| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
vmxnet3: disable rx data ring on dma allocation failure
When vmxnet3_rq_create() fails to allocate memory for rq->data_ring.base,
the subsequent call to vmxnet3_rq_destroy_all_rxdataring does not reset
rq->data_ring.desc_size for the data ring that failed, which presumably
causes the hypervisor to reference it on packet reception.
To fix this bug, rq->data_ring.desc_size needs to be set to 0 to tell
the hypervisor to disable this feature.
[ 95.436876] kernel BUG at net/core/skbuff.c:207!
[ 95.439074] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 95.440411] CPU: 7 PID: 0 Comm: swapper/7 Not tainted 6.9.3-dirty #1
[ 95.441558] Hardware name: VMware, Inc. VMware Virtual
Platform/440BX Desktop Reference Platform, BIOS 6.00 12/12/2018
[ 95.443481] RIP: 0010:skb_panic+0x4d/0x4f
[ 95.444404] Code: 4f 70 50 8b 87 c0 00 00 00 50 8b 87 bc 00 00 00 50
ff b7 d0 00 00 00 4c 8b 8f c8 00 00 00 48 c7 c7 68 e8 be 9f e8 63 58 f9
ff <0f> 0b 48 8b 14 24 48 c7 c1 d0 73 65 9f e8 a1 ff ff ff 48 8b 14 24
[ 95.447684] RSP: 0018:ffffa13340274dd0 EFLAGS: 00010246
[ 95.448762] RAX: 0000000000000089 RBX: ffff8fbbc72b02d0 RCX: 000000000000083f
[ 95.450148] RDX: 0000000000000000 RSI: 00000000000000f6 RDI: 000000000000083f
[ 95.451520] RBP: 000000000000002d R08: 0000000000000000 R09: ffffa13340274c60
[ 95.452886] R10: ffffffffa04ed468 R11: 0000000000000002 R12: 0000000000000000
[ 95.454293] R13: ffff8fbbdab3c2d0 R14: ffff8fbbdbd829e0 R15: ffff8fbbdbd809e0
[ 95.455682] FS: 0000000000000000(0000) GS:ffff8fbeefd80000(0000) knlGS:0000000000000000
[ 95.457178] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 95.458340] CR2: 00007fd0d1f650c8 CR3: 0000000115f28000 CR4: 00000000000406f0
[ 95.459791] Call Trace:
[ 95.460515] <IRQ>
[ 95.461180] ? __die_body.cold+0x19/0x27
[ 95.462150] ? die+0x2e/0x50
[ 95.462976] ? do_trap+0xca/0x110
[ 95.463973] ? do_error_trap+0x6a/0x90
[ 95.464966] ? skb_panic+0x4d/0x4f
[ 95.465901] ? exc_invalid_op+0x50/0x70
[ 95.466849] ? skb_panic+0x4d/0x4f
[ 95.467718] ? asm_exc_invalid_op+0x1a/0x20
[ 95.468758] ? skb_panic+0x4d/0x4f
[ 95.469655] skb_put.cold+0x10/0x10
[ 95.470573] vmxnet3_rq_rx_complete+0x862/0x11e0 [vmxnet3]
[ 95.471853] vmxnet3_poll_rx_only+0x36/0xb0 [vmxnet3]
[ 95.473185] __napi_poll+0x2b/0x160
[ 95.474145] net_rx_action+0x2c6/0x3b0
[ 95.475115] handle_softirqs+0xe7/0x2a0
[ 95.476122] __irq_exit_rcu+0x97/0xb0
[ 95.477109] common_interrupt+0x85/0xa0
[ 95.478102] </IRQ>
[ 95.478846] <TASK>
[ 95.479603] asm_common_interrupt+0x26/0x40
[ 95.480657] RIP: 0010:pv_native_safe_halt+0xf/0x20
[ 95.481801] Code: 22 d7 e9 54 87 01 00 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa eb 07 0f 00 2d 93 ba 3b 00 fb f4 <e9> 2c 87 01 00 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90
[ 95.485563] RSP: 0018:ffffa133400ffe58 EFLAGS: 00000246
[ 95.486882] RAX: 0000000000004000 RBX: ffff8fbbc1d14064 RCX: 0000000000000000
[ 95.488477] RDX: ffff8fbeefd80000 RSI: ffff8fbbc1d14000 RDI: 0000000000000001
[ 95.490067] RBP: ffff8fbbc1d14064 R08: ffffffffa0652260 R09: 00000000000010d3
[ 95.491683] R10: 0000000000000018 R11: ffff8fbeefdb4764 R12: ffffffffa0652260
[ 95.493389] R13: ffffffffa06522e0 R14: 0000000000000001 R15: 0000000000000000
[ 95.495035] acpi_safe_halt+0x14/0x20
[ 95.496127] acpi_idle_do_entry+0x2f/0x50
[ 95.497221] acpi_idle_enter+0x7f/0xd0
[ 95.498272] cpuidle_enter_state+0x81/0x420
[ 95.499375] cpuidle_enter+0x2d/0x40
[ 95.500400] do_idle+0x1e5/0x240
[ 95.501385] cpu_startup_entry+0x29/0x30
[ 95.502422] start_secondary+0x11c/0x140
[ 95.503454] common_startup_64+0x13e/0x141
[ 95.504466] </TASK>
[ 95.505197] Modules linked in: nft_fib_inet nft_fib_ipv4
nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ip
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/rsrc: don't lock while !TASK_RUNNING
There is a report of io_rsrc_ref_quiesce() locking a mutex while not
TASK_RUNNING, which is due to forgetting restoring the state back after
io_run_task_work_sig() and attempts to break out of the waiting loop.
