| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/oa: Fix potential UAF in xe_oa_add_config_ioctl()
In xe_oa_add_config_ioctl(), we accessed oa_config->id after dropping
metrics_lock. Since this lock protects the lifetime of oa_config, an
attacker could guess the id and call xe_oa_remove_config_ioctl() with
perfect timing, freeing oa_config before we dereference it, leading to
a potential use-after-free.
Fix this by caching the id in a local variable while holding the lock.
v2: (Matt A)
- Dropped mutex_unlock(&oa->metrics_lock) ordering change from
xe_oa_remove_config_ioctl()
(cherry picked from commit 28aeaed130e8e587fd1b73b6d66ca41ccc5a1a31) |
| In the Linux kernel, the following vulnerability has been resolved:
usb: phy: fsl-usb: Fix use-after-free in delayed work during device removal
The delayed work item otg_event is initialized in fsl_otg_conf() and
scheduled under two conditions:
1. When a host controller binds to the OTG controller.
2. When the USB ID pin state changes (cable insertion/removal).
A race condition occurs when the device is removed via fsl_otg_remove():
the fsl_otg instance may be freed while the delayed work is still pending
or executing. This leads to use-after-free when the work function
fsl_otg_event() accesses the already freed memory.
The problematic scenario:
(detach thread) | (delayed work)
fsl_otg_remove() |
kfree(fsl_otg_dev) //FREE| fsl_otg_event()
| og = container_of(...) //USE
| og-> //USE
Fix this by calling disable_delayed_work_sync() in fsl_otg_remove()
before deallocating the fsl_otg structure. This ensures the delayed work
is properly canceled and completes execution prior to memory deallocation.
This bug was identified through static analysis. |
| In the Linux kernel, the following vulnerability has been resolved:
media: iris: Add sanity check for stop streaming
Add sanity check in iris_vb2_stop_streaming. If inst->state is
already IRIS_INST_ERROR, we should skip the stream_off operation
because it would still send packets to the firmware.
In iris_kill_session, inst->state is set to IRIS_INST_ERROR and
session_close is executed, which will kfree(inst_hfi_gen2->packet).
If stop_streaming is called afterward, it will cause a crash.
[bod: remove qcom from patch title] |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: clean up user copy references on ublk server exit
If a ublk server process releases a ublk char device file, any requests
dispatched to the ublk server but not yet completed will retain a ref
value of UBLK_REFCOUNT_INIT. Before commit e63d2228ef83 ("ublk: simplify
aborting ublk request"), __ublk_fail_req() would decrement the reference
count before completing the failed request. However, that commit
optimized __ublk_fail_req() to call __ublk_complete_rq() directly
without decrementing the request reference count.
The leaked reference count incorrectly allows user copy and zero copy
operations on the completed ublk request. It also triggers the
WARN_ON_ONCE(refcount_read(&io->ref)) warnings in ublk_queue_reinit()
and ublk_deinit_queue().
Commit c5c5eb24ed61 ("ublk: avoid ublk_io_release() called after ublk
char dev is closed") already fixed the issue for ublk devices using
UBLK_F_SUPPORT_ZERO_COPY or UBLK_F_AUTO_BUF_REG. However, the reference
count leak also affects UBLK_F_USER_COPY, the other reference-counted
data copy mode. Fix the condition in ublk_check_and_reset_active_ref()
to include all reference-counted data copy modes. This ensures that any
ublk requests still owned by the ublk server when it exits have their
reference counts reset to 0. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: alps - fix use-after-free bugs caused by dev3_register_work
The dev3_register_work delayed work item is initialized within
alps_reconnect() and scheduled upon receipt of the first bare
PS/2 packet from an external PS/2 device connected to the ALPS
touchpad. During device detachment, the original implementation
calls flush_workqueue() in psmouse_disconnect() to ensure
completion of dev3_register_work. However, the flush_workqueue()
in psmouse_disconnect() only blocks and waits for work items that
were already queued to the workqueue prior to its invocation. Any
work items submitted after flush_workqueue() is called are not
included in the set of tasks that the flush operation awaits.
This means that after flush_workqueue() has finished executing,
the dev3_register_work could still be scheduled. Although the
psmouse state is set to PSMOUSE_CMD_MODE in psmouse_disconnect(),
the scheduling of dev3_register_work remains unaffected.
