| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix running_req for internal abort commands
Disabling the remote phy for a SATA disk causes a hang:
root@(none)$ more /sys/class/sas_phy/phy-0:0:8/target_port_protocols
sata
root@(none)$ echo 0 > sys/class/sas_phy/phy-0:0:8/enable
root@(none)$ [ 67.855950] sas: ex 500e004aaaaaaa1f phy08 change count has changed
[ 67.920585] sd 0:0:2:0: [sdc] Synchronizing SCSI cache
[ 67.925780] sd 0:0:2:0: [sdc] Synchronize Cache(10) failed: Result: hostbyte=0x04 driverbyte=DRIVER_OK
[ 67.935094] sd 0:0:2:0: [sdc] Stopping disk
[ 67.939305] sd 0:0:2:0: [sdc] Start/Stop Unit failed: Result: hostbyte=0x04 driverbyte=DRIVER_OK
...
[ 123.998998] INFO: task kworker/u192:1:642 blocked for more than 30 seconds.
[ 124.005960] Not tainted 6.0.0-rc1-205202-gf26f8f761e83 #218
[ 124.012049] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 124.019872] task:kworker/u192:1 state:D stack:0 pid: 642 ppid: 2 flags:0x00000008
[ 124.028223] Workqueue: 0000:04:00.0_event_q sas_port_event_worker
[ 124.034319] Call trace:
[ 124.036758] __switch_to+0x128/0x278
[ 124.040333] __schedule+0x434/0xa58
[ 124.043820] schedule+0x94/0x138
[ 124.047045] schedule_timeout+0x2fc/0x368
[ 124.051052] wait_for_completion+0xdc/0x200
[ 124.055234] __flush_workqueue+0x1a8/0x708
[ 124.059328] sas_porte_broadcast_rcvd+0xa8/0xc0
[ 124.063858] sas_port_event_worker+0x60/0x98
[ 124.068126] process_one_work+0x3f8/0x660
[ 124.072134] worker_thread+0x70/0x700
[ 124.075793] kthread+0x1a4/0x1b8
[ 124.079014] ret_from_fork+0x10/0x20
The issue is that the per-device running_req read in
pm8001_dev_gone_notify() never goes to zero and we never make progress.
This is caused by missing accounting for running_req for when an internal
abort command completes.
In commit 2cbbf489778e ("scsi: pm8001: Use libsas internal abort support")
we started to send internal abort commands as a proper sas_task. In this
when we deliver a sas_task to HW the per-device running_req is incremented
in pm8001_queue_command(). However it is never decremented for internal
abort commnds, so decrement in pm8001_mpi_task_abort_resp(). |
| In the Linux kernel, the following vulnerability has been resolved:
clk: tegra: Fix refcount leak in tegra114_clock_init
of_find_matching_node() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix xid leak in cifs_ses_add_channel()
Before return, should free the xid, otherwise, the
xid will be leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Fix memory leak in uvc_gpio_parse
Previously the unit buffer was allocated before checking the IRQ for
privacy GPIO. In case of error, the unit buffer was leaked.
Allocate the unit buffer after the IRQ to avoid it.
Addresses-Coverity-ID: 1474639 ("Resource leak") |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx4: Prevent shift wrapping in set_user_sq_size()
The ucmd->log_sq_bb_count variable is controlled by the user so this
shift can wrap. Fix it by using check_shl_overflow() in the same way
that it was done in commit 515f60004ed9 ("RDMA/hns: Prevent undefined
behavior in hns_roce_set_user_sq_size()"). |
| In the Linux kernel, the following vulnerability has been resolved:
vfio: Fix NULL pointer dereference caused by uninitialized group->iommufd
group->iommufd is not initialized for the iommufd_ctx_put()
[20018.331541] BUG: kernel NULL pointer dereference, address: 0000000000000000
[20018.377508] RIP: 0010:iommufd_ctx_put+0x5/0x10 [iommufd]
...
