| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: rk3288 - Fix use after free in unprepare
The unprepare call must be carried out before the finalize call
as the latter can free the request. |
| In the Linux kernel, the following vulnerability has been resolved:
net: sparx5: Fix use after free inside sparx5_del_mact_entry
Based on the static analyzis of the code it looks like when an entry
from the MAC table was removed, the entry was still used after being
freed. More precise the vid of the mac_entry was used after calling
devm_kfree on the mac_entry.
The fix consists in first using the vid of the mac_entry to delete the
entry from the HW and after that to free it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/bridge: adv7511: fix crash on irq during probe
Moved IRQ registration down to end of adv7511_probe().
If an IRQ already is pending during adv7511_probe
(before adv7511_cec_init) then cec_received_msg_ts
could crash using uninitialized data:
Unable to handle kernel read from unreadable memory at virtual address 00000000000003d5
Internal error: Oops: 96000004 [#1] PREEMPT_RT SMP
Call trace:
cec_received_msg_ts+0x48/0x990 [cec]
adv7511_cec_irq_process+0x1cc/0x308 [adv7511]
adv7511_irq_process+0xd8/0x120 [adv7511]
adv7511_irq_handler+0x1c/0x30 [adv7511]
irq_thread_fn+0x30/0xa0
irq_thread+0x14c/0x238
kthread+0x190/0x1a8 |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: process: Fix kernel gp leakage
childregs represents the registers which are active for the new thread
in user context. For a kernel thread, childregs->gp is never used since
the kernel gp is not touched by switch_to. For a user mode helper, the
gp value can be observed in user space after execve or possibly by other
means.
[From the email thread]
The /* Kernel thread */ comment is somewhat inaccurate in that it is also used
for user_mode_helper threads, which exec a user process, e.g. /sbin/init or
when /proc/sys/kernel/core_pattern is a pipe. Such threads do not have
PF_KTHREAD set and are valid targets for ptrace etc. even before they exec.
childregs is the *user* context during syscall execution and it is observable
from userspace in at least five ways:
1. kernel_execve does not currently clear integer registers, so the starting
register state for PID 1 and other user processes started by the kernel has
sp = user stack, gp = kernel __global_pointer$, all other integer registers
zeroed by the memset in the patch comment.
This is a bug in its own right, but I'm unwilling to bet that it is the only
way to exploit the issue addressed by this patch.
2. ptrace(PTRACE_GETREGSET): you can PTRACE_ATTACH to a user_mode_helper thread
before it execs, but ptrace requires SIGSTOP to be delivered which can only
happen at user/kernel boundaries.
3. /proc/*/task/*/syscall: this is perfectly happy to read pt_regs for
user_mode_helpers before the exec completes, but gp is not one of the
registers it returns.
4. PERF_SAMPLE_REGS_USER: LOCKDOWN_PERF normally prevents access to kernel
addresses via PERF_SAMPLE_REGS_INTR, but due to this bug kernel addresses
are also exposed via PERF_SAMPLE_REGS_USER which is permitted under
LOCKDOWN_PERF. I have not attempted to write exploit code.