The race condition can occur as follows:
CPU 0 (cleanup path) | CPU 1 (delayed work)
psmouse_disconnect() |
psmouse_set_state() |
flush_workqueue() | alps_report_bare_ps2_packet()
alps_disconnect() | psmouse_queue_work()
kfree(priv); // FREE | alps_register_bare_ps2_mouse()
| priv = container_of(work...); // USE
| priv->dev3 // USE
Add disable_delayed_work_sync() in alps_disconnect() to ensure
that dev3_register_work is properly canceled and prevented from
executing after the alps_data structure has been deallocated.
This bug is identified by static analysis. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: Fix OOB write in bnxt_re_copy_err_stats()
Commit ef56081d1864 ("RDMA/bnxt_re: RoCE related hardware counters
update") added three new counters and placed them after
BNXT_RE_OUT_OF_SEQ_ERR.
BNXT_RE_OUT_OF_SEQ_ERR acts as a boundary marker for allocating hardware
statistics with different num_counters values on chip_gen_p5_p7 devices.
As a result, BNXT_RE_NUM_STD_COUNTERS are used when allocating
hw_stats, which leads to an out-of-bounds write in
bnxt_re_copy_err_stats().
The counters BNXT_RE_REQ_CQE_ERROR, BNXT_RE_RESP_CQE_ERROR, and
BNXT_RE_RESP_REMOTE_ACCESS_ERRS are applicable to generic hardware, not
only p5/p7 devices.
Fix this by moving these counters before BNXT_RE_OUT_OF_SEQ_ERR so they
are included in the generic counter set. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: fix use-after-free on probe deferral
The driver is dropping the references taken to the larb devices during
probe after successful lookup as well as on errors. This can
potentially lead to a use-after-free in case a larb device has not yet
been bound to its driver so that the iommu driver probe defers.
Fix this by keeping the references as expected while the iommu driver is
bound. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Disallow toggling KVM_MEM_GUEST_MEMFD on an existing memslot
Reject attempts to disable KVM_MEM_GUEST_MEMFD on a memslot that was
initially created with a guest_memfd binding, as KVM doesn't support
toggling KVM_MEM_GUEST_MEMFD on existing memslots. KVM prevents enabling
KVM_MEM_GUEST_MEMFD, but doesn't prevent clearing the flag.
Failure to reject the new memslot results in a use-after-free due to KVM
not unbinding from the guest_memfd instance. Unbinding on a FLAGS_ONLY
change is easy enough, and can/will be done as a hardening measure (in
anticipation of KVM supporting dirty logging on guest_memfd at some point),
but fixing the use-after-free would only address the immediate symptom.
==================================================================
BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x362/0x400 [kvm]
Write of size 8 at addr ffff8881111ae908 by task repro/745
CPU: 7 UID: 1000 PID: 745 Comm: repro Not tainted 6.18.0-rc6-115d5de2eef3-next-kasan #3 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x51/0x60
print_report+0xcb/0x5c0
kasan_report+0xb4/0xe0
kvm_gmem_release+0x362/0x400 [kvm]
__fput+0x2fa/0x9d0
task_work_run+0x12c/0x200
do_exit+0x6ae/0x2100
do_group_exit+0xa8/0x230
__x64_sys_exit_group+0x3a/0x50
x64_sys_call+0x737/0x740
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f581f2eac31
</TASK>
Allocated by task 745 on cpu 6 at 9.746971s:
kasan_save_stack+0x20/0x40
kasan_save_track+0x13/0x50
__kasan_kmalloc+0x77/0x90
kvm_set_memory_region.part.0+0x652/0x1110 [kvm]
kvm_vm_ioctl+0x14b0/0x3290 [kvm]
__x64_sys_ioctl+0x129/0x1a0
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Freed by task 745 on cpu 6 at 9.747467s:
kasan_save_stack+0x20/0x40
kasan_save_track+0x13/0x50
__kasan_save_free_info+0x37/0x50
__kasan_slab_free+0x3b/0x60
kfree+0xf5/0x440
kvm_set_memslot+0x3c2/0x1160 [kvm]
kvm_set_memory_region.part.0+0x86a/0x1110 [kvm]
kvm_vm_ioctl+0x14b0/0x3290 [kvm]
__x64_sys_ioctl+0x129/0x1a0
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix buffer validation by including null terminator size in EA length
The smb2_set_ea function, which handles Extended Attributes (EA),
was performing buffer validation checks that incorrectly omitted the size
of the null terminating character (+1 byte) for EA Name.
