| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
clk: imx93: fix memory leak and missing unwind goto in imx93_clocks_probe
In function probe(), it returns directly without unregistered hws
when error occurs.
Fix this by adding 'goto unregister_hws;' on line 295 and
line 310.
Use devm_kzalloc() instead of kzalloc() to automatically
free the memory using devm_kfree() when error occurs.
Replace of_iomap() with devm_of_iomap() to automatically
handle the unused ioremap region and delete 'iounmap(anatop_base);'
in unregister_hws. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix potential user-after-free
This fixes all instances of which requires to allocate a buffer calling
alloc_skb which may release the chan lock and reacquire later which
makes it possible that the chan is disconnected in the meantime. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "drm/msm: Add missing check and destroy for alloc_ordered_workqueue"
This reverts commit 643b7d0869cc7f1f7a5ac7ca6bd25d88f54e31d0.
A recent patch that tried to fix up the msm_drm_init() paths with
respect to the workqueue but only ended up making things worse:
First, the newly added calls to msm_drm_uninit() on early errors would
trigger NULL-pointer dereferences, for example, as the kms pointer would
not have been initialised. (Note that these paths were also modified by
a second broken error handling patch which in effect cancelled out this
part when merged.)
Second, the newly added allocation sanity check would still leak the
previously allocated drm device.
Instead of trying to salvage what was badly broken (and clearly not
tested), let's revert the bad commit so that clean and backportable
fixes can be added in its place.
Patchwork: https://patchwork.freedesktop.org/patch/525107/ |
| In the Linux kernel, the following vulnerability has been resolved:
net: Fix load-tearing on sk->sk_stamp in sock_recv_cmsgs().
KCSAN found a data race in sock_recv_cmsgs() where the read access
to sk->sk_stamp needs READ_ONCE().
BUG: KCSAN: data-race in packet_recvmsg / packet_recvmsg
write (marked) to 0xffff88803c81f258 of 8 bytes by task 19171 on cpu 0:
sock_write_timestamp include/net/sock.h:2670 [inline]
sock_recv_cmsgs include/net/sock.h:2722 [inline]
packet_recvmsg+0xb97/0xd00 net/packet/af_packet.c:3489
sock_recvmsg_nosec net/socket.c:1019 [inline]
sock_recvmsg+0x11a/0x130 net/socket.c:1040
sock_read_iter+0x176/0x220 net/socket.c:1118
call_read_iter include/linux/fs.h:1845 [inline]
new_sync_read fs/read_write.c:389 [inline]
vfs_read+0x5e0/0x630 fs/read_write.c:470
ksys_read+0x163/0x1a0 fs/read_write.c:613
__do_sys_read fs/read_write.c:623 [inline]
__se_sys_read fs/read_write.c:621 [inline]
__x64_sys_read+0x41/0x50 fs/read_write.c:621
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x72/0xdc
read to 0xffff88803c81f258 of 8 bytes by task 19183 on cpu 1:
sock_recv_cmsgs include/net/sock.h:2721 [inline]
packet_recvmsg+0xb64/0xd00 net/packet/af_packet.c:3489
sock_recvmsg_nosec net/socket.c:1019 [inline]
sock_recvmsg+0x11a/0x130 net/socket.c:1040
sock_read_iter+0x176/0x220 net/socket.c:1118
call_read_iter include/linux/fs.h:1845 [inline]
new_sync_read fs/read_write.c:389 [inline]
vfs_read+0x5e0/0x630 fs/read_write.c:470
ksys_read+0x163/0x1a0 fs/read_write.c:613
__do_sys_read fs/read_write.c:623 [inline]
__se_sys_read fs/read_write.c:621 [inline]
__x64_sys_read+0x41/0x50 fs/read_write.c:621
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x72/0xdc
value changed: 0xffffffffc4653600 -> 0x0000000000000000
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 19183 Comm: syz-executor.5 Not tainted 6.3.0-rc7-02330-gca6270c12e20 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 |
| In the Linux kernel, the following vulnerability has been resolved:
serial: 8250: Fix oops for port->pm on uart_change_pm()
Unloading a hardware specific 8250 driver can produce error "Unable to
handle kernel paging request at virtual address" about ten seconds after
unloading the driver. This happens on uart_hangup() calling
uart_change_pm().
Turns out commit 04e82793f068 ("serial: 8250: Reinit port->pm on port
specific driver unbind") was only a partial fix. If the hardware specific
driver has initialized port->pm function, we need to clear port->pm too.
