Search Results (16669 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71099 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Fix potential UAF in xe_oa_add_config_ioctl() In xe_oa_add_config_ioctl(), we accessed oa_config->id after dropping metrics_lock. Since this lock protects the lifetime of oa_config, an attacker could guess the id and call xe_oa_remove_config_ioctl() with perfect timing, freeing oa_config before we dereference it, leading to a potential use-after-free. Fix this by caching the id in a local variable while holding the lock. v2: (Matt A) - Dropped mutex_unlock(&oa->metrics_lock) ordering change from xe_oa_remove_config_ioctl() (cherry picked from commit 28aeaed130e8e587fd1b73b6d66ca41ccc5a1a31)
CVE-2025-68781 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: usb: phy: fsl-usb: Fix use-after-free in delayed work during device removal The delayed work item otg_event is initialized in fsl_otg_conf() and scheduled under two conditions: 1. When a host controller binds to the OTG controller. 2. When the USB ID pin state changes (cable insertion/removal). A race condition occurs when the device is removed via fsl_otg_remove(): the fsl_otg instance may be freed while the delayed work is still pending or executing. This leads to use-after-free when the work function fsl_otg_event() accesses the already freed memory. The problematic scenario: (detach thread) | (delayed work) fsl_otg_remove() | kfree(fsl_otg_dev) //FREE| fsl_otg_event() | og = container_of(...) //USE | og-> //USE Fix this by calling disable_delayed_work_sync() in fsl_otg_remove() before deallocating the fsl_otg structure. This ensures the delayed work is properly canceled and completes execution prior to memory deallocation. This bug was identified through static analysis.
CVE-2025-68812 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: media: iris: Add sanity check for stop streaming Add sanity check in iris_vb2_stop_streaming. If inst->state is already IRIS_INST_ERROR, we should skip the stream_off operation because it would still send packets to the firmware. In iris_kill_session, inst->state is set to IRIS_INST_ERROR and session_close is executed, which will kfree(inst_hfi_gen2->packet). If stop_streaming is called afterward, it will cause a crash. [bod: remove qcom from patch title]
CVE-2025-71070 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ublk: clean up user copy references on ublk server exit If a ublk server process releases a ublk char device file, any requests dispatched to the ublk server but not yet completed will retain a ref value of UBLK_REFCOUNT_INIT. Before commit e63d2228ef83 ("ublk: simplify aborting ublk request"), __ublk_fail_req() would decrement the reference count before completing the failed request. However, that commit optimized __ublk_fail_req() to call __ublk_complete_rq() directly without decrementing the request reference count. The leaked reference count incorrectly allows user copy and zero copy operations on the completed ublk request. It also triggers the WARN_ON_ONCE(refcount_read(&io->ref)) warnings in ublk_queue_reinit() and ublk_deinit_queue(). Commit c5c5eb24ed61 ("ublk: avoid ublk_io_release() called after ublk char dev is closed") already fixed the issue for ublk devices using UBLK_F_SUPPORT_ZERO_COPY or UBLK_F_AUTO_BUF_REG. However, the reference count leak also affects UBLK_F_USER_COPY, the other reference-counted data copy mode. Fix the condition in ublk_check_and_reset_active_ref() to include all reference-counted data copy modes. This ensures that any ublk requests still owned by the ublk server when it exits have their reference counts reset to 0.
CVE-2025-68822 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Input: alps - fix use-after-free bugs caused by dev3_register_work The dev3_register_work delayed work item is initialized within alps_reconnect() and scheduled upon receipt of the first bare PS/2 packet from an external PS/2 device connected to the ALPS touchpad. During device detachment, the original implementation calls flush_workqueue() in psmouse_disconnect() to ensure completion of dev3_register_work. However, the flush_workqueue() in psmouse_disconnect() only blocks and waits for work items that were already queued to the workqueue prior to its invocation. Any work items submitted after flush_workqueue() is called are not included in the set of tasks that the flush operation awaits. This means that after flush_workqueue() has finished executing, the dev3_register_work could still be scheduled. Although the psmouse state is set to PSMOUSE_CMD_MODE in psmouse_disconnect(), the scheduling of dev3_register_work remains unaffected. The race condition can occur as follows: CPU 0 (cleanup path) | CPU 1 (delayed work) psmouse_disconnect() | psmouse_set_state() | flush_workqueue() | alps_report_bare_ps2_packet() alps_disconnect() | psmouse_queue_work() kfree(priv); // FREE | alps_register_bare_ps2_mouse() | priv = container_of(work...); // USE | priv->dev3 // USE Add disable_delayed_work_sync() in alps_disconnect() to ensure that dev3_register_work is properly canceled and prevented from executing after the alps_data structure has been deallocated. This bug is identified by static analysis.