This patch fixes the issue by explicitly adding '+ 1' to EaNameLength where
the null terminator is expected to be present in the buffer, ensuring
the validation accurately reflects the total required buffer size. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix nfsd_file reference leak in nfsd4_add_rdaccess_to_wrdeleg()
nfsd4_add_rdaccess_to_wrdeleg() unconditionally overwrites
fp->fi_fds[O_RDONLY] with a newly acquired nfsd_file. However, if
the client already has a SHARE_ACCESS_READ open from a previous OPEN
operation, this action overwrites the existing pointer without
releasing its reference, orphaning the previous reference.
Additionally, the function originally stored the same nfsd_file
pointer in both fp->fi_fds[O_RDONLY] and fp->fi_rdeleg_file with
only a single reference. When put_deleg_file() runs, it clears
fi_rdeleg_file and calls nfs4_file_put_access() to release the file.
However, nfs4_file_put_access() only releases fi_fds[O_RDONLY] when
the fi_access[O_RDONLY] counter drops to zero. If another READ open
exists on the file, the counter remains elevated and the nfsd_file
reference from the delegation is never released. This potentially
causes open conflicts on that file.
Then, on server shutdown, these leaks cause __nfsd_file_cache_purge()
to encounter files with an elevated reference count that cannot be
cleaned up, ultimately triggering a BUG() in kmem_cache_destroy()
because there are still nfsd_file objects allocated in that cache. |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix race between wbt_enable_default and IO submission
When wbt_enable_default() is moved out of queue freezing in elevator_change(),
it can cause the wbt inflight counter to become negative (-1), leading to hung
tasks in the writeback path. Tasks get stuck in wbt_wait() because the counter
is in an inconsistent state.
The issue occurs because wbt_enable_default() could race with IO submission,
allowing the counter to be decremented before proper initialization. This manifests
as:
rq_wait[0]:
inflight: -1
has_waiters: True
rwb_enabled() checks the state, which can be updated exactly between wbt_wait()
(rq_qos_throttle()) and wbt_track()(rq_qos_track()), then the inflight counter
will become negative.
And results in hung task warnings like:
task:kworker/u24:39 state:D stack:0 pid:14767
Call Trace:
rq_qos_wait+0xb4/0x150
wbt_wait+0xa9/0x100
__rq_qos_throttle+0x24/0x40
blk_mq_submit_bio+0x672/0x7b0
...
Fix this by:
1. Splitting wbt_enable_default() into:
- __wbt_enable_default(): Returns true if wbt_init() should be called
- wbt_enable_default(): Wrapper for existing callers (no init)
- wbt_init_enable_default(): New function that checks and inits WBT
2. Using wbt_init_enable_default() in blk_register_queue() to ensure
proper initialization during queue registration
3. Move wbt_init() out of wbt_enable_default() which is only for enabling
disabled wbt from bfq and iocost, and wbt_init() isn't needed. Then the
original lock warning can be avoided.
4. Removing the ELEVATOR_FLAG_ENABLE_WBT_ON_EXIT flag and its handling
code since it's no longer needed
This ensures WBT is properly initialized before any IO can be submitted,
preventing the counter from going negative. |
| In the Linux kernel, the following vulnerability has been resolved:
net/handshake: duplicate handshake cancellations leak socket
When a handshake request is cancelled it is removed from the
handshake_net->hn_requests list, but it is still present in the
handshake_rhashtbl until it is destroyed.
If a second cancellation request arrives for the same handshake request,
then remove_pending() will return false... and assuming
HANDSHAKE_F_REQ_COMPLETED isn't set in req->hr_flags, we'll continue
processing through the out_true label, where we put another reference on
the sock and a refcount underflow occurs.
This can happen for example if a handshake times out - particularly if
the SUNRPC client sends the AUTH_TLS probe to the server but doesn't
follow it up with the ClientHello due to a problem with tlshd. When the
timeout is hit on the server, the server will send a FIN, which triggers
a cancellation request via xs_reset_transport(). When the timeout is
hit on the client, another cancellation request happens via
xs_tls_handshake_sync().
