| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ping: Fix potentail NULL deref for /proc/net/icmp.
After commit dbca1596bbb0 ("ping: convert to RCU lookups, get rid
of rwlock"), we use RCU for ping sockets, but we should use spinlock
for /proc/net/icmp to avoid a potential NULL deref mentioned in
the previous patch.
Let's go back to using spinlock there.
Note we can convert ping sockets to use hlist instead of hlist_nulls
because we do not use SLAB_TYPESAFE_BY_RCU for ping sockets. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv4: fix one memleak in __inet_del_ifa()
I got the below warning when do fuzzing test:
unregister_netdevice: waiting for bond0 to become free. Usage count = 2
It can be repoduced via:
ip link add bond0 type bond
sysctl -w net.ipv4.conf.bond0.promote_secondaries=1
ip addr add 4.117.174.103/0 scope 0x40 dev bond0
ip addr add 192.168.100.111/255.255.255.254 scope 0 dev bond0
ip addr add 0.0.0.4/0 scope 0x40 secondary dev bond0
ip addr del 4.117.174.103/0 scope 0x40 dev bond0
ip link delete bond0 type bond
In this reproduction test case, an incorrect 'last_prim' is found in
__inet_del_ifa(), as a result, the secondary address(0.0.0.4/0 scope 0x40)
is lost. The memory of the secondary address is leaked and the reference of
in_device and net_device is leaked.
Fix this problem:
Look for 'last_prim' starting at location of the deleted IP and inserting
the promoted IP into the location of 'last_prim'. |
| In the Linux kernel, the following vulnerability has been resolved:
hwrng: virtio - Fix race on data_avail and actual data
The virtio rng device kicks off a new entropy request whenever the
data available reaches zero. When a new request occurs at the end
of a read operation, that is, when the result of that request is
only needed by the next reader, then there is a race between the
writing of the new data and the next reader.
This is because there is no synchronisation whatsoever between the
writer and the reader.
Fix this by writing data_avail with smp_store_release and reading
it with smp_load_acquire when we first enter read. The subsequent
reads are safe because they're either protected by the first load
acquire, or by the completion mechanism.
Also remove the redundant zeroing of data_idx in random_recv_done
(data_idx must already be zero at this point) and data_avail in
request_entropy (ditto). |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: TC, Fix internal port memory leak
The flow rule can be splited, and the extra post_act rules are added
to post_act table. It's possible to trigger memleak when the rule
forwards packets from internal port and over tunnel, in the case that,
for example, CT 'new' state offload is allowed. As int_port object is
assigned to the flow attribute of post_act rule, and its refcnt is
incremented by mlx5e_tc_int_port_get(), but mlx5e_tc_int_port_put() is
not called, the refcnt is never decremented, then int_port is never
freed.
The kmemleak reports the following error:
unreferenced object 0xffff888128204b80 (size 64):
comm "handler20", pid 50121, jiffies 4296973009 (age 642.932s)
hex dump (first 32 bytes):
01 00 00 00 19 00 00 00 03 f0 00 00 04 00 00 00 ................
98 77 67 41 81 88 ff ff 98 77 67 41 81 88 ff ff .wgA.....wgA....
backtrace:
[<00000000e992680d>] kmalloc_trace+0x27/0x120
[<000000009e945a98>] mlx5e_tc_int_port_get+0x3f3/0xe20 [mlx5_core]
[<0000000035a537f0>] mlx5e_tc_add_fdb_flow+0x473/0xcf0 [mlx5_core]
[<0000000070c2cec6>] __mlx5e_add_fdb_flow+0x7cf/0xe90 [mlx5_core]
[<000000005cc84048>] mlx5e_configure_flower+0xd40/0x4c40 [mlx5_core]
[<000000004f8a2031>] mlx5e_rep_indr_offload.isra.0+0x10e/0x1c0 [mlx5_core]
[<000000007df797dc>] mlx5e_rep_indr_setup_tc_cb+0x90/0x130 [mlx5_core]
[<0000000016c15cc3>] tc_setup_cb_add+0x1cf/0x410
[<00000000a63305b4>] fl_hw_replace_filter+0x38f/0x670 [cls_flower]
[<000000008bc9e77c>] fl_change+0x1fd5/0x4430 [cls_flower]
[<00000000e7f766e4>] tc_new_tfilter+0x867/0x2010
[<00000000e101c0ef>] rtnetlink_rcv_msg+0x6fc/0x9f0
[<00000000e1111d44>] netlink_rcv_skb+0x12c/0x360
[<0000000082dd6c8b>] netlink_unicast+0x438/0x710
[<00000000fc568f70>] netlink_sendmsg+0x794/0xc50
[<0000000016e92590>] sock_sendmsg+0xc5/0x190
So fix this by moving int_port cleanup code to the flow attribute
free helper, which is used by all the attribute free cases. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix deadlock issue when externel_lb and reset are executed together
When externel_lb and reset are executed together, a deadlock may
occur:
[ 3147.217009] INFO: task kworker/u321:0:7 blocked for more than 120 seconds.
