| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Tensorflow is an Open Source Machine Learning Framework. The implementation of `FractionalMaxPool` can be made to crash a TensorFlow process via a division by 0. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range. |
| Tensorflow is an Open Source Machine Learning Framework. The estimator for the cost of some convolution operations can be made to execute a division by 0. The function fails to check that the stride argument is strictly positive. Hence, the fix is to add a check for the stride argument to ensure it is valid. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range. |
| Race condition within a thread in firmware for some Intel(R) Optane(TM) SSD and Intel(R) SSD DC Products may allow a privileged user to potentially enable denial of service via local access. |
| Race condition in firmware for some Intel(R) Optane(TM) SSD, Intel(R) Optane(TM) SSD DC and Intel(R) SSD DC Products may allow a privileged user to potentially enable denial of service via local access. |
| A time-of-check time-of-use vulnerability in PulseSecureService.exe in Pulse Secure Client versions prior to 9.1.6 down to 5.3 R70 for Windows (which runs as NT AUTHORITY/SYSTEM) allows unprivileged users to run a Microsoft Installer executable with elevated privileges. |
| An issue was discovered in the Linux kernel before 6.3.2. A use-after-free was found in dm1105_remove in drivers/media/pci/dm1105/dm1105.c. |
| An issue was discovered in the Linux kernel before 6.3.2. A use-after-free was found in saa7134_finidev in drivers/media/pci/saa7134/saa7134-core.c. |
| The Linux kernel before 6.2.9 has a race condition and resultant use-after-free in drivers/net/ethernet/qualcomm/emac/emac.c if a physically proximate attacker unplugs an emac based device. |
| The Linux kernel before 6.2.9 has a race condition and resultant use-after-free in drivers/power/supply/da9150-charger.c if a physically proximate attacker unplugs a device. |
| Alpine before 2.25 allows remote attackers to cause a denial of service (application crash) when LIST or LSUB is sent before STARTTLS. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix use-after-free in SMB request handling
A race condition exists between SMB request handling in
`ksmbd_conn_handler_loop()` and the freeing of `ksmbd_conn` in the
workqueue handler `handle_ksmbd_work()`. This leads to a UAF.
- KASAN: slab-use-after-free Read in handle_ksmbd_work
- KASAN: slab-use-after-free in rtlock_slowlock_locked
This race condition arises as follows:
- `ksmbd_conn_handler_loop()` waits for `conn->r_count` to reach zero:
`wait_event(conn->r_count_q, atomic_read(&conn->r_count) == 0);`
- Meanwhile, `handle_ksmbd_work()` decrements `conn->r_count` using
`atomic_dec_return(&conn->r_count)`, and if it reaches zero, calls
`ksmbd_conn_free()`, which frees `conn`.
- However, after `handle_ksmbd_work()` decrements `conn->r_count`,
it may still access `conn->r_count_q` in the following line:
`waitqueue_active(&conn->r_count_q)` or `wake_up(&conn->r_count_q)`
This results in a UAF, as `conn` has already been freed.
The discovery of this UAF can be referenced in the following PR for
syzkaller's support for SMB requests. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to don't set SB_RDONLY in f2fs_handle_critical_error()
syzbot reports a f2fs bug as below:
------------[ cut here ]------------
WARNING: CPU: 1 PID: 58 at kernel/rcu/sync.c:177 rcu_sync_dtor+0xcd/0x180 kernel/rcu/sync.c:177
CPU: 1 UID: 0 PID: 58 Comm: kworker/1:2 Not tainted 6.10.0-syzkaller-12562-g1722389b0d86 #0
Workqueue: events destroy_super_work
RIP: 0010:rcu_sync_dtor+0xcd/0x180 kernel/rcu/sync.c:177
Call Trace:
percpu_free_rwsem+0x41/0x80 kernel/locking/percpu-rwsem.c:42
destroy_super_work+0xec/0x130 fs/super.c:282
process_one_work kernel/workqueue.c:3231 [inline]
process_scheduled_works+0xa2c/0x1830 kernel/workqueue.c:3312
worker_thread+0x86d/0xd40 kernel/workqueue.c:3390
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
As Christian Brauner pointed out [1]: the root cause is f2fs sets
SB_RDONLY flag in internal function, rather than setting the flag
covered w/ sb->s_umount semaphore via remount procedure, then below
race condition causes this bug:
- freeze_super()
- sb_wait_write(sb, SB_FREEZE_WRITE)
- sb_wait_write(sb, SB_FREEZE_PAGEFAULT)
- sb_wait_write(sb, SB_FREEZE_FS)
- f2fs_handle_critical_error
- sb->s_flags |= SB_RDONLY
- thaw_super
- thaw_super_locked
- sb_rdonly() is true, so it skips
sb_freeze_unlock(sb, SB_FREEZE_FS)
- deactivate_locked_super
Since f2fs has almost the same logic as ext4 [2] when handling critical
error in filesystem if it mounts w/ errors=remount-ro option:
- set CP_ERROR_FLAG flag which indicates filesystem is stopped
- record errors to superblock
- set SB_RDONLY falg
Once we set CP_ERROR_FLAG flag, all writable interfaces can detect the
flag and stop any further updates on filesystem. So, it is safe to not
set SB_RDONLY flag, let's remove the logic and keep in line w/ ext4 [3].