Add a test_and_set_bit(HANDSHAKE_F_REQ_COMPLETED) in the pending cancel
path so duplicate cancels can be detected. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fallback earlier on simult connection
Syzkaller reports a simult-connect race leading to inconsistent fallback
status:
WARNING: CPU: 3 PID: 33 at net/mptcp/subflow.c:1515 subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515
Modules linked in:
CPU: 3 UID: 0 PID: 33 Comm: ksoftirqd/3 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515
Code: 89 ee e8 78 61 3c f6 40 84 ed 75 21 e8 8e 66 3c f6 44 89 fe bf 07 00 00 00 e8 c1 61 3c f6 41 83 ff 07 74 09 e8 76 66 3c f6 90 <0f> 0b 90 e8 6d 66 3c f6 48 89 df e8 e5 ad ff ff 31 ff 89 c5 89 c6
RSP: 0018:ffffc900006cf338 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888031acd100 RCX: ffffffff8b7f2abf
RDX: ffff88801e6ea440 RSI: ffffffff8b7f2aca RDI: 0000000000000005
RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000007
R10: 0000000000000004 R11: 0000000000002c10 R12: ffff88802ba69900
R13: 1ffff920000d9e67 R14: ffff888046f81800 R15: 0000000000000004
FS: 0000000000000000(0000) GS:ffff8880d69bc000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000560fc0ca1670 CR3: 0000000032c3a000 CR4: 0000000000352ef0
Call Trace:
<TASK>
tcp_data_queue+0x13b0/0x4f90 net/ipv4/tcp_input.c:5197
tcp_rcv_state_process+0xfdf/0x4ec0 net/ipv4/tcp_input.c:6922
tcp_v6_do_rcv+0x492/0x1740 net/ipv6/tcp_ipv6.c:1672
tcp_v6_rcv+0x2976/0x41e0 net/ipv6/tcp_ipv6.c:1918
ip6_protocol_deliver_rcu+0x188/0x1520 net/ipv6/ip6_input.c:438
ip6_input_finish+0x1e4/0x4b0 net/ipv6/ip6_input.c:489
NF_HOOK include/linux/netfilter.h:318 [inline]
NF_HOOK include/linux/netfilter.h:312 [inline]
ip6_input+0x105/0x2f0 net/ipv6/ip6_input.c:500
dst_input include/net/dst.h:471 [inline]
ip6_rcv_finish net/ipv6/ip6_input.c:79 [inline]
NF_HOOK include/linux/netfilter.h:318 [inline]
NF_HOOK include/linux/netfilter.h:312 [inline]
ipv6_rcv+0x264/0x650 net/ipv6/ip6_input.c:311
__netif_receive_skb_one_core+0x12d/0x1e0 net/core/dev.c:5979
__netif_receive_skb+0x1d/0x160 net/core/dev.c:6092
process_backlog+0x442/0x15e0 net/core/dev.c:6444
__napi_poll.constprop.0+0xba/0x550 net/core/dev.c:7494
napi_poll net/core/dev.c:7557 [inline]
net_rx_action+0xa9f/0xfe0 net/core/dev.c:7684
handle_softirqs+0x216/0x8e0 kernel/softirq.c:579
run_ksoftirqd kernel/softirq.c:968 [inline]
run_ksoftirqd+0x3a/0x60 kernel/softirq.c:960
smpboot_thread_fn+0x3f7/0xae0 kernel/smpboot.c:160
kthread+0x3c2/0x780 kernel/kthread.c:463
ret_from_fork+0x5d7/0x6f0 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
The TCP subflow can process the simult-connect syn-ack packet after
transitioning to TCP_FIN1 state, bypassing the MPTCP fallback check,
as the sk_state_change() callback is not invoked for * -> FIN_WAIT1
transitions.
That will move the msk socket to an inconsistent status and the next
incoming data will hit the reported splat.
Close the race moving the simult-fallback check at the earliest possible
stage - that is at syn-ack generation time.