Just reinitializing port->ops does not do this. Otherwise serial8250_pm()
will call port->pm() instead of serial8250_do_pm(). |
| In the Linux kernel, the following vulnerability has been resolved:
hte: tegra-194: Fix off by one in tegra_hte_map_to_line_id()
The "map_sz" is the number of elements in the "m" array so the >
comparison needs to be changed to >= to prevent an out of bounds
read. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipa: only reset hashed tables when supported
Last year, the code that manages GSI channel transactions switched
from using spinlock-protected linked lists to using indexes into the
ring buffer used for a channel. Recently, Google reported seeing
transaction reference count underflows occasionally during shutdown.
Doug Anderson found a way to reproduce the issue reliably, and
bisected the issue to the commit that eliminated the linked lists
and the lock. The root cause was ultimately determined to be
related to unused transactions being committed as part of the modem
shutdown cleanup activity. Unused transactions are not normally
expected (except in error cases).
The modem uses some ranges of IPA-resident memory, and whenever it
shuts down we zero those ranges. In ipa_filter_reset_table() a
transaction is allocated to zero modem filter table entries. If
hashing is not supported, hashed table memory should not be zeroed.
But currently nothing prevents that, and the result is an unused
transaction. Something similar occurs when we zero routing table
entries for the modem.
By preventing any attempt to clear hashed tables when hashing is not
supported, the reference count underflow is avoided in this case.
Note that there likely remains an issue with properly freeing unused
transactions (if they occur due to errors). This patch addresses
only the underflows that Google originally reported. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix data races around sk->sk_shutdown.
KCSAN found a data race around sk->sk_shutdown where unix_release_sock()
and unix_shutdown() update it under unix_state_lock(), OTOH unix_poll()
and unix_dgram_poll() read it locklessly.
We need to annotate the writes and reads with WRITE_ONCE() and READ_ONCE().
BUG: KCSAN: data-race in unix_poll / unix_release_sock
write to 0xffff88800d0f8aec of 1 bytes by task 264 on cpu 0:
unix_release_sock+0x75c/0x910 net/unix/af_unix.c:631
unix_release+0x59/0x80 net/unix/af_unix.c:1042
__sock_release+0x7d/0x170 net/socket.c:653
sock_close+0x19/0x30 net/socket.c:1397
__fput+0x179/0x5e0 fs/file_table.c:321
____fput+0x15/0x20 fs/file_table.c:349
task_work_run+0x116/0x1a0 kernel/task_work.c:179
resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
exit_to_user_mode_loop kernel/entry/common.c:171 [inline]
exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204
__syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline]
syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297
do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x72/0xdc
read to 0xffff88800d0f8aec of 1 bytes by task 222 on cpu 1:
unix_poll+0xa3/0x2a0 net/unix/af_unix.c:3170
sock_poll+0xcf/0x2b0 net/socket.c:1385
vfs_poll include/linux/poll.h:88 [inline]
ep_item_poll.isra.0+0x78/0xc0 fs/eventpoll.c:855
ep_send_events fs/eventpoll.c:1694 [inline]
ep_poll fs/eventpoll.c:1823 [inline]
do_epoll_wait+0x6c4/0xea0 fs/eventpoll.c:2258
__do_sys_epoll_wait fs/eventpoll.c:2270 [inline]
__se_sys_epoll_wait fs/eventpoll.c:2265 [inline]
__x64_sys_epoll_wait+0xcc/0x190 fs/eventpoll.c:2265
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x72/0xdc
value changed: 0x00 -> 0x03
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 222 Comm: dbus-broker Not tainted 6.3.0-rc7-02330-gca6270c12e20 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: raa215300: Fix resource leak in case of error
The clk_register_clkdev() allocates memory by calling vclkdev_alloc() and
this memory is not freed in the error path. Similarly, resources allocated
by clk_register_fixed_rate() are not freed in the error path.
Fix these issues by using devm_clk_hw_register_fixed_rate() and
devm_clk_hw_register_clkdev().
After this, the static variable clk is not needed. Replace it withÂ
local variable hw in probe() and drop calling clk_unregister_fixed_rate()
from raa215300_rtc_unregister_device(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: libwx: fix memory leak in wx_setup_rx_resources
When wx_alloc_page_pool() failed in wx_setup_rx_resources(), it doesn't
release DMA buffer. Add dma_free_coherent() in the error path to release
the DMA buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/DOE: Fix destroy_work_on_stack() race
The following debug object splat was observed in testing:
ODEBUG: free active (active state 0) object: 0000000097d23782 object type: work_struct hint: doe_statemachine_work+0x0/0x510
WARNING: CPU: 1 PID: 71 at lib/debugobjects.c:514 debug_print_object+0x7d/0xb0
...