do not call blocking ops when !TASK_RUNNING; state=1 set at
[<ffffffff815d2494>] prepare_to_wait+0xa4/0x380
kernel/sched/wait.c:237
WARNING: CPU: 2 PID: 397056 at kernel/sched/core.c:10099
__might_sleep+0x114/0x160 kernel/sched/core.c:10099
RIP: 0010:__might_sleep+0x114/0x160 kernel/sched/core.c:10099
Call Trace:
<TASK>
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0xb4/0x940 kernel/locking/mutex.c:752
io_rsrc_ref_quiesce+0x590/0x940 io_uring/rsrc.c:253
io_sqe_buffers_unregister+0xa2/0x340 io_uring/rsrc.c:799
__io_uring_register io_uring/register.c:424 [inline]
__do_sys_io_uring_register+0x5b9/0x2400 io_uring/register.c:613
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xd8/0x270 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6f/0x77 |
| In the Linux kernel, the following vulnerability has been resolved:
memblock: make memblock_set_node() also warn about use of MAX_NUMNODES
On an (old) x86 system with SRAT just covering space above 4Gb:
ACPI: SRAT: Node 0 PXM 0 [mem 0x100000000-0xfffffffff] hotplug
the commit referenced below leads to this NUMA configuration no longer
being refused by a CONFIG_NUMA=y kernel (previously
NUMA: nodes only cover 6144MB of your 8185MB e820 RAM. Not used.
No NUMA configuration found
Faking a node at [mem 0x0000000000000000-0x000000027fffffff]
was seen in the log directly after the message quoted above), because of
memblock_validate_numa_coverage() checking for NUMA_NO_NODE (only). This
in turn led to memblock_alloc_range_nid()'s warning about MAX_NUMNODES
triggering, followed by a NULL deref in memmap_init() when trying to
access node 64's (NODE_SHIFT=6) node data.
To compensate said change, make memblock_set_node() warn on and adjust
a passed in value of MAX_NUMNODES, just like various other functions
already do. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: seville: register the mdiobus under devres
As explained in commits:
74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres")
5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres")
mdiobus_free() will panic when called from devm_mdiobus_free() <-
devres_release_all() <- __device_release_driver(), and that mdiobus was
not previously unregistered.
The Seville VSC9959 switch is a platform device, so the initial set of
constraints that I thought would cause this (I2C or SPI buses which call
->remove on ->shutdown) do not apply. But there is one more which
applies here.
If the DSA master itself is on a bus that calls ->remove from ->shutdown
(like dpaa2-eth, which is on the fsl-mc bus), there is a device link
between the switch and the DSA master, and device_links_unbind_consumers()
will unbind the seville switch driver on shutdown.
So the same treatment must be applied to all DSA switch drivers, which
is: either use devres for both the mdiobus allocation and registration,
or don't use devres at all.
The seville driver has a code structure that could accommodate both the
mdiobus_unregister and mdiobus_free calls, but it has an external
dependency upon mscc_miim_setup() from mdio-mscc-miim.c, which calls
devm_mdiobus_alloc_size() on its behalf. So rather than restructuring
that, and exporting yet one more symbol mscc_miim_teardown(), let's work
with devres and replace of_mdiobus_register with the devres variant.
When we use all-devres, we can ensure that devres doesn't free a
still-registered bus (it either runs both callbacks, or none). |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: felix: don't use devres for mdiobus
As explained in commits:
74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres")
5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres")
mdiobus_free() will panic when called from devm_mdiobus_free() <-
devres_release_all() <- __device_release_driver(), and that mdiobus was
not previously unregistered.
The Felix VSC9959 switch is a PCI device, so the initial set of
constraints that I thought would cause this (I2C or SPI buses which call
->remove on ->shutdown) do not apply. But there is one more which
applies here.
If the DSA master itself is on a bus that calls ->remove from ->shutdown
(like dpaa2-eth, which is on the fsl-mc bus), there is a device link
between the switch and the DSA master, and device_links_unbind_consumers()
will unbind the felix switch driver on shutdown.
So the same treatment must be applied to all DSA switch drivers, which
is: either use devres for both the mdiobus allocation and registration,
or don't use devres at all.
