendmsg_nosec net/socket.c:714 [inline]
__sock_sendmsg net/socket.c:729 [inline]
____sys_sendmsg+0xa95/0xc70 net/socket.c:2614
___sys_sendmsg+0x134/0x1d0 net/socket.c:2668
__sys_sendmsg+0x16d/0x220 net/socket.c:2700
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x4e0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
The process like this:
(CPU1) | (CPU2)
---------------------------------|-------------------------------
inet_create() |
// init clcsock to NULL |
sk = sk_alloc() |
|
// unexpectedly change clcsock |
inet_init_csk_locks() |
|
// add sk to hash table |
smc_inet_init_sock() |
smc_sk_init() |
smc_hash_sk() |
| // traverse the hash table
| smc_diag_dump_proto
| __smc_diag_dump()
| // visit wrong clcsock
| smc_diag_msg_common_fill()
// alloc clcsock |
smc_create_clcsk |
sock_create_kern |
With CONFIG_DEBUG_LOCK_ALLOC=y, the smc->clcsock is unexpectedly changed
in inet_init_csk_locks(). The INET_PROTOSW_ICSK flag is no need by smc,
just remove it.
After removing the INET_PROTOSW_ICSK flag, this patch alse revert
commit 6fd27ea183c2 ("net/smc: fix lacks of icsk_syn_mss with IPPROTO_SMC")
to avoid casting smc_sock to inet_connection_sock. |
| In the Linux kernel, the following vulnerability has been resolved:
lan966x: Fix sleeping in atomic context
The following warning was seen when we try to connect using ssh to the device.
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:575
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 104, name: dropbear
preempt_count: 1, expected: 0
INFO: lockdep is turned off.
CPU: 0 UID: 0 PID: 104 Comm: dropbear Tainted: G W 6.18.0-rc2-00399-g6f1ab1b109b9-dirty #530 NONE
Tainted: [W]=WARN
Hardware name: Generic DT based system
Call trace:
unwind_backtrace from show_stack+0x10/0x14
show_stack from dump_stack_lvl+0x7c/0xac
dump_stack_lvl from __might_resched+0x16c/0x2b0
__might_resched from __mutex_lock+0x64/0xd34
__mutex_lock from mutex_lock_nested+0x1c/0x24
mutex_lock_nested from lan966x_stats_get+0x5c/0x558
lan966x_stats_get from dev_get_stats+0x40/0x43c
dev_get_stats from dev_seq_printf_stats+0x3c/0x184
dev_seq_printf_stats from dev_seq_show+0x10/0x30
dev_seq_show from seq_read_iter+0x350/0x4ec
seq_read_iter from seq_read+0xfc/0x194
seq_read from proc_reg_read+0xac/0x100
proc_reg_read from vfs_read+0xb0/0x2b0
vfs_read from ksys_read+0x6c/0xec
ksys_read from ret_fast_syscall+0x0/0x1c
Exception stack(0xf0b11fa8 to 0xf0b11ff0)
1fa0: 00000001 00001000 00000008 be9048d8 00001000 00000001
1fc0: 00000001 00001000 00000008 00000003 be905920 0000001e 00000000 00000001
1fe0: 0005404c be9048c0 00018684 b6ec2cd8
It seems that we are using a mutex in a atomic context which is wrong.
Change the mutex with a spinlock. |
| In the Linux kernel, the following vulnerability has been resolved:
can: kvaser_usb: leaf: Fix potential infinite loop in command parsers
The `kvaser_usb_leaf_wait_cmd()` and `kvaser_usb_leaf_read_bulk_callback`
functions contain logic to zero-length commands. These commands are used
to align data to the USB endpoint's wMaxPacketSize boundary.
The driver attempts to skip these placeholders by aligning the buffer
position `pos` to the next packet boundary using `round_up()` function.
However, if zero-length command is found exactly on a packet boundary
(i.e., `pos` is a multiple of wMaxPacketSize, including 0), `round_up`
function will return the unchanged value of `pos`. This prevents `pos`
to be increased, causing an infinite loop in the parsing logic.
This patch fixes this in the function by using `pos + 1` instead.