[1] https://lore.kernel.org/all/20240729-himbeeren-funknetz-96e62f9c7aee@brauner
[2] https://lore.kernel.org/all/20240729132721.hxih6ehigadqf7wx@quack3
[3] https://lore.kernel.org/linux-ext4/[email protected] |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: change ipsec_lock from spin lock to mutex
In the cited commit, bond->ipsec_lock is added to protect ipsec_list,
hence xdo_dev_state_add and xdo_dev_state_delete are called inside
this lock. As ipsec_lock is a spin lock and such xfrmdev ops may sleep,
"scheduling while atomic" will be triggered when changing bond's
active slave.
[ 101.055189] BUG: scheduling while atomic: bash/902/0x00000200
[ 101.055726] Modules linked in:
[ 101.058211] CPU: 3 PID: 902 Comm: bash Not tainted 6.9.0-rc4+ #1
[ 101.058760] Hardware name:
[ 101.059434] Call Trace:
[ 101.059436] <TASK>
[ 101.060873] dump_stack_lvl+0x51/0x60
[ 101.061275] __schedule_bug+0x4e/0x60
[ 101.061682] __schedule+0x612/0x7c0
[ 101.062078] ? __mod_timer+0x25c/0x370
[ 101.062486] schedule+0x25/0xd0
[ 101.062845] schedule_timeout+0x77/0xf0
[ 101.063265] ? asm_common_interrupt+0x22/0x40
[ 101.063724] ? __bpf_trace_itimer_state+0x10/0x10
[ 101.064215] __wait_for_common+0x87/0x190
[ 101.064648] ? usleep_range_state+0x90/0x90
[ 101.065091] cmd_exec+0x437/0xb20 [mlx5_core]
[ 101.065569] mlx5_cmd_do+0x1e/0x40 [mlx5_core]
[ 101.066051] mlx5_cmd_exec+0x18/0x30 [mlx5_core]
[ 101.066552] mlx5_crypto_create_dek_key+0xea/0x120 [mlx5_core]
[ 101.067163] ? bonding_sysfs_store_option+0x4d/0x80 [bonding]
[ 101.067738] ? kmalloc_trace+0x4d/0x350
[ 101.068156] mlx5_ipsec_create_sa_ctx+0x33/0x100 [mlx5_core]
[ 101.068747] mlx5e_xfrm_add_state+0x47b/0xaa0 [mlx5_core]
[ 101.069312] bond_change_active_slave+0x392/0x900 [bonding]
[ 101.069868] bond_option_active_slave_set+0x1c2/0x240 [bonding]
[ 101.070454] __bond_opt_set+0xa6/0x430 [bonding]
[ 101.070935] __bond_opt_set_notify+0x2f/0x90 [bonding]
[ 101.071453] bond_opt_tryset_rtnl+0x72/0xb0 [bonding]
[ 101.071965] bonding_sysfs_store_option+0x4d/0x80 [bonding]
[ 101.072567] kernfs_fop_write_iter+0x10c/0x1a0
[ 101.073033] vfs_write+0x2d8/0x400
[ 101.073416] ? alloc_fd+0x48/0x180
[ 101.073798] ksys_write+0x5f/0xe0
[ 101.074175] do_syscall_64+0x52/0x110
[ 101.074576] entry_SYSCALL_64_after_hwframe+0x4b/0x53
As bond_ipsec_add_sa_all and bond_ipsec_del_sa_all are only called
from bond_change_active_slave, which requires holding the RTNL lock.
