| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: camss: Clean up received buffers on failed start of streaming
It is required to return the received buffers, if streaming can not be
started. For instance media_pipeline_start() may fail with EPIPE, if
a link validation between entities is not passed, and in such a case
a user gets a kernel warning:
WARNING: CPU: 1 PID: 520 at drivers/media/common/videobuf2/videobuf2-core.c:1592 vb2_start_streaming+0xec/0x160
<snip>
Call trace:
vb2_start_streaming+0xec/0x160
vb2_core_streamon+0x9c/0x1a0
vb2_ioctl_streamon+0x68/0xbc
v4l_streamon+0x30/0x3c
__video_do_ioctl+0x184/0x3e0
video_usercopy+0x37c/0x7b0
video_ioctl2+0x24/0x40
v4l2_ioctl+0x4c/0x70
The fix is to correct the error path in video_start_streaming() of camss. |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: ov5648: Free V4L2 fwnode data on unbind
The V4L2 fwnode data structure doesn't get freed on unbind, which leads to
a memleak. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: marvell/octeontx - prevent integer overflows
The "code_length" value comes from the firmware file. If your firmware
is untrusted realistically there is probably very little you can do to
protect yourself. Still we try to limit the damage as much as possible.
Also Smatch marks any data read from the filesystem as untrusted and
prints warnings if it not capped correctly.
The "code_length * 2" can overflow. The round_up(ucode_size, 16) +
sizeof() expression can overflow too. Prevent these overflows. |
| In the Linux kernel, the following vulnerability has been resolved:
RISC-V: kexec: Fix memory leak of elf header buffer
This is reported by kmemleak detector:
unreferenced object 0xff2000000403d000 (size 4096):
comm "kexec", pid 146, jiffies 4294900633 (age 64.792s)
hex dump (first 32 bytes):
7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 .ELF............
04 00 f3 00 01 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000566ca97c>] kmemleak_vmalloc+0x3c/0xbe
[<00000000979283d8>] __vmalloc_node_range+0x3ac/0x560
[<00000000b4b3712a>] __vmalloc_node+0x56/0x62
[<00000000854f75e2>] vzalloc+0x2c/0x34
[<00000000e9a00db9>] crash_prepare_elf64_headers+0x80/0x30c
[<0000000067e8bf48>] elf_kexec_load+0x3e8/0x4ec
[<0000000036548e09>] kexec_image_load_default+0x40/0x4c
[<0000000079fbe1b4>] sys_kexec_file_load+0x1c4/0x322
[<0000000040c62c03>] ret_from_syscall+0x0/0x2
In elf_kexec_load(), a buffer is allocated via vzalloc() to store elf
headers. While it's not freed back to system when kdump kernel is
reloaded or unloaded, or when image->elf_header is successfully set and
then fails to load kdump kernel for some reason. Fix it by freeing the
buffer in arch_kimage_file_post_load_cleanup(). |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: set generation before calling btrfs_clean_tree_block in btrfs_init_new_buffer
syzbot is reporting uninit-value in btrfs_clean_tree_block() [1], for
commit bc877d285ca3dba2 ("btrfs: Deduplicate extent_buffer init code")
missed that btrfs_set_header_generation() in btrfs_init_new_buffer() must
not be moved to after clean_tree_block() because clean_tree_block() is
calling btrfs_header_generation() since commit 55c69072d6bd5be1 ("Btrfs:
Fix extent_buffer usage when nodesize != leafsize").
Since memzero_extent_buffer() will reset "struct btrfs_header" part, we
can't move btrfs_set_header_generation() to before memzero_extent_buffer().
Just re-add btrfs_set_header_generation() before btrfs_clean_tree_block(). |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix memory leak in ocfs2_mount_volume()
There is a memory leak reported by kmemleak:
unreferenced object 0xffff88810cc65e60 (size 32):
comm "mount.ocfs2", pid 23753, jiffies 4302528942 (age 34735.105s)
hex dump (first 32 bytes):
10 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01 ................