[20018.476483] Call Trace:
[20018.479214] <TASK>
[20018.481555] vfio_group_fops_unl_ioctl+0x506/0x690 [vfio]
[20018.487586] __x64_sys_ioctl+0x6a/0xb0
[20018.491773] ? trace_hardirqs_on+0xc5/0xe0
[20018.496347] do_syscall_64+0x67/0x90
[20018.500340] entry_SYSCALL_64_after_hwframe+0x4b/0xb5 |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix warning in trace_buffered_event_disable()
Warning happened in trace_buffered_event_disable() at
WARN_ON_ONCE(!trace_buffered_event_ref)
Call Trace:
? __warn+0xa5/0x1b0
? trace_buffered_event_disable+0x189/0x1b0
__ftrace_event_enable_disable+0x19e/0x3e0
free_probe_data+0x3b/0xa0
unregister_ftrace_function_probe_func+0x6b8/0x800
event_enable_func+0x2f0/0x3d0
ftrace_process_regex.isra.0+0x12d/0x1b0
ftrace_filter_write+0xe6/0x140
vfs_write+0x1c9/0x6f0
[...]
The cause of the warning is in __ftrace_event_enable_disable(),
trace_buffered_event_enable() was called once while
trace_buffered_event_disable() was called twice.
Reproduction script show as below, for analysis, see the comments:
```
#!/bin/bash
cd /sys/kernel/tracing/
# 1. Register a 'disable_event' command, then:
# 1) SOFT_DISABLED_BIT was set;
# 2) trace_buffered_event_enable() was called first time;
echo 'cmdline_proc_show:disable_event:initcall:initcall_finish' > \
set_ftrace_filter
# 2. Enable the event registered, then:
# 1) SOFT_DISABLED_BIT was cleared;
# 2) trace_buffered_event_disable() was called first time;
echo 1 > events/initcall/initcall_finish/enable
# 3. Try to call into cmdline_proc_show(), then SOFT_DISABLED_BIT was
# set again!!!
cat /proc/cmdline
# 4. Unregister the 'disable_event' command, then:
# 1) SOFT_DISABLED_BIT was cleared again;
# 2) trace_buffered_event_disable() was called second time!!!
echo '!cmdline_proc_show:disable_event:initcall:initcall_finish' > \
set_ftrace_filter
```
To fix it, IIUC, we can change to call trace_buffered_event_enable() at
fist time soft-mode enabled, and call trace_buffered_event_disable() at
last time soft-mode disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mei: fix potential NULL-ptr deref after clone
If cloning the SKB fails, don't try to use it, but rather return
as if we should pass it.
Coverity CID: 1503456 |
| In the Linux kernel, the following vulnerability has been resolved:
media: s5p-mfc: Clear workbit to handle error condition
During error on CLOSE_INSTANCE command, ctx_work_bits was not getting
cleared. During consequent mfc execution NULL pointer dereferencing of
this context led to kernel panic. This patch fixes this issue by making
sure to clear ctx_work_bits always. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix memory leak in lpfc_create_port()
Commit 5e633302ace1 ("scsi: lpfc: vmid: Add support for VMID in mailbox
command") introduced allocations for the VMID resources in
lpfc_create_port() after the call to scsi_host_alloc(). Upon failure on the
VMID allocations, the new code would branch to the 'out' label, which
returns NULL without unwinding anything, thus skipping the call to
scsi_host_put().
Fix the problem by creating a separate label 'out_free_vmid' to unwind the
VMID resources and make the 'out_put_shost' label call only
scsi_host_put(), as was done before the introduction of allocations for
VMID. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: Fix potential resource leaks
nfc_get_device() take reference for the device, add missing
nfc_put_device() to release it when not need anymore.
Also fix the style warnning by use error EOPNOTSUPP instead of
ENOTSUPP. |
| In the Linux kernel, the following vulnerability has been resolved:
remoteproc: sysmon: fix memory leak in qcom_add_sysmon_subdev()
The kfree() should be called when of_irq_get_byname() fails or
devm_request_threaded_irq() fails in qcom_add_sysmon_subdev(),
otherwise there will be a memory leak, so add kfree() to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: fix a signed-integer-overflow bug in tcp_add_backlog()
The type of sk_rcvbuf and sk_sndbuf in struct sock is int, and
in tcp_add_backlog(), the variable limit is caculated by adding
sk_rcvbuf, sk_sndbuf and 64 * 1024, it may exceed the max value
of int and overflow. This patch reduces the limit budget by
halving the sndbuf to solve this issue since ACK packets are much
smaller than the payload. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: pxa: fix null-pointer dereference in filter()
kasprintf() would return NULL pointer when kmalloc() fail to allocate.
Need to check the return pointer before calling strcmp(). |
| In the Linux kernel, the following vulnerability has been resolved:
igc: Fix Kernel Panic during ndo_tx_timeout callback
The Xeon validation group has been carrying out some loaded tests
with various HW configurations, and they have seen some transmit
queue time out happening during the test. This will cause the
reset adapter function to be called by igc_tx_timeout().