And bond_ipsec_add_sa and bond_ipsec_del_sa are xfrm state
xdo_dev_state_add and xdo_dev_state_delete APIs, which are in user
context. So ipsec_lock doesn't have to be spin lock, change it to
mutex, and thus the above issue can be resolved. |
| In the Linux kernel, the following vulnerability has been resolved:
tracefs: Use generic inode RCU for synchronizing freeing
With structure layout randomization enabled for 'struct inode' we need to
avoid overlapping any of the RCU-used / initialized-only-once members,
e.g. i_lru or i_sb_list to not corrupt related list traversals when making
use of the rcu_head.
For an unlucky structure layout of 'struct inode' we may end up with the
following splat when running the ftrace selftests:
[<...>] list_del corruption, ffff888103ee2cb0->next (tracefs_inode_cache+0x0/0x4e0 [slab object]) is NULL (prev is tracefs_inode_cache+0x78/0x4e0 [slab object])
[<...>] ------------[ cut here ]------------
[<...>] kernel BUG at lib/list_debug.c:54!
[<...>] invalid opcode: 0000 [#1] PREEMPT SMP KASAN
[<...>] CPU: 3 PID: 2550 Comm: mount Tainted: G N 6.8.12-grsec+ #122 ed2f536ca62f28b087b90e3cc906a8d25b3ddc65
[<...>] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
[<...>] RIP: 0010:[<ffffffff84656018>] __list_del_entry_valid_or_report+0x138/0x3e0
[<...>] Code: 48 b8 99 fb 65 f2 ff ff ff ff e9 03 5c d9 fc cc 48 b8 99 fb 65 f2 ff ff ff ff e9 33 5a d9 fc cc 48 b8 99 fb 65 f2 ff ff ff ff <0f> 0b 4c 89 e9 48 89 ea 48 89 ee 48 c7 c7 60 8f dd 89 31 c0 e8 2f
[<...>] RSP: 0018:fffffe80416afaf0 EFLAGS: 00010283
[<...>] RAX: 0000000000000098 RBX: ffff888103ee2cb0 RCX: 0000000000000000
[<...>] RDX: ffffffff84655fe8 RSI: ffffffff89dd8b60 RDI: 0000000000000001
[<...>] RBP: ffff888103ee2cb0 R08: 0000000000000001 R09: fffffbd0082d5f25
[<...>] R10: fffffe80416af92f R11: 0000000000000001 R12: fdf99c16731d9b6d
[<...>] R13: 0000000000000000 R14: ffff88819ad4b8b8 R15: 0000000000000000
[<...>] RBX: tracefs_inode_cache+0x0/0x4e0 [slab object]
[<...>] RDX: __list_del_entry_valid_or_report+0x108/0x3e0
[<...>] RSI: __func__.47+0x4340/0x4400
[<...>] RBP: tracefs_inode_cache+0x0/0x4e0 [slab object]
[<...>] RSP: process kstack fffffe80416afaf0+0x7af0/0x8000 [mount 2550 2550]
[<...>] R09: kasan shadow of process kstack fffffe80416af928+0x7928/0x8000 [mount 2550 2550]
[<...>] R10: process kstack fffffe80416af92f+0x792f/0x8000 [mount 2550 2550]
[<...>] R14: tracefs_inode_cache+0x78/0x4e0 [slab object]
[<...>] FS: 00006dcb380c1840(0000) GS:ffff8881e0600000(0000) knlGS:0000000000000000
[<...>] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[<...>] CR2: 000076ab72b30e84 CR3: 000000000b088004 CR4: 0000000000360ef0 shadow CR4: 0000000000360ef0
[<...>] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[<...>] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[<...>] ASID: 0003
[<...>] Stack:
[<...>] ffffffff818a2315 00000000f5c856ee ffffffff896f1840 ffff888103ee2cb0
[<...>] ffff88812b6b9750 0000000079d714b6 fffffbfff1e9280b ffffffff8f49405f
[<...>] 0000000000000001 0000000000000000 ffff888104457280 ffffffff8248b392
[<...>] Call Trace:
[<...>] <TASK>
[<...>] [<ffffffff818a2315>] ? lock_release+0x175/0x380 fffffe80416afaf0
[<...>] [<ffffffff8248b392>] list_lru_del+0x152/0x740 fffffe80416afb48
