Search Results (8702 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-21308 1 Adobe 1 Substance 3d Designer 2026-01-14 5.5 Medium
Substance3D - Designer versions 15.0.3 and earlier are affected by an Out-of-bounds Read vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information stored in memory. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
CVE-2025-53470 1 Apache 1 Nimble 2026-01-14 3.1 Low
Out-of-bounds Read vulnerability in Apache NimBLE HCI H4 driver. Specially crafted HCI event could lead to invalid memory read in H4 driver. This issue affects Apache NimBLE: through 1.8.  This issue requires a broken or bogus Bluetooth controller and thus severity is considered low. Users are recommended to upgrade to version 1.9, which fixes the issue.
CVE-2024-41061 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport [Why] Potential out of bounds access in dml2_calculate_rq_and_dlg_params() because the value of out_lowest_state_idx used as an index for FCLKChangeSupport array can be greater than 1. [How] Currently dml2 core specifies identical values for all FCLKChangeSupport elements. Always use index 0 in the condition to avoid out of bounds access.
CVE-2025-37179 3 Arubanetworks, Hp, Hpe 3 Arubaos, Arubaos, Arubaos 2026-01-14 5.3 Medium
Multiple out-of-bounds read vulnerabilities were identified in a system component responsible for handling certain data buffers. Due to insufficient validation of maximum buffer size values, the process may attempt to read beyond the intended memory region. Under specific conditions, this can result in a crash of the affected process and a potential denial-of-service of the compromised process.
CVE-2025-37178 3 Arubanetworks, Hp, Hpe 3 Arubaos, Arubaos, Arubaos 2026-01-14 5.3 Medium
Multiple out-of-bounds read vulnerabilities were identified in a system component responsible for handling certain data buffers. Due to insufficient validation of maximum buffer size values, the process may attempt to read beyond the intended memory region. Under specific conditions, this can result in a crash of the affected process and a potential denial-of-service of the compromised process.
CVE-2025-14104 1 Redhat 2 Enterprise Linux, Openshift 2026-01-13 6.1 Medium
A flaw was found in util-linux. This vulnerability allows a heap buffer overread when processing 256-byte usernames, specifically within the `setpwnam()` function, affecting SUID (Set User ID) login-utils utilities writing to the password database.
CVE-2026-21678 2 Color, Internationalcolorconsortium 2 Iccdev, Iccdev 2026-01-13 7.8 High
iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of ICC color management profiles. Prior to version 2.3.1.2, iccDEV is vulnerable to heap-buffer-overflow vulnerability in IccTagXml(). This issue has been patched in version 2.3.1.2.
CVE-2025-67810 2026-01-13 6.5 Medium
In Area9 Rhapsode 1.47.3, an authenticated attacker can exploit the operation, url, and filename parameters via POST request to read arbitrary files from the server filesystem. Fixed in 1.47.4 (#7254) and further versions.
CVE-2025-15506 2026-01-13 3.3 Low
A vulnerability was found in AcademySoftwareFoundation OpenColorIO up to 2.5.0. This issue affects the function ConvertToRegularExpression of the file src/OpenColorIO/FileRules.cpp. Performing a manipulation results in out-of-bounds read. The attack needs to be approached locally. The exploit has been made public and could be used. The patch is named ebdbb75123c9d5f4643e041314e2bc988a13f20d. To fix this issue, it is recommended to deploy a patch. The fix was added to the 2.5.1 milestone.
CVE-2026-21487 2 Color, Internationalcolorconsortium 2 Iccdev, Iccdev 2026-01-12 6.1 Medium
iccDEV provides a set of libraries and tools for working with ICC color management profiles. Versions 2.3.1.1 and below have an Out-of-bounds Read, Use of Out-of-range Pointer Offset and have Improper Input Validation in its CIccProfile::LoadTag function. This issue is fixed in version 2.3.1.2.
CVE-2026-21494 2 Color, Internationalcolorconsortium 2 Iccdev, Iccdev 2026-01-12 6.1 Medium
iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. A vulnerability present in versions prior to 2.3.1.2 affects users of the iccDEV library who process ICC color profiles. It results in heap buffer overflow in `CIccTagLut8::Validate()`. Version 2.3.1.2 contains a patch. No known workarounds are available.
CVE-2026-21491 2 Color, Internationalcolorconsortium 2 Iccdev, Iccdev 2026-01-12 6.1 Medium
iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. A vulnerability present in versions prior to 2.3.1.2 affects users of the iccDEV library who process ICC color profiles. It results in unicode buffer overflow in `CIccTagTextDescription`. Version 2.3.1.2 contains a patch. No known workarounds are available.