[ 3147.230483] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 3147.238999] task:kworker/u321:0 state:D stack: 0 pid: 7 ppid: 2 flags:0x00000008
[ 3147.248045] Workqueue: hclge hclge_service_task [hclge]
[ 3147.253957] Call trace:
[ 3147.257093] __switch_to+0x7c/0xbc
[ 3147.261183] __schedule+0x338/0x6f0
[ 3147.265357] schedule+0x50/0xe0
[ 3147.269185] schedule_preempt_disabled+0x18/0x24
[ 3147.274488] __mutex_lock.constprop.0+0x1d4/0x5dc
[ 3147.279880] __mutex_lock_slowpath+0x1c/0x30
[ 3147.284839] mutex_lock+0x50/0x60
[ 3147.288841] rtnl_lock+0x20/0x2c
[ 3147.292759] hclge_reset_prepare+0x68/0x90 [hclge]
[ 3147.298239] hclge_reset_subtask+0x88/0xe0 [hclge]
[ 3147.303718] hclge_reset_service_task+0x84/0x120 [hclge]
[ 3147.309718] hclge_service_task+0x2c/0x70 [hclge]
[ 3147.315109] process_one_work+0x1d0/0x490
[ 3147.319805] worker_thread+0x158/0x3d0
[ 3147.324240] kthread+0x108/0x13c
[ 3147.328154] ret_from_fork+0x10/0x18
In externel_lb process, the hns3 driver call napi_disable()
first, then the reset happen, then the restore process of the
externel_lb will fail, and will not call napi_enable(). When
doing externel_lb again, napi_disable() will be double call,
cause a deadlock of rtnl_lock().
This patch use the HNS3_NIC_STATE_DOWN state to protect the
calling of napi_disable() and napi_enable() in externel_lb
process, just as the usage in ndo_stop() and ndo_start(). |
| In the Linux kernel, the following vulnerability has been resolved:
staging: r8712: Fix memory leak in _r8712_init_xmit_priv()
In the above mentioned routine, memory is allocated in several places.
If the first succeeds and a later one fails, the routine will leak memory.
This patch fixes commit 2865d42c78a9 ("staging: r8712u: Add the new driver
to the mainline kernel"). A potential memory leak in
r8712_xmit_resource_alloc() is also addressed. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix data-race around unix_tot_inflight.
unix_tot_inflight is changed under spin_lock(unix_gc_lock), but
unix_release_sock() reads it locklessly.
Let's use READ_ONCE() for unix_tot_inflight.