01 01 01 01 01 01 01 01 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff8170f73d>] __kmalloc+0x4d/0x150
[<ffffffffa0ac3f51>] ocfs2_compute_replay_slots+0x121/0x330 [ocfs2]
[<ffffffffa0b65165>] ocfs2_check_volume+0x485/0x900 [ocfs2]
[<ffffffffa0b68129>] ocfs2_mount_volume.isra.0+0x1e9/0x650 [ocfs2]
[<ffffffffa0b7160b>] ocfs2_fill_super+0xe0b/0x1740 [ocfs2]
[<ffffffff818e1fe2>] mount_bdev+0x312/0x400
[<ffffffff819a086d>] legacy_get_tree+0xed/0x1d0
[<ffffffff818de82d>] vfs_get_tree+0x7d/0x230
[<ffffffff81957f92>] path_mount+0xd62/0x1760
[<ffffffff81958a5a>] do_mount+0xca/0xe0
[<ffffffff81958d3c>] __x64_sys_mount+0x12c/0x1a0
[<ffffffff82f26f15>] do_syscall_64+0x35/0x80
[<ffffffff8300006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
This call stack is related to two problems. Firstly, the ocfs2 super uses
"replay_map" to trace online/offline slots, in order to recover offline
slots during recovery and mount. But when ocfs2_truncate_log_init()
returns an error in ocfs2_mount_volume(), the memory of "replay_map" will
not be freed in error handling path. Secondly, the memory of "replay_map"
will not be freed if d_make_root() returns an error in ocfs2_fill_super().
But the memory of "replay_map" will be freed normally when completing
recovery and mount in ocfs2_complete_mount_recovery().
Fix the first problem by adding error handling path to free "replay_map"
when ocfs2_truncate_log_init() fails. And fix the second problem by
calling ocfs2_free_replay_slots(osb) in the error handling path
"out_dismount". In addition, since ocfs2_free_replay_slots() is static,
it is necessary to remove its static attribute and declare it in header
file. |
| In the Linux kernel, the following vulnerability has been resolved:
netdevsim: fix memory leak in nsim_bus_dev_new()
If device_register() failed in nsim_bus_dev_new(), the value of reference
in nsim_bus_dev->dev is 1. obj->name in nsim_bus_dev->dev will not be
released.
unreferenced object 0xffff88810352c480 (size 16):
comm "echo", pid 5691, jiffies 4294945921 (age 133.270s)
hex dump (first 16 bytes):
6e 65 74 64 65 76 73 69 6d 31 00 00 00 00 00 00 netdevsim1......
backtrace:
[<000000005e2e5e26>] __kmalloc_node_track_caller+0x3a/0xb0
[<0000000094ca4fc8>] kvasprintf+0xc3/0x160
[<00000000aad09bcc>] kvasprintf_const+0x55/0x180
[<000000009bac868d>] kobject_set_name_vargs+0x56/0x150
[<000000007c1a5d70>] dev_set_name+0xbb/0xf0
[<00000000ad0d126b>] device_add+0x1f8/0x1cb0
[<00000000c222ae24>] new_device_store+0x3b6/0x5e0
[<0000000043593421>] bus_attr_store+0x72/0xa0
[<00000000cbb1833a>] sysfs_kf_write+0x106/0x160
[<00000000d0dedb8a>] kernfs_fop_write_iter+0x3a8/0x5a0
[<00000000770b66e2>] vfs_write+0x8f0/0xc80
[<0000000078bb39be>] ksys_write+0x106/0x210
[<00000000005e55a4>] do_syscall_64+0x35/0x80
[<00000000eaa40bbc>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix UAF issue in nfqnl_nf_hook_drop() when ops_init() failed
When the ops_init() interface is invoked to initialize the net, but
ops->init() fails, data is released. However, the ptr pointer in
net->gen is invalid. In this case, when nfqnl_nf_hook_drop() is invoked
to release the net, invalid address access occurs.