CVE-2026-21490 2 Color, Internationalcolorconsortium 2 Iccdev, Iccdev 2026-01-12 6.1 Medium
iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. A vulnerability present in versions prior to 2.3.1.2 affects users of the iccDEV library who process ICC color profiles. It results in heap buffer overflow in `CIccTagLut16::Validate()`. Version 2.3.1.2 contains a patch. No known workarounds are available.
CVE-2025-15382 1 Wolfssh 1 Wolfssh 2026-01-12 8.1 High
A heap buffer over-read vulnerability exists in the wolfSSH_CleanPath() function in wolfSSH. An authenticated remote attacker can trigger the issue via crafted SCP path input containing '/./' sequences, resulting in a heap over read by 1 byte.
CVE-2025-39710 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-12 7.1 High
In the Linux kernel, the following vulnerability has been resolved: media: venus: Add a check for packet size after reading from shared memory Add a check to ensure that the packet size does not exceed the number of available words after reading the packet header from shared memory. This ensures that the size provided by the firmware is safe to process and prevent potential out-of-bounds memory access.
CVE-2025-22107 1 Linux 1 Linux Kernel 2026-01-11 7.1 High
In the Linux kernel, the following vulnerability has been resolved: net: dsa: sja1105: fix kasan out-of-bounds warning in sja1105_table_delete_entry() There are actually 2 problems: - deleting the last element doesn't require the memmove of elements [i + 1, end) over it. Actually, element i+1 is out of bounds. - The memmove itself should move size - i - 1 elements, because the last element is out of bounds. The out-of-bounds element still remains out of bounds after being accessed, so the problem is only that we touch it, not that it becomes in active use. But I suppose it can lead to issues if the out-of-bounds element is part of an unmapped page.
CVE-2025-21946 1 Linux 1 Linux Kernel 2026-01-11 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix out-of-bounds in parse_sec_desc() If osidoffset, gsidoffset and dacloffset could be greater than smb_ntsd struct size. If it is smaller, It could cause slab-out-of-bounds. And when validating sid, It need to check it included subauth array size.
CVE-2024-57982 1 Linux 1 Linux Kernel 2026-01-11 7.1 High
In the Linux kernel, the following vulnerability has been resolved: xfrm: state: fix out-of-bounds read during lookup lookup and resize can run in parallel. The xfrm_state_hash_generation seqlock ensures a retry, but the hash functions can observe a hmask value that is too large for the new hlist array. rehash does: rcu_assign_pointer(net->xfrm.state_bydst, ndst) [..] net->xfrm.state_hmask = nhashmask; While state lookup does: h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { This is only safe in case the update to state_bydst is larger than net->xfrm.xfrm_state_hmask (or if the lookup function gets serialized via state spinlock again). Fix this by prefetching state_hmask and the associated pointers. The xfrm_state_hash_generation seqlock retry will ensure that the pointer and the hmask will be consistent. The existing helpers, like xfrm_dst_hash(), are now unsafe for RCU side, add lockdep assertions to document that they are only safe for insert side. xfrm_state_lookup_byaddr() uses the spinlock rather than RCU. AFAICS this is an oversight from back when state lookup was converted to RCU, this lock should be replaced with RCU in a future patch.
CVE-2025-39757 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-09 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Validate UAC3 cluster segment descriptors UAC3 class segment descriptors need to be verified whether their sizes match with the declared lengths and whether they fit with the allocated buffer sizes, too. Otherwise malicious firmware may lead to the unexpected OOB accesses.