About the fixes tags: [2] was supposed to also fix this issue introduced
by [3]. [1] is required as a dependence: it was not explicitly marked as
a fix, but it is one and it has already been backported before [3]. In
other words, this commit should be backported up to [3], including [2]
and [1] if that's not already there. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix use-after-free in ksmbd_tree_connect_put under concurrency
Under high concurrency, A tree-connection object (tcon) is freed on
a disconnect path while another path still holds a reference and later
executes *_put()/write on it. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix double unregister of HCA_PORTS component
Clear hca_devcom_comp in device's private data after unregistering it in
LAG teardown. Otherwise a slightly lagging second pass through
mlx5_unload_one() might try to unregister it again and trip over
use-after-free.
On s390 almost all PCI level recovery events trigger two passes through
mxl5_unload_one() - one through the poll_health() method and one through
mlx5_pci_err_detected() as callback from generic PCI error recovery.
While testing PCI error recovery paths with more kernel debug features
enabled, this issue reproducibly led to kernel panics with the following
call chain:
Unable to handle kernel pointer dereference in virtual kernel address space
Failing address: 6b6b6b6b6b6b6000 TEID: 6b6b6b6b6b6b6803 ESOP-2 FSI
Fault in home space mode while using kernel ASCE.
AS:00000000705c4007 R3:0000000000000024
Oops: 0038 ilc:3 [#1]SMP
CPU: 14 UID: 0 PID: 156 Comm: kmcheck Kdump: loaded Not tainted
6.18.0-20251130.rc7.git0.16131a59cab1.300.fc43.s390x+debug #1 PREEMPT
Krnl PSW : 0404e00180000000 0000020fc86aa1dc (__lock_acquire+0x5c/0x15f0)
R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
Krnl GPRS: 0000000000000000 0000020f00000001 6b6b6b6b6b6b6c33 0000000000000000
0000000000000000 0000000000000000 0000000000000001 0000000000000000
0000000000000000 0000020fca28b820 0000000000000000 0000010a1ced8100
0000010a1ced8100 0000020fc9775068 0000018fce14f8b8 0000018fce14f7f8
Krnl Code: 0000020fc86aa1cc: e3b003400004 lg %r11,832
0000020fc86aa1d2: a7840211 brc 8,0000020fc86aa5f4
*0000020fc86aa1d6: c09000df0b25 larl %r9,0000020fca28b820
>0000020fc86aa1dc: d50790002000 clc 0(8,%r9),0(%r2)
0000020fc86aa1e2: a7840209 brc 8,0000020fc86aa5f4
0000020fc86aa1e6: c0e001100401 larl %r14,0000020fca8aa9e8
0000020fc86aa1ec: c01000e25a00 larl %r1,0000020fca2f55ec
0000020fc86aa1f2: a7eb00e8 aghi %r14,232
Call Trace:
__lock_acquire+0x5c/0x15f0
lock_acquire.part.0+0xf8/0x270
lock_acquire+0xb0/0x1b0
down_write+0x5a/0x250
mlx5_detach_device+0x42/0x110 [mlx5_core]
mlx5_unload_one_devl_locked+0x50/0xc0 [mlx5_core]
mlx5_unload_one+0x42/0x60 [mlx5_core]
mlx5_pci_err_detected+0x94/0x150 [mlx5_core]
zpci_event_attempt_error_recovery+0xcc/0x388 |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: fix io-uring list corruption for terminated non-committed requests
When a request is terminated before it has been committed, the request
is not removed from the queue's list. This leaves a dangling list entry
that leads to list corruption and use-after-free issues.
Remove the request from the queue's list for terminated non-committed
requests. |
| In the Linux kernel, the following vulnerability has been resolved:
inet: frags: flush pending skbs in fqdir_pre_exit()
We have been seeing occasional deadlocks on pernet_ops_rwsem since
September in NIPA. The stuck task was usually modprobe (often loading
a driver like ipvlan), trying to take the lock as a Writer.
lockdep does not track readers for rwsems so the read wasn't obvious
from the reports.
On closer inspection the Reader holding the lock was conntrack looping
forever in nf_conntrack_cleanup_net_list(). Based on past experience
with occasional NIPA crashes I looked thru the tests which run before
the crash and noticed that the crash follows ip_defrag.sh. An immediate
red flag. Scouring thru (de)fragmentation queues reveals skbs sitting
around, holding conntrack references.
The problem is that since conntrack depends on nf_defrag_ipv6,
nf_defrag_ipv6 will load first. Since nf_defrag_ipv6 loads first its
netns exit hooks run _after_ conntrack's netns exit hook.