The process is as follows:
setup_net()
ops_init()
data = kzalloc(...) ---> alloc "data"
net_assign_generic() ---> assign "date" to ptr in net->gen
...
ops->init() ---> failed
...
kfree(data); ---> ptr in net->gen is invalid
...
ops_exit_list()
...
nfqnl_nf_hook_drop()
*q = nfnl_queue_pernet(net) ---> q is invalid
The following is the Call Trace information:
BUG: KASAN: use-after-free in nfqnl_nf_hook_drop+0x264/0x280
Read of size 8 at addr ffff88810396b240 by task ip/15855
Call Trace:
<TASK>
dump_stack_lvl+0x8e/0xd1
print_report+0x155/0x454
kasan_report+0xba/0x1f0
nfqnl_nf_hook_drop+0x264/0x280
nf_queue_nf_hook_drop+0x8b/0x1b0
__nf_unregister_net_hook+0x1ae/0x5a0
nf_unregister_net_hooks+0xde/0x130
ops_exit_list+0xb0/0x170
setup_net+0x7ac/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
Allocated by task 15855:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0xa1/0xb0
__kmalloc+0x49/0xb0
ops_init+0xe7/0x410
setup_net+0x5aa/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Freed by task 15855:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
____kasan_slab_free+0x155/0x1b0
slab_free_freelist_hook+0x11b/0x220
__kmem_cache_free+0xa4/0x360
ops_init+0xb9/0x410
setup_net+0x5aa/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
amdgpu/pm: prevent array underflow in vega20_odn_edit_dpm_table()
In the PP_OD_EDIT_VDDC_CURVE case the "input_index" variable is capped at
2 but not checked for negative values so it results in an out of bounds
read. This value comes from the user via sysfs. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Do not add the same hwpt to the ioas->hwpt_list twice
The hwpt is added to the hwpt_list only during its creation, it is never
added again. This hunk is some missed leftover from rework. Adding it
twice will corrupt the linked list in some cases.
It effects HWPT specific attachment, which is something the test suite
cannot cover until we can create a legitimate struct device with a
non-system iommu "driver" (ie we need the bus removed from the iommu code) |
| In the Linux kernel, the following vulnerability has been resolved:
spmi: Add a check for remove callback when removing a SPMI driver
When removing a SPMI driver, there can be a crash due to NULL pointer
dereference if it does not have a remove callback defined. This is
one such call trace observed when removing the QCOM SPMI PMIC driver:
dump_backtrace.cfi_jt+0x0/0x8
dump_stack_lvl+0xd8/0x16c
panic+0x188/0x498
__cfi_slowpath+0x0/0x214
__cfi_slowpath+0x1dc/0x214
spmi_drv_remove+0x16c/0x1e0
device_release_driver_internal+0x468/0x79c
driver_detach+0x11c/0x1a0
bus_remove_driver+0xc4/0x124
driver_unregister+0x58/0x84
cleanup_module+0x1c/0xc24 [qcom_spmi_pmic]
__do_sys_delete_module+0x3ec/0x53c
__arm64_sys_delete_module+0x18/0x28
el0_svc_common+0xdc/0x294
el0_svc+0x38/0x9c
el0_sync_handler+0x8c/0xf0
el0_sync+0x1b4/0x1c0
If a driver has all its resources allocated through devm_() APIs and
does not need any other explicit cleanup, it would not require a
remove callback to be defined. Hence, add a check for remove callback
presence before calling it when removing a SPMI driver. |
| In the Linux kernel, the following vulnerability has been resolved:
audit: fix possible soft lockup in __audit_inode_child()
Tracefs or debugfs maybe cause hundreds to thousands of PATH records,
too many PATH records maybe cause soft lockup.