CVE-2025-71092 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: Fix OOB write in bnxt_re_copy_err_stats() Commit ef56081d1864 ("RDMA/bnxt_re: RoCE related hardware counters update") added three new counters and placed them after BNXT_RE_OUT_OF_SEQ_ERR. BNXT_RE_OUT_OF_SEQ_ERR acts as a boundary marker for allocating hardware statistics with different num_counters values on chip_gen_p5_p7 devices. As a result, BNXT_RE_NUM_STD_COUNTERS are used when allocating hw_stats, which leads to an out-of-bounds write in bnxt_re_copy_err_stats(). The counters BNXT_RE_REQ_CQE_ERROR, BNXT_RE_RESP_CQE_ERROR, and BNXT_RE_RESP_REMOTE_ACCESS_ERRS are applicable to generic hardware, not only p5/p7 devices. Fix this by moving these counters before BNXT_RE_OUT_OF_SEQ_ERR so they are included in the generic counter set.
CVE-2025-71071 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: iommu/mediatek: fix use-after-free on probe deferral The driver is dropping the references taken to the larb devices during probe after successful lookup as well as on errors. This can potentially lead to a use-after-free in case a larb device has not yet been bound to its driver so that the iommu driver probe defers. Fix this by keeping the references as expected while the iommu driver is bound.
CVE-2025-68810 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: KVM: Disallow toggling KVM_MEM_GUEST_MEMFD on an existing memslot Reject attempts to disable KVM_MEM_GUEST_MEMFD on a memslot that was initially created with a guest_memfd binding, as KVM doesn't support toggling KVM_MEM_GUEST_MEMFD on existing memslots. KVM prevents enabling KVM_MEM_GUEST_MEMFD, but doesn't prevent clearing the flag. Failure to reject the new memslot results in a use-after-free due to KVM not unbinding from the guest_memfd instance. Unbinding on a FLAGS_ONLY change is easy enough, and can/will be done as a hardening measure (in anticipation of KVM supporting dirty logging on guest_memfd at some point), but fixing the use-after-free would only address the immediate symptom. ================================================================== BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x362/0x400 [kvm] Write of size 8 at addr ffff8881111ae908 by task repro/745 CPU: 7 UID: 1000 PID: 745 Comm: repro Not tainted 6.18.0-rc6-115d5de2eef3-next-kasan #3 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: <TASK> dump_stack_lvl+0x51/0x60 print_report+0xcb/0x5c0 kasan_report+0xb4/0xe0 kvm_gmem_release+0x362/0x400 [kvm] __fput+0x2fa/0x9d0 task_work_run+0x12c/0x200 do_exit+0x6ae/0x2100 do_group_exit+0xa8/0x230 __x64_sys_exit_group+0x3a/0x50 x64_sys_call+0x737/0x740 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f581f2eac31 </TASK> Allocated by task 745 on cpu 6 at 9.746971s: kasan_save_stack+0x20/0x40 kasan_save_track+0x13/0x50 __kasan_kmalloc+0x77/0x90 kvm_set_memory_region.part.0+0x652/0x1110 [kvm] kvm_vm_ioctl+0x14b0/0x3290 [kvm] __x64_sys_ioctl+0x129/0x1a0 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Freed by task 745 on cpu 6 at 9.747467s: kasan_save_stack+0x20/0x40 kasan_save_track+0x13/0x50 __kasan_save_free_info+0x37/0x50 __kasan_slab_free+0x3b/0x60 kfree+0xf5/0x440 kvm_set_memslot+0x3c2/0x1160 [kvm] kvm_set_memory_region.part.0+0x86a/0x1110 [kvm] kvm_vm_ioctl+0x14b0/0x3290 [kvm] __x64_sys_ioctl+0x129/0x1a0 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53
CVE-2025-68806 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix buffer validation by including null terminator size in EA length The smb2_set_ea function, which handles Extended Attributes (EA), was performing buffer validation checks that incorrectly omitted the size of the null terminating character (+1 byte) for EA Name. This patch fixes the issue by explicitly adding '+ 1' to EaNameLength where the null terminator is expected to be present in the buffer, ensuring the validation accurately reflects the total required buffer size.
