| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
thunderbolt: Fix KASAN reported stack out-of-bounds read in tb_retimer_scan()
KASAN reported following issue:
BUG: KASAN: stack-out-of-bounds in tb_retimer_scan+0xffe/0x1550 [thunderbolt]
Read of size 4 at addr ffff88810111fc1c by task kworker/u56:0/11
CPU: 0 UID: 0 PID: 11 Comm: kworker/u56:0 Tainted: G U 6.11.0+ #1387
Tainted: [U]=USER
Workqueue: thunderbolt0 tb_handle_hotplug [thunderbolt]
Call Trace:
<TASK>
dump_stack_lvl+0x6c/0x90
print_report+0xd1/0x630
kasan_report+0xdb/0x110
__asan_report_load4_noabort+0x14/0x20
tb_retimer_scan+0xffe/0x1550 [thunderbolt]
tb_scan_port+0xa6f/0x2060 [thunderbolt]
tb_handle_hotplug+0x17b1/0x3080 [thunderbolt]
process_one_work+0x626/0x1100
worker_thread+0x6c8/0xfa0
kthread+0x2c8/0x3a0
ret_from_fork+0x3a/0x80
ret_from_fork_asm+0x1a/0x30
This happens because the loop variable still gets incremented by one so
max becomes 3 instead of 2, and this makes the second loop read past the
the array declared on the stack.
Fix this by assigning to max directly in the loop body. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Fix out of bound check
Driver exports pacing stats only on GenP5 and P7 adapters. But while
parsing the pacing stats, driver has a check for "rdev->dbr_pacing". This
caused a trace when KASAN is enabled.
BUG: KASAN: slab-out-of-bounds in bnxt_re_get_hw_stats+0x2b6a/0x2e00 [bnxt_re]
Write of size 8 at addr ffff8885942a6340 by task modprobe/4809 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Add the missing BPF_LINK_TYPE invocation for sockmap
There is an out-of-bounds read in bpf_link_show_fdinfo() for the sockmap
link fd. Fix it by adding the missing BPF_LINK_TYPE invocation for
sockmap link
Also add comments for bpf_link_type to prevent missing updates in the
future. |
| spimsimulator spim v9.1.24 and before is vulnerable to Buffer Overflow in READ_STRING_SYSCALL. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: csum: Fix OoB access in IP checksum code for negative lengths
Commit 69e3a6aa6be2 ("LoongArch: Add checksum optimization for 64-bit
system") would cause an undefined shift and an out-of-bounds read.
Commit 8bd795fedb84 ("arm64: csum: Fix OoB access in IP checksum code
for negative lengths") fixes the same issue on ARM64. |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: fix possible overflow in DPE length check
Originally, it was possible for the DPE length check to overflow if
wDatagramIndex + wDatagramLength > U16_MAX. This could lead to an OoB
read.
Move the wDatagramIndex term to the other side of the inequality.
An existing condition ensures that wDatagramIndex < urb->actual_length. |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: use static NDP16 location in URB
Original code allowed for the start of NDP16 to be anywhere within the
URB based on the `wNdpIndex` value in NTH16. Only the start position of
NDP16 was checked, so it was possible for even the fixed-length part
of NDP16 to extend past the end of URB, leading to an out-of-bounds
read.
On iOS devices, the NDP16 header always directly follows NTH16. Rely on
and check for this specific format.
This, along with NCM-specific minimal URB length check that already
exists, will ensure that the fixed-length part of NDP16 plus a set
amount of DPEs fit within the URB.
Note that this commit alone does not fully address the OoB read.
The limit on the amount of DPEs needs to be enforced separately. |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: ipheth: fix DPE OoB read
Fix an out-of-bounds DPE read, limit the number of processed DPEs to
the amount that fits into the fixed-size NDP16 header. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fixed hclge_fetch_pf_reg accesses bar space out of bounds issue
The TQP BAR space is divided into two segments. TQPs 0-1023 and TQPs
1024-1279 are in different BAR space addresses. However,
hclge_fetch_pf_reg does not distinguish the tqp space information when
reading the tqp space information. When the number of TQPs is greater
than 1024, access bar space overwriting occurs.
The problem of different segments has been considered during the
initialization of tqp.io_base. Therefore, tqp.io_base is directly used
when the queue is read in hclge_fetch_pf_reg.