CVE-2025-38714 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-09 7.1 High
In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix slab-out-of-bounds in hfsplus_bnode_read() The hfsplus_bnode_read() method can trigger the issue: [ 174.852007][ T9784] ================================================================== [ 174.852709][ T9784] BUG: KASAN: slab-out-of-bounds in hfsplus_bnode_read+0x2f4/0x360 [ 174.853412][ T9784] Read of size 8 at addr ffff88810b5fc6c0 by task repro/9784 [ 174.854059][ T9784] [ 174.854272][ T9784] CPU: 1 UID: 0 PID: 9784 Comm: repro Not tainted 6.16.0-rc3 #7 PREEMPT(full) [ 174.854281][ T9784] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 174.854286][ T9784] Call Trace: [ 174.854289][ T9784] <TASK> [ 174.854292][ T9784] dump_stack_lvl+0x10e/0x1f0 [ 174.854305][ T9784] print_report+0xd0/0x660 [ 174.854315][ T9784] ? __virt_addr_valid+0x81/0x610 [ 174.854323][ T9784] ? __phys_addr+0xe8/0x180 [ 174.854330][ T9784] ? hfsplus_bnode_read+0x2f4/0x360 [ 174.854337][ T9784] kasan_report+0xc6/0x100 [ 174.854346][ T9784] ? hfsplus_bnode_read+0x2f4/0x360 [ 174.854354][ T9784] hfsplus_bnode_read+0x2f4/0x360 [ 174.854362][ T9784] hfsplus_bnode_dump+0x2ec/0x380 [ 174.854370][ T9784] ? __pfx_hfsplus_bnode_dump+0x10/0x10 [ 174.854377][ T9784] ? hfsplus_bnode_write_u16+0x83/0xb0 [ 174.854385][ T9784] ? srcu_gp_start+0xd0/0x310 [ 174.854393][ T9784] ? __mark_inode_dirty+0x29e/0xe40 [ 174.854402][ T9784] hfsplus_brec_remove+0x3d2/0x4e0 [ 174.854411][ T9784] __hfsplus_delete_attr+0x290/0x3a0 [ 174.854419][ T9784] ? __pfx_hfs_find_1st_rec_by_cnid+0x10/0x10 [ 174.854427][ T9784] ? __pfx___hfsplus_delete_attr+0x10/0x10 [ 174.854436][ T9784] ? __asan_memset+0x23/0x50 [ 174.854450][ T9784] hfsplus_delete_all_attrs+0x262/0x320 [ 174.854459][ T9784] ? __pfx_hfsplus_delete_all_attrs+0x10/0x10 [ 174.854469][ T9784] ? rcu_is_watching+0x12/0xc0 [ 174.854476][ T9784] ? __mark_inode_dirty+0x29e/0xe40 [ 174.854483][ T9784] hfsplus_delete_cat+0x845/0xde0 [ 174.854493][ T9784] ? __pfx_hfsplus_delete_cat+0x10/0x10 [ 174.854507][ T9784] hfsplus_unlink+0x1ca/0x7c0 [ 174.854516][ T9784] ? __pfx_hfsplus_unlink+0x10/0x10 [ 174.854525][ T9784] ? down_write+0x148/0x200 [ 174.854532][ T9784] ? __pfx_down_write+0x10/0x10 [ 174.854540][ T9784] vfs_unlink+0x2fe/0x9b0 [ 174.854549][ T9784] do_unlinkat+0x490/0x670 [ 174.854557][ T9784] ? __pfx_do_unlinkat+0x10/0x10 [ 174.854565][ T9784] ? __might_fault+0xbc/0x130 [ 174.854576][ T9784] ? getname_flags.part.0+0x1c5/0x550 [ 174.854584][ T9784] __x64_sys_unlink+0xc5/0x110 [ 174.854592][ T9784] do_syscall_64+0xc9/0x480 [ 174.854600][ T9784] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 174.854608][ T9784] RIP: 0033:0x7f6fdf4c3167 [ 174.854614][ T9784] Code: f0 ff ff 73 01 c3 48 8b 0d 26 0d 0e 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 08 [ 174.854622][ T9784] RSP: 002b:00007ffcb948bca8 EFLAGS: 00000206 ORIG_RAX: 0000000000000057 [ 174.854630][ T9784] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f6fdf4c3167 [ 174.854636][ T9784] RDX: 00007ffcb948bcc0 RSI: 00007ffcb948bcc0 RDI: 00007ffcb948bd50 [ 174.854641][ T9784] RBP: 00007ffcb948cd90 R08: 0000000000000001 R09: 00007ffcb948bb40 [ 174.854645][ T9784] R10: 00007f6fdf564fc0 R11: 0000000000000206 R12: 0000561e1bc9c2d0 [ 174.854650][ T9784] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 174.854658][ T9784] </TASK> [ 174.854661][ T9784] [ 174.879281][ T9784] Allocated by task 9784: [ 174.879664][ T9784] kasan_save_stack+0x20/0x40 [ 174.880082][ T9784] kasan_save_track+0x14/0x30 [ 174.880500][ T9784] __kasan_kmalloc+0xaa/0xb0 [ 174.880908][ T9784] __kmalloc_noprof+0x205/0x550 [ 174.881337][ T9784] __hfs_bnode_create+0x107/0x890 [ 174.881779][ T9784] hfsplus_bnode_find+0x2d0/0xd10 [ 174.882222][ T9784] hfsplus_brec_find+0x2b0/0x520 [ 174.882659][ T9784] hfsplus_delete_all_attrs+0x23b/0x3 ---truncated---