CVE-2025-71090 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfsd: fix nfsd_file reference leak in nfsd4_add_rdaccess_to_wrdeleg() nfsd4_add_rdaccess_to_wrdeleg() unconditionally overwrites fp->fi_fds[O_RDONLY] with a newly acquired nfsd_file. However, if the client already has a SHARE_ACCESS_READ open from a previous OPEN operation, this action overwrites the existing pointer without releasing its reference, orphaning the previous reference. Additionally, the function originally stored the same nfsd_file pointer in both fp->fi_fds[O_RDONLY] and fp->fi_rdeleg_file with only a single reference. When put_deleg_file() runs, it clears fi_rdeleg_file and calls nfs4_file_put_access() to release the file. However, nfs4_file_put_access() only releases fi_fds[O_RDONLY] when the fi_access[O_RDONLY] counter drops to zero. If another READ open exists on the file, the counter remains elevated and the nfsd_file reference from the delegation is never released. This potentially causes open conflicts on that file. Then, on server shutdown, these leaks cause __nfsd_file_cache_purge() to encounter files with an elevated reference count that cannot be cleaned up, ultimately triggering a BUG() in kmem_cache_destroy() because there are still nfsd_file objects allocated in that cache.
CVE-2025-68807 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix race between wbt_enable_default and IO submission When wbt_enable_default() is moved out of queue freezing in elevator_change(), it can cause the wbt inflight counter to become negative (-1), leading to hung tasks in the writeback path. Tasks get stuck in wbt_wait() because the counter is in an inconsistent state. The issue occurs because wbt_enable_default() could race with IO submission, allowing the counter to be decremented before proper initialization. This manifests as: rq_wait[0]: inflight: -1 has_waiters: True rwb_enabled() checks the state, which can be updated exactly between wbt_wait() (rq_qos_throttle()) and wbt_track()(rq_qos_track()), then the inflight counter will become negative. And results in hung task warnings like: task:kworker/u24:39 state:D stack:0 pid:14767 Call Trace: rq_qos_wait+0xb4/0x150 wbt_wait+0xa9/0x100 __rq_qos_throttle+0x24/0x40 blk_mq_submit_bio+0x672/0x7b0 ... Fix this by: 1. Splitting wbt_enable_default() into: - __wbt_enable_default(): Returns true if wbt_init() should be called - wbt_enable_default(): Wrapper for existing callers (no init) - wbt_init_enable_default(): New function that checks and inits WBT 2. Using wbt_init_enable_default() in blk_register_queue() to ensure proper initialization during queue registration 3. Move wbt_init() out of wbt_enable_default() which is only for enabling disabled wbt from bfq and iocost, and wbt_init() isn't needed. Then the original lock warning can be avoided. 4. Removing the ELEVATOR_FLAG_ENABLE_WBT_ON_EXIT flag and its handling code since it's no longer needed This ensures WBT is properly initialized before any IO can be submitted, preventing the counter from going negative.
CVE-2025-68775 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/handshake: duplicate handshake cancellations leak socket When a handshake request is cancelled it is removed from the handshake_net->hn_requests list, but it is still present in the handshake_rhashtbl until it is destroyed. If a second cancellation request arrives for the same handshake request, then remove_pending() will return false... and assuming HANDSHAKE_F_REQ_COMPLETED isn't set in req->hr_flags, we'll continue processing through the out_true label, where we put another reference on the sock and a refcount underflow occurs. This can happen for example if a handshake times out - particularly if the SUNRPC client sends the AUTH_TLS probe to the server but doesn't follow it up with the ClientHello due to a problem with tlshd. When the timeout is hit on the server, the server will send a FIN, which triggers a cancellation request via xs_reset_transport(). When the timeout is hit on the client, another cancellation request happens via xs_tls_handshake_sync(). Add a test_and_set_bit(HANDSHAKE_F_REQ_COMPLETED) in the pending cancel path so duplicate cancels can be detected.