[<...>] [<ffffffff8248ba93>] list_lru_del_obj+0x113/0x280 fffffe80416afb88
[<...>] [<ffffffff8940fd19>] ? _atomic_dec_and_lock+0x119/0x200 fffffe80416afb90
[<...>] [<ffffffff8295b244>] iput_final+0x1c4/0x9a0 fffffe80416afbb8
[<...>] [<ffffffff8293a52b>] dentry_unlink_inode+0x44b/0xaa0 fffffe80416afbf8
[<...>] [<ffffffff8293fefc>] __dentry_kill+0x23c/0xf00 fffffe80416afc40
[<...>] [<ffffffff8953a85f>] ? __this_cpu_preempt_check+0x1f/0xa0 fffffe80416afc48
[<...>] [<ffffffff82949ce5>] ? shrink_dentry_list+0x1c5/0x760 fffffe80416afc70
[<...>] [<ffffffff82949b71>] ? shrink_dentry_list+0x51/0x760 fffffe80416afc78
[<...>] [<ffffffff82949da8>] shrink_dentry_list+0x288/0x760 fffffe80416afc80
[<...>] [<ffffffff8294ae75>] shrink_dcache_sb+0x155/0x420 fffffe80416afcc8
[<...>] [<ffffffff8953a7c3>] ? debug_smp_processor_id+0x23/0xa0 fffffe80416afce0
[<...>] [<ffffffff8294ad20>] ? do_one_tre
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: savage: Handle err return when savagefb_check_var failed
The commit 04e5eac8f3ab("fbdev: savage: Error out if pixclock equals zero")
checks the value of pixclock to avoid divide-by-zero error. However
the function savagefb_probe doesn't handle the error return of
savagefb_check_var. When pixclock is 0, it will cause divide-by-zero error. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: fix performance regression in swap operation
The patch "netfilter: ipset: fix race condition between swap/destroy
and kernel side add/del/test", commit 28628fa9 fixes a race condition.
But the synchronize_rcu() added to the swap function unnecessarily slows
it down: it can safely be moved to destroy and use call_rcu() instead.
Eric Dumazet pointed out that simply calling the destroy functions as
rcu callback does not work: sets with timeout use garbage collectors
which need cancelling at destroy which can wait. Therefore the destroy
functions are split into two: cancelling garbage collectors safely at
executing the command received by netlink and moving the remaining
part only into the rcu callback. |
| In the Linux kernel, the following vulnerability has been resolved:
wireguard: receive: annotate data-race around receiving_counter.counter
Syzkaller with KCSAN identified a data-race issue when accessing
keypair->receiving_counter.counter. Use READ_ONCE() and WRITE_ONCE()
annotations to mark the data race as intentional.
BUG: KCSAN: data-race in wg_packet_decrypt_worker / wg_packet_rx_poll
write to 0xffff888107765888 of 8 bytes by interrupt on cpu 0:
counter_validate drivers/net/wireguard/receive.c:321 [inline]
wg_packet_rx_poll+0x3ac/0xf00 drivers/net/wireguard/receive.c:461
__napi_poll+0x60/0x3b0 net/core/dev.c:6536
napi_poll net/core/dev.c:6605 [inline]
net_rx_action+0x32b/0x750 net/core/dev.c:6738
__do_softirq+0xc4/0x279 kernel/softirq.c:553
do_softirq+0x5e/0x90 kernel/softirq.c:454
__local_bh_enable_ip+0x64/0x70 kernel/softirq.c:381
__raw_spin_unlock_bh include/linux/spinlock_api_smp.h:167 [inline]
_raw_spin_unlock_bh+0x36/0x40 kernel/locking/spinlock.c:210
spin_unlock_bh include/linux/spinlock.h:396 [inline]
ptr_ring_consume_bh include/linux/ptr_ring.h:367 [inline]
wg_packet_decrypt_worker+0x6c5/0x700 drivers/net/wireguard/receive.c:499
process_one_work kernel/workqueue.c:2633 [inline]
...