Note that the writer side was marked by commit 9d6d7f1cb67c ("af_unix:
annote lockless accesses to unix_tot_inflight & gc_in_progress")
BUG: KCSAN: data-race in unix_inflight / unix_release_sock
write (marked) to 0xffffffff871852b8 of 4 bytes by task 123 on cpu 1:
unix_inflight+0x130/0x180 net/unix/scm.c:64
unix_attach_fds+0x137/0x1b0 net/unix/scm.c:123
unix_scm_to_skb net/unix/af_unix.c:1832 [inline]
unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1955
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg+0x148/0x160 net/socket.c:747
____sys_sendmsg+0x4e4/0x610 net/socket.c:2493
___sys_sendmsg+0xc6/0x140 net/socket.c:2547
__sys_sendmsg+0x94/0x140 net/socket.c:2576
__do_sys_sendmsg net/socket.c:2585 [inline]
__se_sys_sendmsg net/socket.c:2583 [inline]
__x64_sys_sendmsg+0x45/0x50 net/socket.c:2583
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x72/0xdc
read to 0xffffffff871852b8 of 4 bytes by task 4891 on cpu 0:
unix_release_sock+0x608/0x910 net/unix/af_unix.c:671
unix_release+0x59/0x80 net/unix/af_unix.c:1058
__sock_release+0x7d/0x170 net/socket.c:653
sock_close+0x19/0x30 net/socket.c:1385
__fput+0x179/0x5e0 fs/file_table.c:321
____fput+0x15/0x20 fs/file_table.c:349
task_work_run+0x116/0x1a0 kernel/task_work.c:179
resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
exit_to_user_mode_loop kernel/entry/common.c:171 [inline]
exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204
__syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline]
syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297
do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x72/0xdc
value changed: 0x00000000 -> 0x00000001
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 4891 Comm: systemd-coredum Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: sf-pdma: pdma_desc memory leak fix
Commit b2cc5c465c2c ("dmaengine: sf-pdma: Add multithread support for a
DMA channel") changed sf_pdma_prep_dma_memcpy() to unconditionally
allocate a new sf_pdma_desc each time it is called.
The driver previously recycled descs, by checking the in_use flag, only
allocating additional descs if the existing one was in use. This logic
was removed in commit b2cc5c465c2c ("dmaengine: sf-pdma: Add multithread
support for a DMA channel"), but sf_pdma_free_desc() was not changed to
handle the new behaviour.
As a result, each time sf_pdma_prep_dma_memcpy() is called, the previous
descriptor is leaked, over time leading to memory starvation:
unreferenced object 0xffffffe008447300 (size 192):
comm "irq/39-mchp_dsc", pid 343, jiffies 4294906910 (age 981.200s)
hex dump (first 32 bytes):
00 00 00 ff 00 00 00 00 b8 c1 00 00 00 00 00 00 ................
00 00 70 08 10 00 00 00 00 00 00 c0 00 00 00 00 ..p.............
backtrace:
[<00000000064a04f4>] kmemleak_alloc+0x1e/0x28
[<00000000018927a7>] kmem_cache_alloc+0x11e/0x178
[<000000002aea8d16>] sf_pdma_prep_dma_memcpy+0x40/0x112
Add the missing kfree() to sf_pdma_free_desc(), and remove the redundant
in_use flag. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential memory leaks at error path for UMP open
The allocation and initialization errors at alloc_midi_urbs() that is
called at MIDI 2.0 / UMP device are supposed to be handled at the
caller side by invoking free_midi_urbs(). However, free_midi_urbs()
loops only for ep->num_urbs entries, and since ep->num_entries wasn't
updated yet at the allocation / init error in alloc_midi_urbs(), this
entry won't be released.
The intention of free_midi_urbs() is to release the whole elements, so
change the loop size to NUM_URBS to scan over all elements for fixing
the missed releases.
Also, the call of free_midi_urbs() is missing at
snd_usb_midi_v2_open(). Although it'll be released later at
reopen/close or disconnection, it's better to release immediately at
the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Destroy target device if coalesced MMIO unregistration fails
Destroy and free the target coalesced MMIO device if unregistering said
device fails. As clearly noted in the code, kvm_io_bus_unregister_dev()
does not destroy the target device.
BUG: memory leak
unreferenced object 0xffff888112a54880 (size 64):
comm "syz-executor.2", pid 5258, jiffies 4297861402 (age 14.129s)
hex dump (first 32 bytes):
38 c7 67 15 00 c9 ff ff 38 c7 67 15 00 c9 ff ff 8.g.....8.g.....
e0 c7 e1 83 ff ff ff ff 00 30 67 15 00 c9 ff ff .........0g.....