CVE-2025-71088 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: fallback earlier on simult connection Syzkaller reports a simult-connect race leading to inconsistent fallback status: WARNING: CPU: 3 PID: 33 at net/mptcp/subflow.c:1515 subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515 Modules linked in: CPU: 3 UID: 0 PID: 33 Comm: ksoftirqd/3 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515 Code: 89 ee e8 78 61 3c f6 40 84 ed 75 21 e8 8e 66 3c f6 44 89 fe bf 07 00 00 00 e8 c1 61 3c f6 41 83 ff 07 74 09 e8 76 66 3c f6 90 <0f> 0b 90 e8 6d 66 3c f6 48 89 df e8 e5 ad ff ff 31 ff 89 c5 89 c6 RSP: 0018:ffffc900006cf338 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888031acd100 RCX: ffffffff8b7f2abf RDX: ffff88801e6ea440 RSI: ffffffff8b7f2aca RDI: 0000000000000005 RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000007 R10: 0000000000000004 R11: 0000000000002c10 R12: ffff88802ba69900 R13: 1ffff920000d9e67 R14: ffff888046f81800 R15: 0000000000000004 FS: 0000000000000000(0000) GS:ffff8880d69bc000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000560fc0ca1670 CR3: 0000000032c3a000 CR4: 0000000000352ef0 Call Trace: <TASK> tcp_data_queue+0x13b0/0x4f90 net/ipv4/tcp_input.c:5197 tcp_rcv_state_process+0xfdf/0x4ec0 net/ipv4/tcp_input.c:6922 tcp_v6_do_rcv+0x492/0x1740 net/ipv6/tcp_ipv6.c:1672 tcp_v6_rcv+0x2976/0x41e0 net/ipv6/tcp_ipv6.c:1918 ip6_protocol_deliver_rcu+0x188/0x1520 net/ipv6/ip6_input.c:438 ip6_input_finish+0x1e4/0x4b0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] ip6_input+0x105/0x2f0 net/ipv6/ip6_input.c:500 dst_input include/net/dst.h:471 [inline] ip6_rcv_finish net/ipv6/ip6_input.c:79 [inline] NF_HOOK include/linux/netfilter.h:318 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] ipv6_rcv+0x264/0x650 net/ipv6/ip6_input.c:311 __netif_receive_skb_one_core+0x12d/0x1e0 net/core/dev.c:5979 __netif_receive_skb+0x1d/0x160 net/core/dev.c:6092 process_backlog+0x442/0x15e0 net/core/dev.c:6444 __napi_poll.constprop.0+0xba/0x550 net/core/dev.c:7494 napi_poll net/core/dev.c:7557 [inline] net_rx_action+0xa9f/0xfe0 net/core/dev.c:7684 handle_softirqs+0x216/0x8e0 kernel/softirq.c:579 run_ksoftirqd kernel/softirq.c:968 [inline] run_ksoftirqd+0x3a/0x60 kernel/softirq.c:960 smpboot_thread_fn+0x3f7/0xae0 kernel/smpboot.c:160 kthread+0x3c2/0x780 kernel/kthread.c:463 ret_from_fork+0x5d7/0x6f0 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> The TCP subflow can process the simult-connect syn-ack packet after transitioning to TCP_FIN1 state, bypassing the MPTCP fallback check, as the sk_state_change() callback is not invoked for * -> FIN_WAIT1 transitions. That will move the msk socket to an inconsistent status and the next incoming data will hit the reported splat. Close the race moving the simult-fallback check at the earliest possible stage - that is at syn-ack generation time. About the fixes tags: [2] was supposed to also fix this issue introduced by [3]. [1] is required as a dependence: it was not explicitly marked as a fix, but it is one and it has already been backported before [3]. In other words, this commit should be backported up to [3], including [2] and [1] if that's not already there.