Similar race conditions may arise when the interface is being brought
down and up in igc_reinit_locked(), an interrupt being generated, and
igc_clean_tx_irq() being called to complete the TX.
When the igc_tx_timeout() function is invoked, this patch will turn
off all TX ring HW queues during igc_down() process. TX ring HW queues
will be activated again during the igc_configure_tx_ring() process
when performing the igc_up() procedure later.
This patch also moved existing igc_disable_tx_ring_hw() to avoid using
forward declaration.
Kernel trace:
[ 7678.747813] ------------[ cut here ]------------
[ 7678.757914] NETDEV WATCHDOG: enp1s0 (igc): transmit queue 2 timed out
[ 7678.770117] WARNING: CPU: 0 PID: 13 at net/sched/sch_generic.c:525 dev_watchdog+0x1ae/0x1f0
[ 7678.784459] Modules linked in: xt_conntrack nft_chain_nat xt_MASQUERADE xt_addrtype nft_compat
nf_tables nfnetlink br_netfilter bridge stp llc overlay dm_mod emrcha(PO) emriio(PO) rktpm(PO)
cegbuf_mod(PO) patch_update(PO) se(PO) sgx_tgts(PO) mktme(PO) keylocker(PO) svtdx(PO) svfs_pci_hotplug(PO)
vtd_mod(PO) davemem(PO) svmabort(PO) svindexio(PO) usbx2(PO) ehci_sched(PO) svheartbeat(PO) ioapic(PO)
sv8259(PO) svintr(PO) lt(PO) pcierootport(PO) enginefw_mod(PO) ata(PO) smbus(PO) spiflash_cdf(PO) arden(PO)
dsa_iax(PO) oobmsm_punit(PO) cpm(PO) svkdb(PO) ebg_pch(PO) pch(PO) sviotargets(PO) svbdf(PO) svmem(PO)
svbios(PO) dram(PO) svtsc(PO) targets(PO) superio(PO) svkernel(PO) cswitch(PO) mcf(PO) pentiumIII_mod(PO)
fs_svfs(PO) mdevdefdb(PO) svfs_os_services(O) ixgbe mdio mdio_devres libphy emeraldrapids_svdefs(PO)
regsupport(O) libnvdimm nls_cp437 snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio snd_hda_intel
snd_intel_dspcfg snd_hda_codec snd_hwdep x86_pkg_temp_thermal snd_hda_core snd_pcm snd_timer isst_if_mbox_pci
[ 7678.784496] input_leds isst_if_mmio sg snd isst_if_common soundcore wmi button sad9(O) drm fuse backlight
configfs efivarfs ip_tables x_tables vmd sdhci led_class rtl8150 r8152 hid_generic pegasus mmc_block usbhid
mmc_core hid megaraid_sas ixgb igb i2c_algo_bit ice i40e hpsa scsi_transport_sas e1000e e1000 e100 ax88179_178a
usbnet xhci_pci sd_mod xhci_hcd t10_pi crc32c_intel crc64_rocksoft igc crc64 crc_t10dif usbcore
crct10dif_generic ptp crct10dif_common usb_common pps_core
[ 7679.200403] RIP: 0010:dev_watchdog+0x1ae/0x1f0
[ 7679.210201] Code: 28 e9 53 ff ff ff 4c 89 e7 c6 05 06 42 b9 00 01 e8 17 d1 fb ff 44 89 e9 4c
89 e6 48 c7 c7 40 ad fb 81 48 89 c2 e8 52 62 82 ff <0f> 0b e9 72 ff ff ff 65 8b 05 80 7d 7c 7e
89 c0 48 0f a3 05 0a c1
[ 7679.245438] RSP: 0018:ffa00000001f7d90 EFLAGS: 00010282
[ 7679.256021] RAX: 0000000000000000 RBX: ff11000109938440 RCX: 0000000000000000
[ 7679.268710] RDX: ff11000361e26cd8 RSI: ff11000361e1b880 RDI: ff11000361e1b880
[ 7679.281314] RBP: ffa00000001f7da8 R08: ff1100035f8fffe8 R09: 0000000000027ffb
[ 7679.293840] R10: 0000000000001f0a R11: ff1100035f840000 R12: ff11000109938000
[ 7679.306276] R13: 0000000000000002 R14: dead000000000122 R15: ffa00000001f7e18
[ 7679.318648] FS: 0000000000000000(0000) GS:ff11000361e00000(0000) knlGS:0000000000000000
[ 7679.332064] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 7679.342757] CR2: 00007ffff7fca168 CR3: 000000013b08a006 CR4: 0000000000471ef8
[ 7679.354984] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 7679.367207] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
[ 7679.379370] PKRU: 55555554
[ 7679.386446] Call Trace:
[ 7679.393152] <TASK>
[ 7679.399363] ? __pfx_dev_watchdog+0x10/0x10
[ 7679.407870] call_timer_fn+0x31/0x110
[ 7679.415698] e
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Disable preemption in bpf_event_output
We received report [1] of kernel crash, which is caused by
using nesting protection without disabled preemption.