The error message:
Unable to handle kernel paging request at virtual address ffff800037200000
pc : hclge_fetch_pf_reg+0x138/0x250 [hclge]
lr : hclge_get_regs+0x84/0x1d0 [hclge]
Call trace:
hclge_fetch_pf_reg+0x138/0x250 [hclge]
hclge_get_regs+0x84/0x1d0 [hclge]
hns3_get_regs+0x2c/0x50 [hns3]
ethtool_get_regs+0xf4/0x270
dev_ethtool+0x674/0x8a0
dev_ioctl+0x270/0x36c
sock_do_ioctl+0x110/0x2a0
sock_ioctl+0x2ac/0x530
__arm64_sys_ioctl+0xa8/0x100
invoke_syscall+0x4c/0x124
el0_svc_common.constprop.0+0x140/0x15c
do_el0_svc+0x30/0xd0
el0_svc+0x1c/0x2c
el0_sync_handler+0xb0/0xb4
el0_sync+0x168/0x180 |
| In the Linux kernel, the following vulnerability has been resolved:
x86/CPU/AMD: Terminate the erratum_1386_microcode array
The erratum_1386_microcode array requires an empty entry at the end.
Otherwise x86_match_cpu_with_stepping() will continue iterate the array after
it ended.
Add an empty entry to erratum_1386_microcode to its end. |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix OOB in binder_add_freeze_work()
In binder_add_freeze_work() we iterate over the proc->nodes with the
proc->inner_lock held. However, this lock is temporarily dropped to
acquire the node->lock first (lock nesting order). This can race with
binder_deferred_release() which removes the nodes from the proc->nodes
rbtree and adds them into binder_dead_nodes list. This leads to a broken
iteration in binder_add_freeze_work() as rb_next() will use data from
binder_dead_nodes, triggering an out-of-bounds access:
==================================================================
BUG: KASAN: global-out-of-bounds in rb_next+0xfc/0x124
Read of size 8 at addr ffffcb84285f7170 by task freeze/660
CPU: 8 UID: 0 PID: 660 Comm: freeze Not tainted 6.11.0-07343-ga727812a8d45 #18
Hardware name: linux,dummy-virt (DT)
Call trace:
rb_next+0xfc/0x124
binder_add_freeze_work+0x344/0x534
binder_ioctl+0x1e70/0x25ac
__arm64_sys_ioctl+0x124/0x190
The buggy address belongs to the variable:
binder_dead_nodes+0x10/0x40
[...]
==================================================================
This is possible because proc->nodes (rbtree) and binder_dead_nodes
(list) share entries in binder_node through a union:
struct binder_node {
[...]
union {
struct rb_node rb_node;
struct hlist_node dead_node;
};
Fix the race by checking that the proc is still alive. If not, simply
break out of the iteration. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: check if cluster num is valid
Syzbot reported slab-out-of-bounds read in exfat_clear_bitmap.
This was triggered by reproducer calling truncute with size 0,
which causes the following trace:
BUG: KASAN: slab-out-of-bounds in exfat_clear_bitmap+0x147/0x490 fs/exfat/balloc.c:174
Read of size 8 at addr ffff888115aa9508 by task syz-executor251/365
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack_lvl+0x1e2/0x24b lib/dump_stack.c:118
print_address_description+0x81/0x3c0 mm/kasan/report.c:233
__kasan_report mm/kasan/report.c:419 [inline]
kasan_report+0x1a4/0x1f0 mm/kasan/report.c:436
__asan_report_load8_noabort+0x14/0x20 mm/kasan/report_generic.c:309
exfat_clear_bitmap+0x147/0x490 fs/exfat/balloc.c:174
exfat_free_cluster+0x25a/0x4a0 fs/exfat/fatent.c:181
__exfat_truncate+0x99e/0xe00 fs/exfat/file.c:217
exfat_truncate+0x11b/0x4f0 fs/exfat/file.c:243
exfat_setattr+0xa03/0xd40 fs/exfat/file.c:339
notify_change+0xb76/0xe10 fs/attr.c:336
do_truncate+0x1ea/0x2d0 fs/open.c:65
Move the is_valid_cluster() helper from fatent.c to a common
header to make it reusable in other *.c files. And add is_valid_cluster()
to validate if cluster number is within valid range in exfat_clear_bitmap()
and exfat_set_bitmap(). |
| In the Linux kernel, the following vulnerability has been resolved:
usb: isp1760: Fix out-of-bounds array access
Running the driver through kasan gives an interesting splat:
BUG: KASAN: global-out-of-bounds in isp1760_register+0x180/0x70c
Read of size 20 at addr f1db2e64 by task swapper/0/1
(...)
isp1760_register from isp1760_plat_probe+0x1d8/0x220
(...)