This ensures that even if `pos` is on a boundary, the calculation is
based on `pos + 1`, forcing `round_up()` to always return the next
aligned boundary. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: lookup hci_conn on RX path on protocol side
The hdev lock/lookup/unlock/use pattern in the packet RX path doesn't
ensure hci_conn* is not concurrently modified/deleted. This locking
appears to be leftover from before conn_hash started using RCU
commit bf4c63252490b ("Bluetooth: convert conn hash to RCU")
and not clear if it had purpose since then.
Currently, there are code paths that delete hci_conn* from elsewhere
than the ordered hdev->workqueue where the RX work runs in. E.g.
commit 5af1f84ed13a ("Bluetooth: hci_sync: Fix UAF on hci_abort_conn_sync")
introduced some of these, and there probably were a few others before
it. It's better to do the locking so that even if these run
concurrently no UAF is possible.
Move the lookup of hci_conn and associated socket-specific conn to
protocol recv handlers, and do them within a single critical section
to cover hci_conn* usage and lookup.
syzkaller has reported a crash that appears to be this issue:
[Task hdev->workqueue] [Task 2]
hci_disconnect_all_sync
l2cap_recv_acldata(hcon)
hci_conn_get(hcon)
hci_abort_conn_sync(hcon)
hci_dev_lock
hci_dev_lock
hci_conn_del(hcon)
v-------------------------------- hci_dev_unlock
hci_conn_put(hcon)
conn = hcon->l2cap_data (UAF) |
| In the Linux kernel, the following vulnerability has been resolved:
afs: Fix delayed allocation of a cell's anonymous key
The allocation of a cell's anonymous key is done in a background thread
along with other cell setup such as doing a DNS upcall. In the reported
bug, this is triggered by afs_parse_source() parsing the device name given
to mount() and calling afs_lookup_cell() with the name of the cell.
The normal key lookup then tries to use the key description on the
anonymous authentication key as the reference for request_key() - but it
may not yet be set and so an oops can happen.
This has been made more likely to happen by the fix for dynamic lookup
failure.
Fix this by firstly allocating a reference name and attaching it to the
afs_cell record when the record is created. It can share the memory
allocation with the cell name (unfortunately it can't just overlap the cell
name by prepending it with "afs@" as the cell name already has a '.'
prepended for other purposes). This reference name is then passed to
request_key().
Secondly, the anon key is now allocated on demand at the point a key is
requested in afs_request_key() if it is not already allocated. A mutex is
used to prevent multiple allocation for a cell.
Thirdly, make afs_request_key_rcu() return NULL if the anonymous key isn't
yet allocated (if we need it) and then the caller can return -ECHILD to
drop out of RCU-mode and afs_request_key() can be called.
Note that the anonymous key is kind of necessary to make the key lookup
cache work as that doesn't currently cache a negative lookup, but it's
probably worth some investigation to see if NULL can be used instead. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: mediatek: Avoid btusb_mtk_claim_iso_intf() NULL deref
In btusb_mtk_setup(), we set `btmtk_data->isopkt_intf` to:
usb_ifnum_to_if(data->udev, MTK_ISO_IFNUM)
That function can return NULL in some cases. Even when it returns
NULL, though, we still go on to call btusb_mtk_claim_iso_intf().
As of commit e9087e828827 ("Bluetooth: btusb: mediatek: Add locks for
usb_driver_claim_interface()"), calling btusb_mtk_claim_iso_intf()
when `btmtk_data->isopkt_intf` is NULL will cause a crash because
we'll end up passing a bad pointer to device_lock(). Prior to that
commit we'd pass the NULL pointer directly to
usb_driver_claim_interface() which would detect it and return an
error, which was handled.
Resolve the crash in btusb_mtk_claim_iso_intf() by adding a NULL check
at the start of the function. This makes the code handle a NULL
`btmtk_data->isopkt_intf` the same way it did before the problematic
commit (just with a slight change to the error message printed). |
| In the Linux kernel, the following vulnerability has been resolved:
drm, fbcon, vga_switcheroo: Avoid race condition in fbcon setup
Protect vga_switcheroo_client_fb_set() with console lock. Avoids OOB
access in fbcon_remap_all(). Without holding the console lock the call
races with switching outputs.
VGA switcheroo calls fbcon_remap_all() when switching clients. The fbcon
function uses struct fb_info.node, which is set by register_framebuffer().
As the fb-helper code currently sets up VGA switcheroo before registering
the framebuffer, the value of node is -1 and therefore not a legal value.