For example:
1. CONFIG_KASAN=y && CONFIG_PREEMPTION=n
2. auditctl -a exit,always -S open -k key
3. sysctl -w kernel.watchdog_thresh=5
4. mkdir /sys/kernel/debug/tracing/instances/test
There may be a soft lockup as follows:
watchdog: BUG: soft lockup - CPU#45 stuck for 7s! [mkdir:15498]
Kernel panic - not syncing: softlockup: hung tasks
Call trace:
dump_backtrace+0x0/0x30c
show_stack+0x20/0x30
dump_stack+0x11c/0x174
panic+0x27c/0x494
watchdog_timer_fn+0x2bc/0x390
__run_hrtimer+0x148/0x4fc
__hrtimer_run_queues+0x154/0x210
hrtimer_interrupt+0x2c4/0x760
arch_timer_handler_phys+0x48/0x60
handle_percpu_devid_irq+0xe0/0x340
__handle_domain_irq+0xbc/0x130
gic_handle_irq+0x78/0x460
el1_irq+0xb8/0x140
__audit_inode_child+0x240/0x7bc
tracefs_create_file+0x1b8/0x2a0
trace_create_file+0x18/0x50
event_create_dir+0x204/0x30c
__trace_add_new_event+0xac/0x100
event_trace_add_tracer+0xa0/0x130
trace_array_create_dir+0x60/0x140
trace_array_create+0x1e0/0x370
instance_mkdir+0x90/0xd0
tracefs_syscall_mkdir+0x68/0xa0
vfs_mkdir+0x21c/0x34c
do_mkdirat+0x1b4/0x1d4
__arm64_sys_mkdirat+0x4c/0x60
el0_svc_common.constprop.0+0xa8/0x240
do_el0_svc+0x8c/0xc0
el0_svc+0x20/0x30
el0_sync_handler+0xb0/0xb4
el0_sync+0x160/0x180
Therefore, we add cond_resched() to __audit_inode_child() to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: essiv - Handle EBUSY correctly
As it is essiv only handles the special return value of EINPROGERSS,
which means that in all other cases it will free data related to the
request.
However, as the caller of essiv may specify MAY_BACKLOG, we also need
to expect EBUSY and treat it in the same way. Otherwise backlogged
requests will trigger a use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Prevent handling any completions after qp destroy
HW may generate completions that indicates QP is destroyed.
Driver should not be scheduling any more completion handlers
for this QP, after the QP is destroyed. Since CQs are active
during the QP destroy, driver may still schedule completion
handlers. This can cause a race where the destroy_cq and poll_cq
running simultaneously.
Snippet of kernel panic while doing bnxt_re driver load unload in loop.
This indicates a poll after the CQ is freed.
[77786.481636] Call Trace:
[77786.481640] <TASK>
[77786.481644] bnxt_re_poll_cq+0x14a/0x620 [bnxt_re]
[77786.481658] ? kvm_clock_read+0x14/0x30
[77786.481693] __ib_process_cq+0x57/0x190 [ib_core]
[77786.481728] ib_cq_poll_work+0x26/0x80 [ib_core]
[77786.481761] process_one_work+0x1e5/0x3f0
[77786.481768] worker_thread+0x50/0x3a0
[77786.481785] ? __pfx_worker_thread+0x10/0x10
[77786.481790] kthread+0xe2/0x110
[77786.481794] ? __pfx_kthread+0x10/0x10
[77786.481797] ret_from_fork+0x2c/0x50
To avoid this, complete all completion handlers before returning the
destroy QP. If free_cq is called soon after destroy_qp, IB stack
will cancel the CQ work before invoking the destroy_cq verb and
this will prevent any race mentioned. |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix memleak when insert_old_idx() failed
Following process will cause a memleak for copied up znode:
dirty_cow_znode
zn = copy_znode(c, znode);
err = insert_old_idx(c, zbr->lnum, zbr->offs);
if (unlikely(err))
return ERR_PTR(err); // No one refers to zn.
Fetch a reproducer in [Link].
Function copy_znode() is split into 2 parts: resource allocation
and znode replacement, insert_old_idx() is split in similar way,
so resource cleanup could be done in error handling path without
corrupting metadata(mem & disk).