CVE-2025-68817 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix use-after-free in ksmbd_tree_connect_put under concurrency Under high concurrency, A tree-connection object (tcon) is freed on a disconnect path while another path still holds a reference and later executes *_put()/write on it.
CVE-2025-68790 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix double unregister of HCA_PORTS component Clear hca_devcom_comp in device's private data after unregistering it in LAG teardown. Otherwise a slightly lagging second pass through mlx5_unload_one() might try to unregister it again and trip over use-after-free. On s390 almost all PCI level recovery events trigger two passes through mxl5_unload_one() - one through the poll_health() method and one through mlx5_pci_err_detected() as callback from generic PCI error recovery. While testing PCI error recovery paths with more kernel debug features enabled, this issue reproducibly led to kernel panics with the following call chain: Unable to handle kernel pointer dereference in virtual kernel address space Failing address: 6b6b6b6b6b6b6000 TEID: 6b6b6b6b6b6b6803 ESOP-2 FSI Fault in home space mode while using kernel ASCE. AS:00000000705c4007 R3:0000000000000024 Oops: 0038 ilc:3 [#1]SMP CPU: 14 UID: 0 PID: 156 Comm: kmcheck Kdump: loaded Not tainted 6.18.0-20251130.rc7.git0.16131a59cab1.300.fc43.s390x+debug #1 PREEMPT Krnl PSW : 0404e00180000000 0000020fc86aa1dc (__lock_acquire+0x5c/0x15f0) R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3 Krnl GPRS: 0000000000000000 0000020f00000001 6b6b6b6b6b6b6c33 0000000000000000 0000000000000000 0000000000000000 0000000000000001 0000000000000000 0000000000000000 0000020fca28b820 0000000000000000 0000010a1ced8100 0000010a1ced8100 0000020fc9775068 0000018fce14f8b8 0000018fce14f7f8 Krnl Code: 0000020fc86aa1cc: e3b003400004 lg %r11,832 0000020fc86aa1d2: a7840211 brc 8,0000020fc86aa5f4 *0000020fc86aa1d6: c09000df0b25 larl %r9,0000020fca28b820 >0000020fc86aa1dc: d50790002000 clc 0(8,%r9),0(%r2) 0000020fc86aa1e2: a7840209 brc 8,0000020fc86aa5f4 0000020fc86aa1e6: c0e001100401 larl %r14,0000020fca8aa9e8 0000020fc86aa1ec: c01000e25a00 larl %r1,0000020fca2f55ec 0000020fc86aa1f2: a7eb00e8 aghi %r14,232 Call Trace: __lock_acquire+0x5c/0x15f0 lock_acquire.part.0+0xf8/0x270 lock_acquire+0xb0/0x1b0 down_write+0x5a/0x250 mlx5_detach_device+0x42/0x110 [mlx5_core] mlx5_unload_one_devl_locked+0x50/0xc0 [mlx5_core] mlx5_unload_one+0x42/0x60 [mlx5_core] mlx5_pci_err_detected+0x94/0x150 [mlx5_core] zpci_event_attempt_error_recovery+0xcc/0x388
CVE-2025-68805 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: fuse: fix io-uring list corruption for terminated non-committed requests When a request is terminated before it has been committed, the request is not removed from the queue's list. This leaves a dangling list entry that leads to list corruption and use-after-free issues. Remove the request from the queue's list for terminated non-committed requests.
CVE-2025-68768 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: inet: frags: flush pending skbs in fqdir_pre_exit() We have been seeing occasional deadlocks on pernet_ops_rwsem since September in NIPA. The stuck task was usually modprobe (often loading a driver like ipvlan), trying to take the lock as a Writer. lockdep does not track readers for rwsems so the read wasn't obvious from the reports. On closer inspection the Reader holding the lock was conntrack looping forever in nf_conntrack_cleanup_net_list(). Based on past experience with occasional NIPA crashes I looked thru the tests which run before the crash and noticed that the crash follows ip_defrag.sh. An immediate red flag. Scouring thru (de)fragmentation queues reveals skbs sitting around, holding conntrack references. The problem is that since conntrack depends on nf_defrag_ipv6, nf_defrag_ipv6 will load first. Since nf_defrag_ipv6 loads first its netns exit hooks run _after_ conntrack's netns exit hook. Flush all fragment queue SKBs during fqdir_pre_exit() to release conntrack references before conntrack cleanup runs. Also flush the queues in timer expiry handlers when they discover fqdir->dead is set, in case packet sneaks in while we're running the pre_exit flush. The commit under Fixes is not exactly the culprit, but I think previously the timer firing would eventually unblock the spinning conntrack.