backtrace:
[<0000000006995a8a>] kmalloc include/linux/slab.h:556 [inline]
[<0000000006995a8a>] kzalloc include/linux/slab.h:690 [inline]
[<0000000006995a8a>] kvm_vm_ioctl_register_coalesced_mmio+0x8e/0x3d0 arch/x86/kvm/../../../virt/kvm/coalesced_mmio.c:150
[<00000000022550c2>] kvm_vm_ioctl+0x47d/0x1600 arch/x86/kvm/../../../virt/kvm/kvm_main.c:3323
[<000000008a75102f>] vfs_ioctl fs/ioctl.c:46 [inline]
[<000000008a75102f>] file_ioctl fs/ioctl.c:509 [inline]
[<000000008a75102f>] do_vfs_ioctl+0xbab/0x1160 fs/ioctl.c:696
[<0000000080e3f669>] ksys_ioctl+0x76/0xa0 fs/ioctl.c:713
[<0000000059ef4888>] __do_sys_ioctl fs/ioctl.c:720 [inline]
[<0000000059ef4888>] __se_sys_ioctl fs/ioctl.c:718 [inline]
[<0000000059ef4888>] __x64_sys_ioctl+0x6f/0xb0 fs/ioctl.c:718
[<000000006444fa05>] do_syscall_64+0x9f/0x4e0 arch/x86/entry/common.c:290
[<000000009a4ed50b>] entry_SYSCALL_64_after_hwframe+0x49/0xbe
BUG: leak checking failed |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rsi: Do not configure WoWlan in shutdown hook if not enabled
In case WoWlan was never configured during the operation of the system,
the hw->wiphy->wowlan_config will be NULL. rsi_config_wowlan() checks
whether wowlan_config is non-NULL and if it is not, then WARNs about it.
The warning is valid, as during normal operation the rsi_config_wowlan()
should only ever be called with non-NULL wowlan_config. In shutdown this
rsi_config_wowlan() should only ever be called if WoWlan was configured
before by the user.
Add checks for non-NULL wowlan_config into the shutdown hook. While at it,
check whether the wiphy is also non-NULL before accessing wowlan_config .
Drop the single-use wowlan_config variable, just inline it into function
call. |
| In the Linux kernel, the following vulnerability has been resolved:
opp: Fix use-after-free in lazy_opp_tables after probe deferral
When dev_pm_opp_of_find_icc_paths() in _allocate_opp_table() returns
-EPROBE_DEFER, the opp_table is freed again, to wait until all the
interconnect paths are available.
However, if the OPP table is using required-opps then it may already
have been added to the global lazy_opp_tables list. The error path
does not remove the opp_table from the list again.
This can cause crashes later when the provider of the required-opps
is added, since we will iterate over OPP tables that have already been
freed. E.g.:
Unable to handle kernel NULL pointer dereference when read
CPU: 0 PID: 7 Comm: kworker/0:0 Not tainted 6.4.0-rc3
PC is at _of_add_opp_table_v2 (include/linux/of.h:949
drivers/opp/of.c:98 drivers/opp/of.c:344 drivers/opp/of.c:404
drivers/opp/of.c:1032) -> lazy_link_required_opp_table()
Fix this by calling _of_clear_opp_table() to remove the opp_table from
the list and clear other allocated resources. While at it, also add the
missing mutex_destroy() calls in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: core: Prevent invalid memory access when there is no parent
Commit 813665564b3d ("iio: core: Convert to use firmware node handle
instead of OF node") switched the kind of nodes to use for label
retrieval in device registration. Probably an unwanted change in that
commit was that if the device has no parent then NULL pointer is
accessed. This is what happens in the stock IIO dummy driver when a
new entry is created in configfs:
# mkdir /sys/kernel/config/iio/devices/dummy/foo
BUG: kernel NULL pointer dereference, address: ...
...
Call Trace:
__iio_device_register
iio_dummy_probe
Since there seems to be no reason to make a parent device of an IIO
dummy device mandatory, let’s prevent the invalid memory access in
__iio_device_register when the parent device is NULL. With this
change, the IIO dummy driver works fine with configfs. |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa: Add queue index attr to vdpa_nl_policy for nlattr length check
The vdpa_nl_policy structure is used to validate the nlattr when parsing
the incoming nlmsg. It will ensure the attribute being described produces
a valid nlattr pointer in info->attrs before entering into each handler
in vdpa_nl_ops.