Flush all fragment queue SKBs during fqdir_pre_exit() to release
conntrack references before conntrack cleanup runs. Also flush
the queues in timer expiry handlers when they discover fqdir->dead
is set, in case packet sneaks in while we're running the pre_exit
flush.
The commit under Fixes is not exactly the culprit, but I think
previously the timer firing would eventually unblock the spinning
conntrack. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/amd: Check event before enable to avoid GPF
On AMD machines cpuc->events[idx] can become NULL in a subtle race
condition with NMI->throttle->x86_pmu_stop().
Check event for NULL in amd_pmu_enable_all() before enable to avoid a GPF.
This appears to be an AMD only issue.
Syzkaller reported a GPF in amd_pmu_enable_all.
INFO: NMI handler (perf_event_nmi_handler) took too long to run: 13.143
msecs
Oops: general protection fault, probably for non-canonical address
0xdffffc0000000034: 0000 PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x00000000000001a0-0x00000000000001a7]
CPU: 0 UID: 0 PID: 328415 Comm: repro_36674776 Not tainted 6.12.0-rc1-syzk
RIP: 0010:x86_pmu_enable_event (arch/x86/events/perf_event.h:1195
arch/x86/events/core.c:1430)
RSP: 0018:ffff888118009d60 EFLAGS: 00010012
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000034 RSI: 0000000000000000 RDI: 00000000000001a0
RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000002
R13: ffff88811802a440 R14: ffff88811802a240 R15: ffff8881132d8601
FS: 00007f097dfaa700(0000) GS:ffff888118000000(0000) GS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000200001c0 CR3: 0000000103d56000 CR4: 00000000000006f0
Call Trace:
<IRQ>
amd_pmu_enable_all (arch/x86/events/amd/core.c:760 (discriminator 2))
x86_pmu_enable (arch/x86/events/core.c:1360)
event_sched_out (kernel/events/core.c:1191 kernel/events/core.c:1186
kernel/events/core.c:2346)
__perf_remove_from_context (kernel/events/core.c:2435)
event_function (kernel/events/core.c:259)
remote_function (kernel/events/core.c:92 (discriminator 1)
kernel/events/core.c:72 (discriminator 1))
__flush_smp_call_function_queue (./arch/x86/include/asm/jump_label.h:27
./include/linux/jump_label.h:207 ./include/trace/events/csd.h:64
kernel/smp.c:135 kernel/smp.c:540)
__sysvec_call_function_single (./arch/x86/include/asm/jump_label.h:27
./include/linux/jump_label.h:207
./arch/x86/include/asm/trace/irq_vectors.h:99 arch/x86/kernel/smp.c:272)
sysvec_call_function_single (arch/x86/kernel/smp.c:266 (discriminator 47)
arch/x86/kernel/smp.c:266 (discriminator 47))
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix a BUG in rt6_get_pcpu_route() under PREEMPT_RT
On PREEMPT_RT kernels, after rt6_get_pcpu_route() returns NULL, the
current task can be preempted. Another task running on the same CPU
may then execute rt6_make_pcpu_route() and successfully install a
pcpu_rt entry. When the first task resumes execution, its cmpxchg()
in rt6_make_pcpu_route() will fail because rt6i_pcpu is no longer
NULL, triggering the BUG_ON(prev). It's easy to reproduce it by adding
mdelay() after rt6_get_pcpu_route().
Using preempt_disable/enable is not appropriate here because
ip6_rt_pcpu_alloc() may sleep.
Fix this by handling the cmpxchg() failure gracefully on PREEMPT_RT:
free our allocation and return the existing pcpu_rt installed by
another task. The BUG_ON is replaced by WARN_ON_ONCE for non-PREEMPT_RT
kernels where such races should not occur. |
| In the Linux kernel, the following vulnerability has been resolved:
iomap: adjust read range correctly for non-block-aligned positions
iomap_adjust_read_range() assumes that the position and length passed in
are block-aligned. This is not always the case however, as shown in the
syzbot generated case for erofs. This causes too many bytes to be
skipped for uptodate blocks, which results in returning the incorrect
position and length to read in. If all the blocks are uptodate, this
underflows length and returns a position beyond the folio.
Fix the calculation to also take into account the block offset when
calculating how many bytes can be skipped for uptodate blocks. |