CVE-2025-68798 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86/amd: Check event before enable to avoid GPF On AMD machines cpuc->events[idx] can become NULL in a subtle race condition with NMI->throttle->x86_pmu_stop(). Check event for NULL in amd_pmu_enable_all() before enable to avoid a GPF. This appears to be an AMD only issue. Syzkaller reported a GPF in amd_pmu_enable_all. INFO: NMI handler (perf_event_nmi_handler) took too long to run: 13.143 msecs Oops: general protection fault, probably for non-canonical address 0xdffffc0000000034: 0000 PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x00000000000001a0-0x00000000000001a7] CPU: 0 UID: 0 PID: 328415 Comm: repro_36674776 Not tainted 6.12.0-rc1-syzk RIP: 0010:x86_pmu_enable_event (arch/x86/events/perf_event.h:1195 arch/x86/events/core.c:1430) RSP: 0018:ffff888118009d60 EFLAGS: 00010012 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000034 RSI: 0000000000000000 RDI: 00000000000001a0 RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000002 R13: ffff88811802a440 R14: ffff88811802a240 R15: ffff8881132d8601 FS: 00007f097dfaa700(0000) GS:ffff888118000000(0000) GS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000200001c0 CR3: 0000000103d56000 CR4: 00000000000006f0 Call Trace: <IRQ> amd_pmu_enable_all (arch/x86/events/amd/core.c:760 (discriminator 2)) x86_pmu_enable (arch/x86/events/core.c:1360) event_sched_out (kernel/events/core.c:1191 kernel/events/core.c:1186 kernel/events/core.c:2346) __perf_remove_from_context (kernel/events/core.c:2435) event_function (kernel/events/core.c:259) remote_function (kernel/events/core.c:92 (discriminator 1) kernel/events/core.c:72 (discriminator 1)) __flush_smp_call_function_queue (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/csd.h:64 kernel/smp.c:135 kernel/smp.c:540) __sysvec_call_function_single (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./arch/x86/include/asm/trace/irq_vectors.h:99 arch/x86/kernel/smp.c:272) sysvec_call_function_single (arch/x86/kernel/smp.c:266 (discriminator 47) arch/x86/kernel/smp.c:266 (discriminator 47)) </IRQ>
CVE-2025-71080 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix a BUG in rt6_get_pcpu_route() under PREEMPT_RT On PREEMPT_RT kernels, after rt6_get_pcpu_route() returns NULL, the current task can be preempted. Another task running on the same CPU may then execute rt6_make_pcpu_route() and successfully install a pcpu_rt entry. When the first task resumes execution, its cmpxchg() in rt6_make_pcpu_route() will fail because rt6i_pcpu is no longer NULL, triggering the BUG_ON(prev). It's easy to reproduce it by adding mdelay() after rt6_get_pcpu_route(). Using preempt_disable/enable is not appropriate here because ip6_rt_pcpu_alloc() may sleep. Fix this by handling the cmpxchg() failure gracefully on PREEMPT_RT: free our allocation and return the existing pcpu_rt installed by another task. The BUG_ON is replaced by WARN_ON_ONCE for non-PREEMPT_RT kernels where such races should not occur.
CVE-2025-68794 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iomap: adjust read range correctly for non-block-aligned positions iomap_adjust_read_range() assumes that the position and length passed in are block-aligned. This is not always the case however, as shown in the syzbot generated case for erofs. This causes too many bytes to be skipped for uptodate blocks, which results in returning the incorrect position and length to read in. If all the blocks are uptodate, this underflows length and returns a position beyond the folio. Fix the calculation to also take into account the block offset when calculating how many bytes can be skipped for uptodate blocks.