That is to say, the missing part in vdpa_nl_policy may lead to illegal
nlattr after parsing, which could lead to OOB read just like CVE-2023-3773.
This patch adds the missing nla_policy for vdpa queue index attr to avoid
such bugs. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps
The LRU and LRU_PERCPU maps allocate a new element on update before locking the
target hash table bucket. Right after that the maps try to lock the bucket.
If this fails, then maps return -EBUSY to the caller without releasing the
allocated element. This makes the element untracked: it doesn't belong to
either of free lists, and it doesn't belong to the hash table, so can't be
re-used; this eventually leads to the permanent -ENOMEM on LRU map updates,
which is unexpected. Fix this by returning the element to the local free list
if bucket locking fails. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fix underflow in chain reference counter
Set element addition error path decrements reference counter on chains
twice: once on element release and again via nft_data_release().
Then, d6b478666ffa ("netfilter: nf_tables: fix underflow in object
reference counter") incorrectly fixed this by removing the stateful
object reference count decrement.
Restore the stateful object decrement as in b91d90368837 ("netfilter:
nf_tables: fix leaking object reference count") and let
nft_data_release() decrement the chain reference counter, so this is
done only once. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtl8xxxu: Fix memory leaks with RTL8723BU, RTL8192EU
The wifi + bluetooth combo chip RTL8723BU can leak memory (especially?)
when it's connected to a bluetooth audio device. The busy bluetooth
traffic generates lots of C2H (card to host) messages, which are not
freed correctly.
To fix this, move the dev_kfree_skb() call in rtl8xxxu_c2hcmd_callback()
inside the loop where skb_dequeue() is called.
The RTL8192EU leaks memory because the C2H messages are added to the
queue and left there forever. (This was fine in the past because it
probably wasn't sending any C2H messages until commit e542e66b7c2e
("wifi: rtl8xxxu: gen2: Turn on the rate control"). Since that commit
it sends a C2H message when the TX rate changes.)
To fix this, delete the check for rf_paths > 1 and the goto. Let the
function process the C2H messages from RTL8192EU like the ones from
the other chips.
Theoretically the RTL8188FU could also leak like RTL8723BU, but it
most likely doesn't send C2H messages frequently enough.
This change was tested with RTL8723BU by Erhard F. I tested it with
RTL8188FU and RTL8192EU. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_conn: return ERR_PTR instead of NULL when there is no link
hci_connect_sco currently returns NULL when there is no link (i.e. when
hci_conn_link() returns NULL).
sco_connect() expects an ERR_PTR in case of any error (see line 266 in
sco.c). Thus, hcon set as NULL passes through to sco_conn_add(), which
tries to get hcon->hdev, resulting in dereferencing a NULL pointer as
reported by syzkaller.
The same issue exists for iso_connect_cis() calling hci_connect_cis().
Thus, make hci_connect_sco() and hci_connect_cis() return ERR_PTR
instead of NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: j1939_tp_tx_dat_new(): fix out-of-bounds memory access
In the j1939_tp_tx_dat_new() function, an out-of-bounds memory access
could occur during the memcpy() operation if the size of skb->cb is
larger than the size of struct j1939_sk_buff_cb. This is because the
memcpy() operation uses the size of skb->cb, leading to a read beyond
the struct j1939_sk_buff_cb.
Updated the memcpy() operation to use the size of struct
j1939_sk_buff_cb instead of the size of skb->cb. This ensures that the
memcpy() operation only reads the memory within the bounds of struct
j1939_sk_buff_cb, preventing out-of-bounds memory access.
Additionally, add a BUILD_BUG_ON() to check that the size of skb->cb
is greater than or equal to the size of struct j1939_sk_buff_cb. This
ensures that the skb->cb buffer is large enough to hold the
j1939_sk_buff_cb structure.
[mkl: rephrase commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix wrong fallback logic for FDIR
When adding a FDIR filter, if ice_vc_fdir_set_irq_ctx returns failure,
the inserted fdir entry will not be removed and if ice_vc_fdir_write_fltr
returns failure, the fdir context info for irq handler will not be cleared
which may lead to inconsistent or memory leak issue. This patch refines
failure cases to resolve this issue. |