5. Much of the tracing infrastructure allows access to user registers. I have
not attempted to determine which forms of tracing allow access to user
registers without already allowing access to kernel registers. |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: max9286: fix kernel oops when removing module
When removing the max9286 module we get a kernel oops:
Unable to handle kernel paging request at virtual address 000000aa00000094
Mem abort info:
ESR = 0x96000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004
CM = 0, WnR = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=0000000880d85000
[000000aa00000094] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 96000004 [#1] PREEMPT SMP
Modules linked in: fsl_jr_uio caam_jr rng_core libdes caamkeyblob_desc caamhash_desc caamalg_desc crypto_engine max9271 authenc crct10dif_ce mxc_jpeg_encdec
CPU: 2 PID: 713 Comm: rmmod Tainted: G C 5.15.5-00057-gaebcd29c8ed7-dirty #5
Hardware name: Freescale i.MX8QXP MEK (DT)
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : i2c_mux_del_adapters+0x24/0xf0
lr : max9286_remove+0x28/0xd0 [max9286]
sp : ffff800013a9bbf0
x29: ffff800013a9bbf0 x28: ffff00080b6da940 x27: 0000000000000000
x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
x23: ffff000801a5b970 x22: ffff0008048b0890 x21: ffff800009297000
x20: ffff0008048b0f70 x19: 000000aa00000064 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000014 x13: 0000000000000000 x12: ffff000802da49e8
x11: ffff000802051918 x10: ffff000802da4920 x9 : ffff000800030098
x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d
x5 : 8080808000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : ffffffffffffffff x1 : ffff00080b6da940 x0 : 0000000000000000
Call trace:
i2c_mux_del_adapters+0x24/0xf0
max9286_remove+0x28/0xd0 [max9286]
i2c_device_remove+0x40/0x110
__device_release_driver+0x188/0x234
driver_detach+0xc4/0x150
bus_remove_driver+0x60/0xe0
driver_unregister+0x34/0x64
i2c_del_driver+0x58/0xa0
max9286_i2c_driver_exit+0x1c/0x490 [max9286]
__arm64_sys_delete_module+0x194/0x260
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0xd4/0xfc
do_el0_svc+0x2c/0x94
el0_svc+0x28/0x80
el0t_64_sync_handler+0xa8/0x130
el0t_64_sync+0x1a0/0x1a4
The Oops happens because the I2C client data does not point to
max9286_priv anymore but to v4l2_subdev. The change happened in
max9286_init() which calls v4l2_i2c_subdev_init() later on...
Besides fixing the max9286_remove() function, remove the call to
i2c_set_clientdata() in max9286_probe(), to avoid confusion, and make
the necessary changes to max9286_init() so that it doesn't have to use
i2c_get_clientdata() in order to fetch the pointer to priv. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: max9759: fix underflow in speaker_gain_control_put()
Check for negative values of "priv->gain" to prevent an out of bounds
access. The concern is that these might come from the user via:
-> snd_ctl_elem_write_user()
-> snd_ctl_elem_write()
-> kctl->put() |
| In the Linux kernel, the following vulnerability has been resolved:
clk: sunxi-ng: h6: Reparent CPUX during PLL CPUX rate change
While PLL CPUX clock rate change when CPU is running from it works in
vast majority of cases, now and then it causes instability. This leads
to system crashes and other undefined behaviour. After a lot of testing
(30+ hours) while also doing a lot of frequency switches, we can't
observe any instability issues anymore when doing reparenting to stable
clock like 24 MHz oscillator. |
| In the Linux kernel, the following vulnerability has been resolved:
bna: ensure the copied buf is NUL terminated
Currently, we allocate a nbytes-sized kernel buffer and copy nbytes from
userspace to that buffer. Later, we use sscanf on this buffer but we don't
ensure that the string is terminated inside the buffer, this can lead to
OOB read when using sscanf. Fix this issue by using memdup_user_nul
instead of memdup_user. |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau/dmem: handle kcalloc() allocation failure
The kcalloc() in nouveau_dmem_evict_chunk() will return null if
the physical memory has run out. As a result, if we dereference
src_pfns, dst_pfns or dma_addrs, the null pointer dereference bugs
will happen.
Moreover, the GPU is going away. If the kcalloc() fails, we could not
evict all pages mapping a chunk. So this patch adds a __GFP_NOFAIL
flag in kcalloc().