It's okay that old index inserting is put behind of add_idx_dirt(),
old index is used in layout_leb_in_gaps(), so the two processes do
not depend on each other. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Fix memory leak of PBLE objects
On rmmod of irdma, the PBLE object memory is not being freed. PBLE object
memory are not statically pre-allocated at function initialization time
unlike other HMC objects. PBLEs objects and the Segment Descriptors (SD)
for it can be dynamically allocated during scale up and SD's remain
allocated till function deinitialization.
Fix this leak by adding IRDMA_HMC_IW_PBLE to the iw_hmc_obj_types[] table
and skip pbles in irdma_create_hmc_obj but not in irdma_del_hmc_objects(). |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_ffa: Check if ffa_driver remove is present before executing
Currently ffa_drv->remove() is called unconditionally from
ffa_device_remove(). Since the driver registration doesn't check for it
and allows it to be registered without .remove callback, we need to check
for the presence of it before executing it from ffa_device_remove() to
above a NULL pointer dereference like the one below:
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
| Mem abort info:
| ESR = 0x0000000086000004
| EC = 0x21: IABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| FSC = 0x04: level 0 translation fault
| user pgtable: 4k pages, 48-bit VAs, pgdp=0000000881cc8000
| [0000000000000000] pgd=0000000000000000, p4d=0000000000000000
| Internal error: Oops: 0000000086000004 [#1] PREEMPT SMP
| CPU: 3 PID: 130 Comm: rmmod Not tainted 6.3.0-rc7 #6
| Hardware name: FVP Base RevC (DT)
| pstate: 63402809 (nZCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=-c)
| pc : 0x0
| lr : ffa_device_remove+0x20/0x2c
| Call trace:
| 0x0
| device_release_driver_internal+0x16c/0x260
| driver_detach+0x90/0xd0
| bus_remove_driver+0xdc/0x11c
| driver_unregister+0x30/0x54
| ffa_driver_unregister+0x14/0x20
| cleanup_module+0x18/0xeec
| __arm64_sys_delete_module+0x234/0x378
| invoke_syscall+0x40/0x108
| el0_svc_common+0xb4/0xf0
| do_el0_svc+0x30/0xa4
| el0_svc+0x2c/0x7c
| el0t_64_sync_handler+0x84/0xf0
| el0t_64_sync+0x190/0x194 |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix to call f2fs_wait_on_page_writeback() in f2fs_write_raw_pages()
BUG_ON() will be triggered when writing files concurrently,
because the same page is writtenback multiple times.
1597 void folio_end_writeback(struct folio *folio)
1598 {
......
1618 if (!__folio_end_writeback(folio))
1619 BUG();
......
1625 }
kernel BUG at mm/filemap.c:1619!
Call Trace:
<TASK>
f2fs_write_end_io+0x1a0/0x370
blk_update_request+0x6c/0x410
blk_mq_end_request+0x15/0x130
blk_complete_reqs+0x3c/0x50
__do_softirq+0xb8/0x29b
? sort_range+0x20/0x20
run_ksoftirqd+0x19/0x20
smpboot_thread_fn+0x10b/0x1d0
kthread+0xde/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK>
Below is the concurrency scenario:
[Process A] [Process B] [Process C]
f2fs_write_raw_pages()
- redirty_page_for_writepage()
- unlock page()
f2fs_do_write_data_page()
- lock_page()
- clear_page_dirty_for_io()
- set_page_writeback() [1st writeback]
.....
- unlock page()
generic_perform_write()
- f2fs_write_begin()
- wait_for_stable_page()
- f2fs_write_end()
- set_page_dirty()
- lock_page()
- f2fs_do_write_data_page()
- set_page_writeback() [2st writeback]
This problem was introduced by the previous commit 7377e853967b ("f2fs:
compress: fix potential deadlock of compress file"). All pagelocks were
released in f2fs_write_raw_pages(), but whether the page was
in the writeback state was ignored in the subsequent writing process.