read to 0xffff888107765888 of 8 bytes by task 3196 on cpu 1:
decrypt_packet drivers/net/wireguard/receive.c:252 [inline]
wg_packet_decrypt_worker+0x220/0x700 drivers/net/wireguard/receive.c:501
process_one_work kernel/workqueue.c:2633 [inline]
process_scheduled_works+0x5b8/0xa30 kernel/workqueue.c:2706
worker_thread+0x525/0x730 kernel/workqueue.c:2787
... |
| In the Linux kernel, the following vulnerability has been resolved:
mm: zswap: fix missing folio cleanup in writeback race path
In zswap_writeback_entry(), after we get a folio from
__read_swap_cache_async(), we grab the tree lock again to check that the
swap entry was not invalidated and recycled. If it was, we delete the
folio we just added to the swap cache and exit.
However, __read_swap_cache_async() returns the folio locked when it is
newly allocated, which is always true for this path, and the folio is
ref'd. Make sure to unlock and put the folio before returning.
This was discovered by code inspection, probably because this path handles
a race condition that should not happen often, and the bug would not crash
the system, it will only strand the folio indefinitely. |
| In the Linux kernel, the following vulnerability has been resolved:
fbcon: always restore the old font data in fbcon_do_set_font()
Commit a5a923038d70 (fbdev: fbcon: Properly revert changes when
vc_resize() failed) started restoring old font data upon failure (of
vc_resize()). But it performs so only for user fonts. It means that the
"system"/internal fonts are not restored at all. So in result, the very
first call to fbcon_do_set_font() performs no restore at all upon
failing vc_resize().
This can be reproduced by Syzkaller to crash the system on the next
invocation of font_get(). It's rather hard to hit the allocation failure
in vc_resize() on the first font_set(), but not impossible. Esp. if
fault injection is used to aid the execution/failure. It was
demonstrated by Sirius:
BUG: unable to handle page fault for address: fffffffffffffff8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD cb7b067 P4D cb7b067 PUD cb7d067 PMD 0
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 8007 Comm: poc Not tainted 6.7.0-g9d1694dc91ce #20
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:fbcon_get_font+0x229/0x800 drivers/video/fbdev/core/fbcon.c:2286
Call Trace:
<TASK>
con_font_get drivers/tty/vt/vt.c:4558 [inline]
con_font_op+0x1fc/0xf20 drivers/tty/vt/vt.c:4673
vt_k_ioctl drivers/tty/vt/vt_ioctl.c:474 [inline]
vt_ioctl+0x632/0x2ec0 drivers/tty/vt/vt_ioctl.c:752
tty_ioctl+0x6f8/0x1570 drivers/tty/tty_io.c:2803
vfs_ioctl fs/ioctl.c:51 [inline]
...
So restore the font data in any case, not only for user fonts. Note the
later 'if' is now protected by 'old_userfont' and not 'old_data' as the
latter is always set now. (And it is supposed to be non-NULL. Otherwise
we would see the bug above again.) |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix NULL pointer dereference in sk_psock_verdict_data_ready()
syzbot reported the following NULL pointer dereference issue [1]:
BUG: kernel NULL pointer dereference, address: 0000000000000000
[...]
RIP: 0010:0x0
[...]
Call Trace:
<TASK>
sk_psock_verdict_data_ready+0x232/0x340 net/core/skmsg.c:1230
unix_stream_sendmsg+0x9b4/0x1230 net/unix/af_unix.c:2293
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
If sk_psock_verdict_data_ready() and sk_psock_stop_verdict() are called
concurrently, psock->saved_data_ready can be NULL, causing the above issue.
This patch fixes this issue by calling the appropriate data ready function
using the sk_psock_data_ready() helper and protecting it from concurrency
with sk->sk_callback_lock. |