For example, fbcon uses the value within set_con2fb_map() [1] as an index
into an array.
Moving vga_switcheroo_client_fb_set() after register_framebuffer() can
result in VGA switching that does not switch fbcon correctly.
Therefore move vga_switcheroo_client_fb_set() under fbcon_fb_registered(),
which already holds the console lock. Fbdev calls fbcon_fb_registered()
from within register_framebuffer(). Serializes the helper with VGA
switcheroo's call to fbcon_remap_all().
Although vga_switcheroo_client_fb_set() takes an instance of struct fb_info
as parameter, it really only needs the contained fbcon state. Moving the
call to fbcon initialization is therefore cleaner than before. Only amdgpu,
i915, nouveau and radeon support vga_switcheroo. For all other drivers,
this change does nothing. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_eem: Fix memory leak in eem_unwrap
The existing code did not handle the failure case of usb_ep_queue in the
command path, potentially leading to memory leaks.
Improve error handling to free all allocated resources on usb_ep_queue
failure. This patch continues to use goto logic for error handling, as the
existing error handling is complex and not easily adaptable to auto-cleanup
helpers.
kmemleak results:
unreferenced object 0xffffff895a512300 (size 240):
backtrace:
slab_post_alloc_hook+0xbc/0x3a4
kmem_cache_alloc+0x1b4/0x358
skb_clone+0x90/0xd8
eem_unwrap+0x1cc/0x36c
unreferenced object 0xffffff8a157f4000 (size 256):
backtrace:
slab_post_alloc_hook+0xbc/0x3a4
__kmem_cache_alloc_node+0x1b4/0x2dc
kmalloc_trace+0x48/0x140
dwc3_gadget_ep_alloc_request+0x58/0x11c
usb_ep_alloc_request+0x40/0xe4
eem_unwrap+0x204/0x36c
unreferenced object 0xffffff8aadbaac00 (size 128):
backtrace:
slab_post_alloc_hook+0xbc/0x3a4
__kmem_cache_alloc_node+0x1b4/0x2dc
__kmalloc+0x64/0x1a8
eem_unwrap+0x218/0x36c
unreferenced object 0xffffff89ccef3500 (size 64):
backtrace:
slab_post_alloc_hook+0xbc/0x3a4
__kmem_cache_alloc_node+0x1b4/0x2dc
kmalloc_trace+0x48/0x140
eem_unwrap+0x238/0x36c |
| In the Linux kernel, the following vulnerability has been resolved:
mm/memfd: fix information leak in hugetlb folios
When allocating hugetlb folios for memfd, three initialization steps are
missing:
1. Folios are not zeroed, leading to kernel memory disclosure to userspace
2. Folios are not marked uptodate before adding to page cache
3. hugetlb_fault_mutex is not taken before hugetlb_add_to_page_cache()
The memfd allocation path bypasses the normal page fault handler
(hugetlb_no_page) which would handle all of these initialization steps.
This is problematic especially for udmabuf use cases where folios are
pinned and directly accessed by userspace via DMA.
Fix by matching the initialization pattern used in hugetlb_no_page():
- Zero the folio using folio_zero_user() which is optimized for huge pages
- Mark it uptodate with folio_mark_uptodate()
- Take hugetlb_fault_mutex before adding to page cache to prevent races
The folio_zero_user() change also fixes a potential security issue where
uninitialized kernel memory could be disclosed to userspace through read()
or mmap() operations on the memfd. |
| In the Linux kernel, the following vulnerability has been resolved:
net: netpoll: fix incorrect refcount handling causing incorrect cleanup
commit efa95b01da18 ("netpoll: fix use after free") incorrectly
ignored the refcount and prematurely set dev->npinfo to NULL during
netpoll cleanup, leading to improper behavior and memory leaks.
Scenario causing lack of proper cleanup:
1) A netpoll is associated with a NIC (e.g., eth0) and netdev->npinfo is
allocated, and refcnt = 1
- Keep in mind that npinfo is shared among all netpoll instances. In
this case, there is just one.
2) Another netpoll is also associated with the same NIC and
npinfo->refcnt += 1.
- Now dev->npinfo->refcnt = 2;
- There is just one npinfo associated to the netdev.
3) When the first netpolls goes to clean up:
- The first cleanup succeeds and clears np->dev->npinfo, ignoring
refcnt.