Let's fix it by waiting for the page to writeback before writing. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix BUG in ext4_mb_new_inode_pa() due to overflow
When we calculate the end position of ext4_free_extent, this position may
be exactly where ext4_lblk_t (i.e. uint) overflows. For example, if
ac_g_ex.fe_logical is 4294965248 and ac_orig_goal_len is 2048, then the
computed end is 0x100000000, which is 0. If ac->ac_o_ex.fe_logical is not
the first case of adjusting the best extent, that is, new_bex_end > 0, the
following BUG_ON will be triggered:
=========================================================
kernel BUG at fs/ext4/mballoc.c:5116!
invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 3 PID: 673 Comm: xfs_io Tainted: G E 6.5.0-rc1+ #279
RIP: 0010:ext4_mb_new_inode_pa+0xc5/0x430
Call Trace:
<TASK>
ext4_mb_use_best_found+0x203/0x2f0
ext4_mb_try_best_found+0x163/0x240
ext4_mb_regular_allocator+0x158/0x1550
ext4_mb_new_blocks+0x86a/0xe10
ext4_ext_map_blocks+0xb0c/0x13a0
ext4_map_blocks+0x2cd/0x8f0
ext4_iomap_begin+0x27b/0x400
iomap_iter+0x222/0x3d0
__iomap_dio_rw+0x243/0xcb0
iomap_dio_rw+0x16/0x80
=========================================================
A simple reproducer demonstrating the problem:
mkfs.ext4 -F /dev/sda -b 4096 100M
mount /dev/sda /tmp/test
fallocate -l1M /tmp/test/tmp
fallocate -l10M /tmp/test/file
fallocate -i -o 1M -l16777203M /tmp/test/file
fsstress -d /tmp/test -l 0 -n 100000 -p 8 &
sleep 10 && killall -9 fsstress
rm -f /tmp/test/tmp
xfs_io -c "open -ad /tmp/test/file" -c "pwrite -S 0xff 0 8192"
We simply refactor the logic for adjusting the best extent by adding
a temporary ext4_free_extent ex and use extent_logical_end() to avoid
overflow, which also simplifies the code. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: use work to update rate to avoid RCU warning
The ieee80211_ops::sta_rc_update must be atomic, because
ieee80211_chan_bw_change() holds rcu_read lock while calling
drv_sta_rc_update(), so create a work to do original things.
Voluntary context switch within RCU read-side critical section!
WARNING: CPU: 0 PID: 4621 at kernel/rcu/tree_plugin.h:318
rcu_note_context_switch+0x571/0x5d0
CPU: 0 PID: 4621 Comm: kworker/u16:2 Tainted: G W OE
Workqueue: phy3 ieee80211_chswitch_work [mac80211]
RIP: 0010:rcu_note_context_switch+0x571/0x5d0
Call Trace:
<TASK>
__schedule+0xb0/0x1460
? __mod_timer+0x116/0x360
schedule+0x5a/0xc0
schedule_timeout+0x87/0x150
? trace_raw_output_tick_stop+0x60/0x60
wait_for_completion_timeout+0x7b/0x140
usb_start_wait_urb+0x82/0x160 [usbcore
usb_control_msg+0xe3/0x140 [usbcore
rtw_usb_read+0x88/0xe0 [rtw_usb
rtw_usb_read8+0xf/0x10 [rtw_usb
rtw_fw_send_h2c_command+0xa0/0x170 [rtw_core
rtw_fw_send_ra_info+0xc9/0xf0 [rtw_core
drv_sta_rc_update+0x7c/0x160 [mac80211
ieee80211_chan_bw_change+0xfb/0x110 [mac80211
ieee80211_change_chanctx+0x38/0x130 [mac80211
ieee80211_vif_use_reserved_switch+0x34e/0x900 [mac80211
ieee80211_link_use_reserved_context+0x88/0xe0 [mac80211
ieee80211_chswitch_work+0x95/0x170 [mac80211
process_one_work+0x201/0x410
worker_thread+0x4a/0x3b0
? process_one_work+0x410/0x410
kthread+0xe1/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK> |