| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Stack-based buffer overflow in the rename_principal_2_svc function in kadmind for MIT Kerberos 1.5.3, 1.6.1, and other versions allows remote authenticated users to execute arbitrary code via a crafted request to rename a principal. |
| The get_input_token function in the SPNEGO implementation in MIT Kerberos 5 (aka krb5) 1.5 through 1.6.3 allows remote attackers to cause a denial of service (daemon crash) and possibly obtain sensitive information via a crafted length value that triggers a buffer over-read. |
| KDC in MIT Kerberos 5 (krb5kdc) does not set a global variable for some krb4 message types, which allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via crafted messages that trigger a NULL pointer dereference or double-free. |
| Stack-based buffer overflow in the krb5_klog_syslog function in the kadm5 library, as used by the Kerberos administration daemon (kadmind) and Key Distribution Center (KDC), in MIT krb5 before 1.6.1 allows remote authenticated users to execute arbitrary code and modify the Kerberos key database via crafted arguments, possibly involving certain format string specifiers. |
| The original patch for CVE-2007-3999 in svc_auth_gss.c in the RPCSEC_GSS RPC library in MIT Kerberos 5 (krb5) 1.4 through 1.6.2, as used by the Kerberos administration daemon (kadmind) and other applications that use krb5, does not correctly check the buffer length in some environments and architectures, which might allow remote attackers to conduct a buffer overflow attack. |
| The asn1buf_imbed function in the ASN.1 decoder in MIT Kerberos 5 (aka krb5) 1.6.3, when PK-INIT is used, allows remote attackers to cause a denial of service (application crash) via a crafted length value that triggers an erroneous malloc call, related to incorrect calculations with pointer arithmetic. |
| Integer overflow in the svcauth_gss_get_principal function in lib/rpc/svc_auth_gss.c in MIT Kerberos 5 (krb5) allows remote attackers to have an unknown impact via a large length value for a GSS client name in an RPC request. |
| The reply function in ftpd.c in the gssftp ftpd in MIT Kerberos 5 (krb5) does not initialize the length variable when auth_type has a certain value, which has unknown impact and remote authenticated attack vectors. NOTE: the original disclosure misidentifies the conditions under which the uninitialized variable is used. NOTE: the vendor disputes this issue, stating " The 'length' variable is only uninitialized if 'auth_type' is neither the 'KERBEROS_V4' nor 'GSSAPI'; this condition cannot occur in the unmodified source code. |
| Double free vulnerability in the gss_krb5int_make_seal_token_v3 function in lib/gssapi/krb5/k5sealv3.c in MIT Kerberos 5 (krb5) has unknown impact and attack vectors. |
| The "mechglue" abstraction interface of the GSS-API library for Kerberos 5 1.5 through 1.5.1, as used in Kerberos administration daemon (kadmind) and other products that use this library, allows remote attackers to cause a denial of service (crash) via unspecified vectors that cause mechglue to free uninitialized pointers. |
| Multiple integer underflows in the (1) AES and (2) RC4 decryption functionality in the crypto library in MIT Kerberos 5 (aka krb5) 1.3 through 1.6.3, and 1.7 before 1.7.1, allow remote attackers to cause a denial of service (daemon crash) or possibly execute arbitrary code by providing ciphertext with a length that is too short to be valid. |
| The prep_reprocess_req function in kdc/do_tgs_req.c in the cross-realm referral implementation in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) 1.7 before 1.7.1 allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via a ticket request. |
| Buffer overflow in ssh 1.2.26 client with Kerberos V enabled could allow remote attackers to cause a denial of service or execute arbitrary commands via a long DNS hostname that is not properly handled during TGT ticket passing. |
| Buffer overflow in krshd in Kerberos 5 allows remote attackers to gain root privileges. |
| Double free vulnerabilities in the error handling code for ASN.1 decoders in the (1) Key Distribution Center (KDC) library and (2) client library for MIT Kerberos 5 (krb5) 1.3.4 and earlier may allow remote attackers to execute arbitrary code. |
| The (1) ftpd and (2) ksu programs in (a) MIT Kerberos 5 (krb5) up to 1.5, and 1.4.x before 1.4.4, and (b) Heimdal 0.7.2 and earlier, do not check return codes for setuid calls, which might allow local users to gain privileges by causing setuid to fail to drop privileges. NOTE: as of 20060808, it is not known whether an exploitable attack scenario exists for these issues. |
| Buffer overflow in BSD-based telnetd telnet daemon on various operating systems allows remote attackers to execute arbitrary commands via a set of options including AYT (Are You There), which is not properly handled by the telrcv function. |
| Certain weaknesses in the implementation of version 4 of the Kerberos protocol (krb4) in the krb5 distribution, when triple-DES keys are used to key krb4 services, allow an attacker to create krb4 tickets for unauthorized principals using a cut-and-paste attack and "ticket splicing." |
| Buffer overflow in Kerberos IV compatibility libraries as used in Kerberos V allows local users to gain root privileges via a long line in a kerberos configuration file, which can be specified via the KRB_CONF environmental variable. |
| Version 4 of the Kerberos protocol (krb4), as used in Heimdal and other packages, allows an attacker to impersonate any principal in a realm via a chosen-plaintext attack. |