This happens because the loop reading the regmap fields for the
different ISP1760 variants look like this:
for (i = 0; i < HC_FIELD_MAX; i++) { ... }
Meaning it expects the arrays to be at least HC_FIELD_MAX - 1 long.
However the arrays isp1760_hc_reg_fields[], isp1763_hc_reg_fields[],
isp1763_hc_volatile_ranges[] and isp1763_dc_volatile_ranges[] are
dynamically sized during compilation.
Fix this by putting an empty assignment to the [HC_FIELD_MAX]
and [DC_FIELD_MAX] array member at the end of each array.
This will make the array one member longer than it needs to be,
but avoids the risk of overwriting whatever is inside
[HC_FIELD_MAX - 1] and is simple and intuitive to read. Also
add comments explaining what is going on. |
| In the Linux kernel, the following vulnerability has been resolved:
um: Fix out-of-bounds read in LDT setup
syscall_stub_data() expects the data_count parameter to be the number of
longs, not bytes.
==================================================================
BUG: KASAN: stack-out-of-bounds in syscall_stub_data+0x70/0xe0
Read of size 128 at addr 000000006411f6f0 by task swapper/1
CPU: 0 PID: 1 Comm: swapper Not tainted 5.18.0+ #18
Call Trace:
show_stack.cold+0x166/0x2a7
__dump_stack+0x3a/0x43
dump_stack_lvl+0x1f/0x27
print_report.cold+0xdb/0xf81
kasan_report+0x119/0x1f0
kasan_check_range+0x3a3/0x440
memcpy+0x52/0x140
syscall_stub_data+0x70/0xe0
write_ldt_entry+0xac/0x190
init_new_ldt+0x515/0x960
init_new_context+0x2c4/0x4d0
mm_init.constprop.0+0x5ed/0x760
mm_alloc+0x118/0x170
0x60033f48
do_one_initcall+0x1d7/0x860
0x60003e7b
kernel_init+0x6e/0x3d4
new_thread_handler+0x1e7/0x2c0
The buggy address belongs to stack of task swapper/1
and is located at offset 64 in frame:
init_new_ldt+0x0/0x960
This frame has 2 objects:
[32, 40) 'addr'
[64, 80) 'desc'
================================================================== |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: mtk_eth_soc: out of bounds read in mtk_hwlro_get_fdir_entry()
The "fsp->location" variable comes from user via ethtool_get_rxnfc().
Check that it is valid to prevent an out of bounds read. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/dp: Fix OOB read when handling Post Cursor2 register
The link_status array was not large enough to read the Adjust Request
Post Cursor2 register, so remove the common helper function to avoid
an OOB read, found with a -Warray-bounds build:
drivers/gpu/drm/drm_dp_helper.c: In function 'drm_dp_get_adjust_request_post_cursor':
drivers/gpu/drm/drm_dp_helper.c:59:27: error: array subscript 10 is outside array bounds of 'const u8[6]' {aka 'const unsigned char[6]'} [-Werror=array-bounds]
59 | return link_status[r - DP_LANE0_1_STATUS];
| ~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~
drivers/gpu/drm/drm_dp_helper.c:147:51: note: while referencing 'link_status'
147 | u8 drm_dp_get_adjust_request_post_cursor(const u8 link_status[DP_LINK_STATUS_SIZE],
| ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Replace the only user of the helper with an open-coded fetch and decode,
similar to drivers/gpu/drm/amd/display/dc/core/dc_link_dp.c. |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix read out-of-bounds in ubifs_wbuf_write_nolock()
Function ubifs_wbuf_write_nolock() may access buf out of bounds in
following process:
ubifs_wbuf_write_nolock():
aligned_len = ALIGN(len, 8); // Assume len = 4089, aligned_len = 4096
if (aligned_len <= wbuf->avail) ... // Not satisfy
if (wbuf->used) {
ubifs_leb_write() // Fill some data in avail wbuf
len -= wbuf->avail; // len is still not 8-bytes aligned
aligned_len -= wbuf->avail;
}
n = aligned_len >> c->max_write_shift;
if (n) {
n <<= c->max_write_shift;
err = ubifs_leb_write(c, wbuf->lnum, buf + written,
wbuf->offs, n);
// n > len, read out of bounds less than 8(n-len) bytes
}
, which can be catched by KASAN:
=========================================================
BUG: KASAN: slab-out-of-bounds in ecc_sw_hamming_calculate+0x1dc/0x7d0
Read of size 4 at addr ffff888105594ff8 by task kworker/u8:4/128
Workqueue: writeback wb_workfn (flush-ubifs_0_0)
Call Trace:
kasan_report.cold+0x81/0x165
nand_write_page_swecc+0xa9/0x160
ubifs_leb_write+0xf2/0x1b0 [ubifs]
ubifs_wbuf_write_nolock+0x421/0x12c0 [ubifs]
write_head+0xdc/0x1c0 [ubifs]
ubifs_jnl_write_inode+0x627/0x960 [ubifs]
wb_workfn+0x8af/0xb80
Function ubifs_wbuf_write_nolock() accepts that parameter 'len' is not 8
bytes aligned, the 'len' represents the true length of buf (which is
allocated in 'ubifs_jnl_xxx', eg. ubifs_jnl_write_inode), so
ubifs_wbuf_write_nolock() must handle the length read from 'buf' carefully
to write leb safely.