Workqueue: pci 0000:36:00.0 DOE [1 doe_statemachine_work
RIP: 0010:debug_print_object+0x7d/0xb0
...
Call Trace:
? debug_print_object+0x7d/0xb0
? __pfx_doe_statemachine_work+0x10/0x10
debug_object_free.part.0+0x11b/0x150
doe_statemachine_work+0x45e/0x510
process_one_work+0x1d4/0x3c0
This occurs because destroy_work_on_stack() was called after signaling
the completion in the calling thread. This creates a race between
destroy_work_on_stack() and the task->work struct going out of scope in
pci_doe().
Signal the work complete after destroying the work struct. This is safe
because signal_task_complete() is the final thing the work item does and
the workqueue code is careful not to access the work struct after. |
| In the Linux kernel, the following vulnerability has been resolved:
net/net_failover: fix txq exceeding warning
The failover txq is inited as 16 queues.
when a packet is transmitted from the failover device firstly,
the failover device will select the queue which is returned from
the primary device if the primary device is UP and running.
If the primary device txq is bigger than the default 16,
it can lead to the following warning:
eth0 selects TX queue 18, but real number of TX queues is 16
The warning backtrace is:
[ 32.146376] CPU: 18 PID: 9134 Comm: chronyd Tainted: G E 6.2.8-1.el7.centos.x86_64 #1
[ 32.147175] Hardware name: Red Hat KVM, BIOS 1.10.2-3.el7_4.1 04/01/2014
[ 32.147730] Call Trace:
[ 32.147971] <TASK>
[ 32.148183] dump_stack_lvl+0x48/0x70
[ 32.148514] dump_stack+0x10/0x20
[ 32.148820] netdev_core_pick_tx+0xb1/0xe0
[ 32.149180] __dev_queue_xmit+0x529/0xcf0
[ 32.149533] ? __check_object_size.part.0+0x21c/0x2c0
[ 32.149967] ip_finish_output2+0x278/0x560
[ 32.150327] __ip_finish_output+0x1fe/0x2f0
[ 32.150690] ip_finish_output+0x2a/0xd0
[ 32.151032] ip_output+0x7a/0x110
[ 32.151337] ? __pfx_ip_finish_output+0x10/0x10
[ 32.151733] ip_local_out+0x5e/0x70
[ 32.152054] ip_send_skb+0x19/0x50
[ 32.152366] udp_send_skb.isra.0+0x163/0x3a0
[ 32.152736] udp_sendmsg+0xba8/0xec0
[ 32.153060] ? __folio_memcg_unlock+0x25/0x60
[ 32.153445] ? __pfx_ip_generic_getfrag+0x10/0x10
[ 32.153854] ? sock_has_perm+0x85/0xa0
[ 32.154190] inet_sendmsg+0x6d/0x80
[ 32.154508] ? inet_sendmsg+0x6d/0x80
[ 32.154838] sock_sendmsg+0x62/0x70
[ 32.155152] ____sys_sendmsg+0x134/0x290
[ 32.155499] ___sys_sendmsg+0x81/0xc0
[ 32.155828] ? _get_random_bytes.part.0+0x79/0x1a0
[ 32.156240] ? ip4_datagram_release_cb+0x5f/0x1e0
[ 32.156649] ? get_random_u16+0x69/0xf0
[ 32.156989] ? __fget_light+0xcf/0x110
[ 32.157326] __sys_sendmmsg+0xc4/0x210
[ 32.157657] ? __sys_connect+0xb7/0xe0
[ 32.157995] ? __audit_syscall_entry+0xce/0x140
[ 32.158388] ? syscall_trace_enter.isra.0+0x12c/0x1a0
[ 32.158820] __x64_sys_sendmmsg+0x24/0x30
[ 32.159171] do_syscall_64+0x38/0x90
[ 32.159493] entry_SYSCALL_64_after_hwframe+0x72/0xdc
Fix that by reducing txq number as the non-existent primary-dev does. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix potential panic dues to unprotected smc_llc_srv_add_link()
There is a certain chance to trigger the following panic:
PID: 5900 TASK: ffff88c1c8af4100 CPU: 1 COMMAND: "kworker/1:48"
#0 [ffff9456c1cc79a0] machine_kexec at ffffffff870665b7
#1 [ffff9456c1cc79f0] __crash_kexec at ffffffff871b4c7a
#2 [ffff9456c1cc7ab0] crash_kexec at ffffffff871b5b60
#3 [ffff9456c1cc7ac0] oops_end at ffffffff87026ce7
#4 [ffff9456c1cc7ae0] page_fault_oops at ffffffff87075715
#5 [ffff9456c1cc7b58] exc_page_fault at ffffffff87ad0654
#6 [ffff9456c1cc7b80] asm_exc_page_fault at ffffffff87c00b62
[exception RIP: ib_alloc_mr+19]