Finally, as there is no need to have physically contiguous memory,
this patch switches kcalloc() to kvcalloc() in order to avoid
failing allocations. |
| In the Linux kernel, the following vulnerability has been resolved:
tee: optee: Fix kernel panic caused by incorrect error handling
The error path while failing to register devices on the TEE bus has a
bug leading to kernel panic as follows:
[ 15.398930] Unable to handle kernel paging request at virtual address ffff07ed00626d7c
[ 15.406913] Mem abort info:
[ 15.409722] ESR = 0x0000000096000005
[ 15.413490] EC = 0x25: DABT (current EL), IL = 32 bits
[ 15.418814] SET = 0, FnV = 0
[ 15.421878] EA = 0, S1PTW = 0
[ 15.425031] FSC = 0x05: level 1 translation fault
[ 15.429922] Data abort info:
[ 15.432813] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 15.438310] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 15.443372] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 15.448697] swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000d9e3e000
[ 15.455413] [ffff07ed00626d7c] pgd=1800000bffdf9003, p4d=1800000bffdf9003, pud=0000000000000000
[ 15.464146] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
Commit 7269cba53d90 ("tee: optee: Fix supplicant based device enumeration")
lead to the introduction of this bug. So fix it appropriately. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: process: fix kernel info leakage
thread_struct's s[12] may contain random kernel memory content, which
may be finally leaked to userspace. This is a security hole. Fix it
by clearing the s[12] array in thread_struct when fork.
As for kthread case, it's better to clear the s[12] array as well. |
| In the Linux kernel, the following vulnerability has been resolved:
sfc: fix TX channel offset when using legacy interrupts
In legacy interrupt mode the tx_channel_offset was hardcoded to 1, but
that's not correct if efx_sepparate_tx_channels is false. In that case,
the offset is 0 because the tx queues are in the single existing channel
at index 0, together with the rx queue.
Without this fix, as soon as you try to send any traffic, it tries to
get the tx queues from an uninitialized channel getting these errors:
WARNING: CPU: 1 PID: 0 at drivers/net/ethernet/sfc/tx.c:540 efx_hard_start_xmit+0x12e/0x170 [sfc]
[...]
RIP: 0010:efx_hard_start_xmit+0x12e/0x170 [sfc]
[...]
Call Trace:
<IRQ>
dev_hard_start_xmit+0xd7/0x230
sch_direct_xmit+0x9f/0x360
__dev_queue_xmit+0x890/0xa40
[...]
BUG: unable to handle kernel NULL pointer dereference at 0000000000000020
[...]
RIP: 0010:efx_hard_start_xmit+0x153/0x170 [sfc]
[...]
Call Trace:
<IRQ>
dev_hard_start_xmit+0xd7/0x230
sch_direct_xmit+0x9f/0x360
__dev_queue_xmit+0x890/0xa40
[...] |
| In the Linux kernel before 4.8, usb_parse_endpoint in drivers/usb/core/config.c does not validate the wMaxPacketSize field of an endpoint descriptor. NOTE: This vulnerability only affects products that are no longer supported by the supplier. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-iocost: avoid out of bounds shift
UBSAN catches undefined behavior in blk-iocost, where sometimes
iocg->delay is shifted right by a number that is too large,
resulting in undefined behavior on some architectures.
[ 186.556576] ------------[ cut here ]------------
UBSAN: shift-out-of-bounds in block/blk-iocost.c:1366:23
shift exponent 64 is too large for 64-bit type 'u64' (aka 'unsigned long long')
CPU: 16 PID: 0 Comm: swapper/16 Tainted: G S E N 6.9.0-0_fbk700_debug_rc2_kbuilder_0_gc85af715cac0 #1
Hardware name: Quanta Twin Lakes MP/Twin Lakes Passive MP, BIOS F09_3A23 12/08/2020
Call Trace:
<IRQ>
dump_stack_lvl+0x8f/0xe0
__ubsan_handle_shift_out_of_bounds+0x22c/0x280
iocg_kick_delay+0x30b/0x310
ioc_timer_fn+0x2fb/0x1f80
__run_timer_base+0x1b6/0x250
...
Avoid that undefined behavior by simply taking the
"delay = 0" branch if the shift is too large.