The bpf_event_output can be called by programs executed by
bpf_prog_run_array_cg function that disabled migration but
keeps preemption enabled.
This can cause task to be preempted by another one inside the
nesting protection and lead eventually to two tasks using same
perf_sample_data buffer and cause crashes like:
BUG: kernel NULL pointer dereference, address: 0000000000000001
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
...
? perf_output_sample+0x12a/0x9a0
? finish_task_switch.isra.0+0x81/0x280
? perf_event_output+0x66/0xa0
? bpf_event_output+0x13a/0x190
? bpf_event_output_data+0x22/0x40
? bpf_prog_dfc84bbde731b257_cil_sock4_connect+0x40a/0xacb
? xa_load+0x87/0xe0
? __cgroup_bpf_run_filter_sock_addr+0xc1/0x1a0
? release_sock+0x3e/0x90
? sk_setsockopt+0x1a1/0x12f0
? udp_pre_connect+0x36/0x50
? inet_dgram_connect+0x93/0xa0
? __sys_connect+0xb4/0xe0
? udp_setsockopt+0x27/0x40
? __pfx_udp_push_pending_frames+0x10/0x10
? __sys_setsockopt+0xdf/0x1a0
? __x64_sys_connect+0xf/0x20
? do_syscall_64+0x3a/0x90
? entry_SYSCALL_64_after_hwframe+0x72/0xdc
Fixing this by disabling preemption in bpf_event_output.
[1] https://github.com/cilium/cilium/issues/26756 |
| In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-core: Fix a potential resource leak in v4l2_fwnode_parse_link()
If fwnode_graph_get_remote_endpoint() fails, 'fwnode' is known to be NULL,
so fwnode_handle_put() is a no-op.
Release the reference taken from a previous fwnode_graph_get_port_parent()
call instead.
Also handle fwnode_graph_get_port_parent() failures.
In order to fix these issues, add an error handling path to the function
and the needed gotos. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: fix race condition UAF in i915_perf_add_config_ioctl
Userspace can guess the id value and try to race oa_config object creation
with config remove, resulting in a use-after-free if we dereference the
object after unlocking the metrics_lock. For that reason, unlocking the
metrics_lock must be done after we are done dereferencing the object.
[tursulin: Manually added stable tag.]
(cherry picked from commit 49f6f6483b652108bcb73accd0204a464b922395) |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fortify the spinlock against deadlock by interrupt
In the function ieee80211_tx_dequeue() there is a particular locking
sequence:
begin:
spin_lock(&local->queue_stop_reason_lock);
q_stopped = local->queue_stop_reasons[q];
spin_unlock(&local->queue_stop_reason_lock);
However small the chance (increased by ftracetest), an asynchronous
interrupt can occur in between of spin_lock() and spin_unlock(),
and the interrupt routine will attempt to lock the same
&local->queue_stop_reason_lock again.
This will cause a costly reset of the CPU and the wifi device or an
altogether hang in the single CPU and single core scenario.
The only remaining spin_lock(&local->queue_stop_reason_lock) that
did not disable interrupts was patched, which should prevent any
deadlocks on the same CPU/core and the same wifi device.