RIP: ffffffffc0c9cce3 RSP: ffff9456c1cc7c38 RFLAGS: 00010202
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000004
RDX: 0000000000000010 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff88c1ea281d00 R8: 000000020a34ffff R9: ffff88c1350bbb20
R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000
R13: 0000000000000010 R14: ffff88c1ab040a50 R15: ffff88c1ea281d00
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#7 [ffff9456c1cc7c60] smc_ib_get_memory_region at ffffffffc0aff6df [smc]
#8 [ffff9456c1cc7c88] smcr_buf_map_link at ffffffffc0b0278c [smc]
#9 [ffff9456c1cc7ce0] __smc_buf_create at ffffffffc0b03586 [smc]
The reason here is that when the server tries to create a second link,
smc_llc_srv_add_link() has no protection and may add a new link to
link group. This breaks the security environment protected by
llc_conf_mutex. |
| In the Linux kernel, the following vulnerability has been resolved:
mlx5: fix skb leak while fifo resync and push
During ptp resync operation SKBs were poped from the fifo but were never
freed neither by napi_consume nor by dev_kfree_skb_any. Add call to
napi_consume_skb to properly free SKBs.
Another leak was happening because mlx5e_skb_fifo_has_room() had an error
in the check. Comparing free running counters works well unless C promotes
the types to something wider than the counter. In this case counters are
u16 but the result of the substraction is promouted to int and it causes
wrong result (negative value) of the check when producer have already
overlapped but consumer haven't yet. Explicit cast to u16 fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Check for uptr overflow
syzkaller found that setting up a map with a user VA that wraps past zero
can trigger WARN_ONs, particularly from pin_user_pages weirdly returning 0
due to invalid arguments.
Prevent creating a pages with a uptr and size that would math overflow.
WARNING: CPU: 0 PID: 518 at drivers/iommu/iommufd/pages.c:793 pfn_reader_user_pin+0x2e6/0x390
Modules linked in:
CPU: 0 PID: 518 Comm: repro Not tainted 6.3.0-rc2-eeac8ede1755+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:pfn_reader_user_pin+0x2e6/0x390
Code: b1 11 e9 25 fe ff ff e8 28 e4 0f ff 31 ff 48 89 de e8 2e e6 0f ff 48 85 db 74 0a e8 14 e4 0f ff e9 4d ff ff ff e8 0a e4 0f ff <0f> 0b bb f2 ff ff ff e9 3c ff ff ff e8 f9 e3 0f ff ba 01 00 00 00
RSP: 0018:ffffc90000f9fa30 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff821e2b72
RDX: 0000000000000000 RSI: ffff888014184680 RDI: 0000000000000002
RBP: ffffc90000f9fa78 R08: 00000000000000ff R09: 0000000079de6f4e
R10: ffffc90000f9f790 R11: ffff888014185418 R12: ffffc90000f9fc60
R13: 0000000000000002 R14: ffff888007879800 R15: 0000000000000000
FS: 00007f4227555740(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000043 CR3: 000000000e748005 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
<TASK>
pfn_reader_next+0x14a/0x7b0
? interval_tree_double_span_iter_update+0x11a/0x140
pfn_reader_first+0x140/0x1b0
iopt_pages_rw_slow+0x71/0x280
? __this_cpu_preempt_check+0x20/0x30
iopt_pages_rw_access+0x2b2/0x5b0
iommufd_access_rw+0x19f/0x2f0
iommufd_test+0xd11/0x16f0
? write_comp_data+0x2f/0x90
iommufd_fops_ioctl+0x206/0x330
__x64_sys_ioctl+0x10e/0x160
? __pfx_iommufd_fops_ioctl+0x10/0x10
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ebtables: fix table blob use-after-free
We are not allowed to return an error at this point.
Looking at the code it looks like ret is always 0 at this
point, but its not.
t = find_table_lock(net, repl->name, &ret, &ebt_mutex);
... this can return a valid table, with ret != 0.