- It basically calls `RCU_INIT_POINTER(np->dev->npinfo, NULL);`
- Set dev->npinfo = NULL, without proper cleanup
- No ->ndo_netpoll_cleanup() is either called
4) Now the second target tries to clean up
- The second cleanup fails because np->dev->npinfo is already NULL.
* In this case, ops->ndo_netpoll_cleanup() was never called, and
the skb pool is not cleaned as well (for the second netpoll
instance)
- This leaks npinfo and skbpool skbs, which is clearly reported by
kmemleak.
Revert commit efa95b01da18 ("netpoll: fix use after free") and adds
clarifying comments emphasizing that npinfo cleanup should only happen
once the refcount reaches zero, ensuring stable and correct netpoll
behavior. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: s32cc: fix uninitialized memory in s32_pinctrl_desc
s32_pinctrl_desc is allocated with devm_kmalloc(), but not all of its
fields are initialized. Notably, num_custom_params is used in
pinconf_generic_parse_dt_config(), resulting in intermittent allocation
errors, such as the following splat when probing i2c-imx:
WARNING: CPU: 0 PID: 176 at mm/page_alloc.c:4795 __alloc_pages_noprof+0x290/0x300
[...]
Hardware name: NXP S32G3 Reference Design Board 3 (S32G-VNP-RDB3) (DT)
[...]
Call trace:
__alloc_pages_noprof+0x290/0x300 (P)
___kmalloc_large_node+0x84/0x168
__kmalloc_large_node_noprof+0x34/0x120
__kmalloc_noprof+0x2ac/0x378
pinconf_generic_parse_dt_config+0x68/0x1a0
s32_dt_node_to_map+0x104/0x248
dt_to_map_one_config+0x154/0x1d8
pinctrl_dt_to_map+0x12c/0x280
create_pinctrl+0x6c/0x270
pinctrl_get+0xc0/0x170
devm_pinctrl_get+0x50/0xa0
pinctrl_bind_pins+0x60/0x2a0
really_probe+0x60/0x3a0
[...]
__platform_driver_register+0x2c/0x40
i2c_adap_imx_init+0x28/0xff8 [i2c_imx]
[...]
This results in later parse failures that can cause issues in dependent
drivers:
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c0-pins/i2c0-grp0: could not parse node property
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c0-pins/i2c0-grp0: could not parse node property
[...]
pca953x 0-0022: failed writing register: -6
i2c i2c-0: IMX I2C adapter registered
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c2-pins/i2c2-grp0: could not parse node property
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c2-pins/i2c2-grp0: could not parse node property
i2c i2c-1: IMX I2C adapter registered
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c4-pins/i2c4-grp0: could not parse node property
s32g-siul2-pinctrl 4009c240.pinctrl: /soc@0/pinctrl@4009c240/i2c4-pins/i2c4-grp0: could not parse node property
i2c i2c-2: IMX I2C adapter registered
Fix this by initializing s32_pinctrl_desc with devm_kzalloc() instead of
devm_kmalloc() in s32_pinctrl_probe(), which sets the previously
uninitialized fields to zero. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix memory leak in smb3_fs_context_parse_param error path
Add proper cleanup of ctx->source and fc->source to the
cifs_parse_mount_err error handler. This ensures that memory allocated
for the source strings is correctly freed on all error paths, matching
the cleanup already performed in the success path by
smb3_cleanup_fs_context_contents().
Pointers are also set to NULL after freeing to prevent potential
double-free issues.
This change fixes a memory leak originally detected by syzbot. The
leak occurred when processing Opt_source mount options if an error
happened after ctx->source and fc->source were successfully
allocated but before the function completed.
The specific leak sequence was:
1. ctx->source = smb3_fs_context_fullpath(ctx, '/') allocates memory
2. fc->source = kstrdup(ctx->source, GFP_KERNEL) allocates more memory
3. A subsequent error jumps to cifs_parse_mount_err
4. The old error handler freed passwords but not the source strings,
causing the memory to leak.
This issue was not addressed by commit e8c73eb7db0a ("cifs: client:
fix memory leak in smb3_fs_context_parse_param"), which only fixed
leaks from repeated fsconfig() calls but not this error path.
Patch updated with minor change suggested by kernel test robot |