I am not sure what the symptoms of an undefined value
delay will be, but I suspect it could be more than a
little annoying to debug. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/debug_vm_pgtable: fix BUG_ON with pud advanced test
Architectures like powerpc add debug checks to ensure we find only devmap
PUD pte entries. These debug checks are only done with CONFIG_DEBUG_VM.
This patch marks the ptes used for PUD advanced test devmap pte entries so
that we don't hit on debug checks on architecture like ppc64 as below.
WARNING: CPU: 2 PID: 1 at arch/powerpc/mm/book3s64/radix_pgtable.c:1382 radix__pud_hugepage_update+0x38/0x138
....
NIP [c0000000000a7004] radix__pud_hugepage_update+0x38/0x138
LR [c0000000000a77a8] radix__pudp_huge_get_and_clear+0x28/0x60
Call Trace:
[c000000004a2f950] [c000000004a2f9a0] 0xc000000004a2f9a0 (unreliable)
[c000000004a2f980] [000d34c100000000] 0xd34c100000000
[c000000004a2f9a0] [c00000000206ba98] pud_advanced_tests+0x118/0x334
[c000000004a2fa40] [c00000000206db34] debug_vm_pgtable+0xcbc/0x1c48
[c000000004a2fc10] [c00000000000fd28] do_one_initcall+0x60/0x388
Also
kernel BUG at arch/powerpc/mm/book3s64/pgtable.c:202!
....
NIP [c000000000096510] pudp_huge_get_and_clear_full+0x98/0x174
LR [c00000000206bb34] pud_advanced_tests+0x1b4/0x334
Call Trace:
[c000000004a2f950] [000d34c100000000] 0xd34c100000000 (unreliable)
[c000000004a2f9a0] [c00000000206bb34] pud_advanced_tests+0x1b4/0x334
[c000000004a2fa40] [c00000000206db34] debug_vm_pgtable+0xcbc/0x1c48
[c000000004a2fc10] [c00000000000fd28] do_one_initcall+0x60/0x388 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Implement bounds check for stream encoder creation in DCN401
'stream_enc_regs' array is an array of dcn10_stream_enc_registers
structures. The array is initialized with four elements, corresponding
to the four calls to stream_enc_regs() in the array initializer. This
means that valid indices for this array are 0, 1, 2, and 3.
The error message 'stream_enc_regs' 4 <= 5 below, is indicating that
there is an attempt to access this array with an index of 5, which is
out of bounds. This could lead to undefined behavior
Here, eng_id is used as an index to access the stream_enc_regs array. If
eng_id is 5, this would result in an out-of-bounds access on the
stream_enc_regs array.
Thus fixing Buffer overflow error in dcn401_stream_encoder_create
Found by smatch:
drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn401/dcn401_resource.c:1209 dcn401_stream_encoder_create() error: buffer overflow 'stream_enc_regs' 4 <= 5 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Pass non-null to dcn20_validate_apply_pipe_split_flags
[WHAT & HOW]
"dcn20_validate_apply_pipe_split_flags" dereferences merge, and thus it
cannot be a null pointer. Let's pass a valid pointer to avoid null
dereference.
This fixes 2 FORWARD_NULL issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check null pointers before using them
[WHAT & HOW]
These pointers are null checked previously in the same function,
indicating they might be null as reported by Coverity. As a result,
they need to be checked when used again.
This fixes 3 FORWARD_NULL issue reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check null pointers before used
[WHAT & HOW]
Poniters, such as dc->clk_mgr, are null checked previously in the same
function, so Coverity warns "implies that "dc->clk_mgr" might be null".
As a result, these pointers need to be checked when used again.
This fixes 10 FORWARD_NULL issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check null pointers before multiple uses
[WHAT & HOW]
Poniters, such as stream_enc and dc->bw_vbios, are null checked previously
in the same function, so Coverity warns "implies that stream_enc and
dc->bw_vbios might be null". They are used multiple times in the
subsequent code and need to be checked.
This fixes 10 FORWARD_NULL issues reported by Coverity. |