This bug causes update of table->private with the new
blob, but then frees the blob right away in the caller.
Syzbot report:
BUG: KASAN: vmalloc-out-of-bounds in __ebt_unregister_table+0xc00/0xcd0 net/bridge/netfilter/ebtables.c:1168
Read of size 4 at addr ffffc90005425000 by task kworker/u4:4/74
Workqueue: netns cleanup_net
Call Trace:
kasan_report+0xbf/0x1f0 mm/kasan/report.c:517
__ebt_unregister_table+0xc00/0xcd0 net/bridge/netfilter/ebtables.c:1168
ebt_unregister_table+0x35/0x40 net/bridge/netfilter/ebtables.c:1372
ops_exit_list+0xb0/0x170 net/core/net_namespace.c:169
cleanup_net+0x4ee/0xb10 net/core/net_namespace.c:613
...
ip(6)tables appears to be ok (ret should be 0 at this point) but make
this more obvious. |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: ep: Only send -ENOTCONN status if client driver is available
For the STOP and RESET commands, only send the channel disconnect status
-ENOTCONN if client driver is available. Otherwise, it will result in
null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: think-lmi: Fix memory leaks when parsing ThinkStation WMI strings
My previous commit introduced a memory leak where the item allocated
from tlmi_setting was not freed.
This commit also renames it to avoid confusion with the similarly name
variable in the same function. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: Don't leak a resource on eviction error
On eviction errors other than -EMULTIHOP we were leaking a resource.
Fix.
v2:
- Avoid yet another goto (Andi Shyti) |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix potential oops in cifs_oplock_break
With deferred close we can have closes that race with lease breaks,
and so with the current checks for whether to send the lease response,
oplock_response(), this can mean that an unmount (kill_sb) can occur
just before we were checking if the tcon->ses is valid. See below:
[Fri Aug 4 04:12:50 2023] RIP: 0010:cifs_oplock_break+0x1f7/0x5b0 [cifs]
[Fri Aug 4 04:12:50 2023] Code: 7d a8 48 8b 7d c0 c0 e9 02 48 89 45 b8 41 89 cf e8 3e f5 ff ff 4c 89 f7 41 83 e7 01 e8 82 b3 03 f2 49 8b 45 50 48 85 c0 74 5e <48> 83 78 60 00 74 57 45 84 ff 75 52 48 8b 43 98 48 83 eb 68 48 39
[Fri Aug 4 04:12:50 2023] RSP: 0018:ffffb30607ddbdf8 EFLAGS: 00010206
[Fri Aug 4 04:12:50 2023] RAX: 632d223d32612022 RBX: ffff97136944b1e0 RCX: 0000000080100009
[Fri Aug 4 04:12:50 2023] RDX: 0000000000000001 RSI: 0000000080100009 RDI: ffff97136944b188
[Fri Aug 4 04:12:50 2023] RBP: ffffb30607ddbe58 R08: 0000000000000001 R09: ffffffffc08e0900
[Fri Aug 4 04:12:50 2023] R10: 0000000000000001 R11: 000000000000000f R12: ffff97136944b138
[Fri Aug 4 04:12:50 2023] R13: ffff97149147c000 R14: ffff97136944b188 R15: 0000000000000000
[Fri Aug 4 04:12:50 2023] FS: 0000000000000000(0000) GS:ffff9714f7c00000(0000) knlGS:0000000000000000
[Fri Aug 4 04:12:50 2023] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[Fri Aug 4 04:12:50 2023] CR2: 00007fd8de9c7590 CR3: 000000011228e000 CR4: 0000000000350ef0
[Fri Aug 4 04:12:50 2023] Call Trace:
[Fri Aug 4 04:12:50 2023] <TASK>
[Fri Aug 4 04:12:50 2023] process_one_work+0x225/0x3d0
[Fri Aug 4 04:12:50 2023] worker_thread+0x4d/0x3e0
[Fri Aug 4 04:12:50 2023] ? process_one_work+0x3d0/0x3d0
[Fri Aug 4 04:12:50 2023] kthread+0x12a/0x150
[Fri Aug 4 04:12:50 2023] ? set_kthread_struct+0x50/0x50
[Fri Aug 4 04:12:50 2023] ret_from_fork+0x22/0x30
[Fri Aug 4 04:12:50 2023] </TASK>
To fix this change the ordering of the checks before sending the oplock_response
to first check if the openFileList is empty. |