This is the probable trace of the deadlock:
kernel: ================================
kernel: WARNING: inconsistent lock state
kernel: 6.3.0-rc6-mt-20230401-00001-gf86822a1170f #4 Tainted: G W
kernel: --------------------------------
kernel: inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
kernel: kworker/5:0/25656 [HC0[0]:SC0[0]:HE1:SE1] takes:
kernel: ffff9d6190779478 (&local->queue_stop_reason_lock){+.?.}-{2:2}, at: return_to_handler+0x0/0x40
kernel: {IN-SOFTIRQ-W} state was registered at:
kernel: lock_acquire+0xc7/0x2d0
kernel: _raw_spin_lock+0x36/0x50
kernel: ieee80211_tx_dequeue+0xb4/0x1330 [mac80211]
kernel: iwl_mvm_mac_itxq_xmit+0xae/0x210 [iwlmvm]
kernel: iwl_mvm_mac_wake_tx_queue+0x2d/0xd0 [iwlmvm]
kernel: ieee80211_queue_skb+0x450/0x730 [mac80211]
kernel: __ieee80211_xmit_fast.constprop.66+0x834/0xa50 [mac80211]
kernel: __ieee80211_subif_start_xmit+0x217/0x530 [mac80211]
kernel: ieee80211_subif_start_xmit+0x60/0x580 [mac80211]
kernel: dev_hard_start_xmit+0xb5/0x260
kernel: __dev_queue_xmit+0xdbe/0x1200
kernel: neigh_resolve_output+0x166/0x260
kernel: ip_finish_output2+0x216/0xb80
kernel: __ip_finish_output+0x2a4/0x4d0
kernel: ip_finish_output+0x2d/0xd0
kernel: ip_output+0x82/0x2b0
kernel: ip_local_out+0xec/0x110
kernel: igmpv3_sendpack+0x5c/0x90
kernel: igmp_ifc_timer_expire+0x26e/0x4e0
kernel: call_timer_fn+0xa5/0x230
kernel: run_timer_softirq+0x27f/0x550
kernel: __do_softirq+0xb4/0x3a4
kernel: irq_exit_rcu+0x9b/0xc0
kernel: sysvec_apic_timer_interrupt+0x80/0xa0
kernel: asm_sysvec_apic_timer_interrupt+0x1f/0x30
kernel: _raw_spin_unlock_irqrestore+0x3f/0x70
kernel: free_to_partial_list+0x3d6/0x590
kernel: __slab_free+0x1b7/0x310
kernel: kmem_cache_free+0x52d/0x550
kernel: putname+0x5d/0x70
kernel: do_sys_openat2+0x1d7/0x310
kernel: do_sys_open+0x51/0x80
kernel: __x64_sys_openat+0x24/0x30
kernel: do_syscall_64+0x5c/0x90
kernel: entry_SYSCALL_64_after_hwframe+0x72/0xdc
kernel: irq event stamp: 5120729
kernel: hardirqs last enabled at (5120729): [<ffffffff9d149936>] trace_graph_return+0xd6/0x120
kernel: hardirqs last disabled at (5120728): [<ffffffff9d149950>] trace_graph_return+0xf0/0x120
kernel: softirqs last enabled at (5069900): [<ffffffff9cf65b60>] return_to_handler+0x0/0x40
kernel: softirqs last disabled at (5067555): [<ffffffff9cf65b60>] return_to_handler+0x0/0x40
kernel:
other info that might help us debug this:
kernel: Possible unsafe locking scenario:
kernel: CPU0
kernel: ----
kernel: lock(&local->queue_stop_reason_lock);
kernel: <Interrupt>
kernel: lock(&local->queue_stop_reason_lock);
kernel:
*** DEADLOCK ***
kernel: 8 locks held by kworker/5:0/25656:
kernel: #0: ffff9d618009d138 ((wq_completion)events_freezable){+.+.}-{0:0}, at: process_one_work+0x1ca/0x530
kernel: #1: ffffb1ef4637fe68 ((work_completion)(&local->restart_work)){+.+.}-{0:0}, at: process_one_work+0x1ce/0x530
kernel: #2: ffffffff9f166548 (rtnl_mutex){+.+.}-{3:3}, at: return_to_handler+0x0/0x40
kernel: #3: ffff9d619
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
dm flakey: don't corrupt the zero page
When we need to zero some range on a block device, the function
__blkdev_issue_zero_pages submits a write bio with the bio vector pointing
to the zero page. If we use dm-flakey with corrupt bio writes option, it
will corrupt the content of the zero page which results in crashes of
various userspace programs. Glibc assumes that memory returned by mmap is
zeroed and it uses it for calloc implementation; if the newly mapped
memory is not zeroed, calloc will return non-zeroed memory.
Fix this bug by testing if the page is equal to ZERO_PAGE(0) and
avoiding the corruption in this case. |