Fetch a reproducer in [Link]. |
| Nextcloud Server is a self hosted personal cloud system. After setting up a user or administrator defined external storage with fixed credentials, the API returns them and adds them into the frontend again, allowing to read them in plain text when an attacker already has access to an active session of a user. It is recommended that the Nextcloud Server is upgraded to 28.0.12, 29.0.9 or 30.0.2 and Nextcloud Enterprise Server is upgraded to 25.0.13.14, 26.0.13.10, 27.1.11.10, 28.0.12, 29.0.9 or 30.0.2. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on i_extra_isize in is_alive()
syzbot found a f2fs bug:
BUG: KASAN: slab-out-of-bounds in data_blkaddr fs/f2fs/f2fs.h:2891 [inline]
BUG: KASAN: slab-out-of-bounds in is_alive fs/f2fs/gc.c:1117 [inline]
BUG: KASAN: slab-out-of-bounds in gc_data_segment fs/f2fs/gc.c:1520 [inline]
BUG: KASAN: slab-out-of-bounds in do_garbage_collect+0x386a/0x3df0 fs/f2fs/gc.c:1734
Read of size 4 at addr ffff888076557568 by task kworker/u4:3/52
CPU: 1 PID: 52 Comm: kworker/u4:3 Not tainted 6.1.0-rc4-syzkaller-00362-gfef7fd48922d #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
Workqueue: writeback wb_workfn (flush-7:0)
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:284 [inline]
print_report+0x15e/0x45d mm/kasan/report.c:395
kasan_report+0xbb/0x1f0 mm/kasan/report.c:495
data_blkaddr fs/f2fs/f2fs.h:2891 [inline]
is_alive fs/f2fs/gc.c:1117 [inline]
gc_data_segment fs/f2fs/gc.c:1520 [inline]
do_garbage_collect+0x386a/0x3df0 fs/f2fs/gc.c:1734
f2fs_gc+0x88c/0x20a0 fs/f2fs/gc.c:1831
f2fs_balance_fs+0x544/0x6b0 fs/f2fs/segment.c:410
f2fs_write_inode+0x57e/0xe20 fs/f2fs/inode.c:753
write_inode fs/fs-writeback.c:1440 [inline]
__writeback_single_inode+0xcfc/0x1440 fs/fs-writeback.c:1652
writeback_sb_inodes+0x54d/0xf90 fs/fs-writeback.c:1870
wb_writeback+0x2c5/0xd70 fs/fs-writeback.c:2044
wb_do_writeback fs/fs-writeback.c:2187 [inline]
wb_workfn+0x2dc/0x12f0 fs/fs-writeback.c:2227
process_one_work+0x9bf/0x1710 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
The root cause is that we forgot to do sanity check on .i_extra_isize
in below path, result in accessing invalid address later, fix it.
- gc_data_segment
- is_alive
- data_blkaddr
- offset_in_addr |
| In the Linux kernel, the following vulnerability has been resolved:
objtool, nvmet: Fix out-of-bounds stack access in nvmet_ctrl_state_show()
The csts_state_names[] array only has six sparse entries, but the
iteration code in nvmet_ctrl_state_show() iterates seven, resulting in a
potential out-of-bounds stack read. Fix that.
Fixes the following warning with an UBSAN kernel:
vmlinux.o: warning: objtool: .text.nvmet_ctrl_state_show: unexpected end of section |