The felix driver has the code structure in place for orderly mdiobus
removal, so just replace devm_mdiobus_alloc_size() with the non-devres
variant, and add manual free where necessary, to ensure that we don't
let devres free a still-registered bus. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: lantiq_gswip: don't use devres for mdiobus
As explained in commits:
74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres")
5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres")
mdiobus_free() will panic when called from devm_mdiobus_free() <-
devres_release_all() <- __device_release_driver(), and that mdiobus was
not previously unregistered.
The GSWIP switch is a platform device, so the initial set of constraints
that I thought would cause this (I2C or SPI buses which call ->remove on
->shutdown) do not apply. But there is one more which applies here.
If the DSA master itself is on a bus that calls ->remove from ->shutdown
(like dpaa2-eth, which is on the fsl-mc bus), there is a device link
between the switch and the DSA master, and device_links_unbind_consumers()
will unbind the GSWIP switch driver on shutdown.
So the same treatment must be applied to all DSA switch drivers, which
is: either use devres for both the mdiobus allocation and registration,
or don't use devres at all.
The gswip driver has the code structure in place for orderly mdiobus
removal, so just replace devm_mdiobus_alloc() with the non-devres
variant, and add manual free where necessary, to ensure that we don't
let devres free a still-registered bus. |
| In the Linux kernel, the following vulnerability has been resolved:
ipmr,ip6mr: acquire RTNL before calling ip[6]mr_free_table() on failure path
ip[6]mr_free_table() can only be called under RTNL lock.
RTNL: assertion failed at net/core/dev.c (10367)
WARNING: CPU: 1 PID: 5890 at net/core/dev.c:10367 unregister_netdevice_many+0x1246/0x1850 net/core/dev.c:10367
Modules linked in:
CPU: 1 PID: 5890 Comm: syz-executor.2 Not tainted 5.16.0-syzkaller-11627-g422ee58dc0ef #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:unregister_netdevice_many+0x1246/0x1850 net/core/dev.c:10367
Code: 0f 85 9b ee ff ff e8 69 07 4b fa ba 7f 28 00 00 48 c7 c6 00 90 ae 8a 48 c7 c7 40 90 ae 8a c6 05 6d b1 51 06 01 e8 8c 90 d8 01 <0f> 0b e9 70 ee ff ff e8 3e 07 4b fa 4c 89 e7 e8 86 2a 59 fa e9 ee
RSP: 0018:ffffc900046ff6e0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: ffff888050f51d00 RSI: ffffffff815fa008 RDI: fffff520008dfece
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
R10: ffffffff815f3d6e R11: 0000000000000000 R12: 00000000fffffff4
R13: dffffc0000000000 R14: ffffc900046ff750 R15: ffff88807b7dc000
FS: 00007f4ab736e700(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fee0b4f8990 CR3: 000000001e7d2000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
mroute_clean_tables+0x244/0xb40 net/ipv6/ip6mr.c:1509
ip6mr_free_table net/ipv6/ip6mr.c:389 [inline]
ip6mr_rules_init net/ipv6/ip6mr.c:246 [inline]
ip6mr_net_init net/ipv6/ip6mr.c:1306 [inline]
ip6mr_net_init+0x3f0/0x4e0 net/ipv6/ip6mr.c:1298
ops_init+0xaf/0x470 net/core/net_namespace.c:140
setup_net+0x54f/0xbb0 net/core/net_namespace.c:331
copy_net_ns+0x318/0x760 net/core/net_namespace.c:475
create_new_namespaces+0x3f6/0xb20 kernel/nsproxy.c:110
copy_namespaces+0x391/0x450 kernel/nsproxy.c:178
copy_process+0x2e0c/0x7300 kernel/fork.c:2167
kernel_clone+0xe7/0xab0 kernel/fork.c:2555
__do_sys_clone+0xc8/0x110 kernel/fork.c:2672
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f4ab89f9059
Code: Unable to access opcode bytes at RIP 0x7f4ab89f902f.
RSP: 002b:00007f4ab736e118 EFLAGS: 00000206 ORIG_RAX: 0000000000000038
RAX: ffffffffffffffda RBX: 00007f4ab8b0bf60 RCX: 00007f4ab89f9059
RDX: 0000000020000280 RSI: 0000000020000270 RDI: 0000000040200000
RBP: 00007f4ab8a5308d R08: 0000000020000300 R09: 0000000020000300
R10: 00000000200002c0 R11: 0000000000000206 R12: 0000000000000000
R13: 00007ffc3977cc1f R14: 00007f4ab736e300 R15: 0000000000022000
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
eeprom: ee1004: limit i2c reads to I2C_SMBUS_BLOCK_MAX
Commit effa453168a7 ("i2c: i801: Don't silently correct invalid transfer
size") revealed that ee1004_eeprom_read() did not properly limit how
many bytes to read at once.
In particular, i2c_smbus_read_i2c_block_data_or_emulated() takes the
length to read as an u8. If count == 256 after taking into account the
offset and page boundary, the cast to u8 overflows. And this is common
when user space tries to read the entire EEPROM at once.
To fix it, limit each read to I2C_SMBUS_BLOCK_MAX (32) bytes, already
the maximum length i2c_smbus_read_i2c_block_data_or_emulated() allows. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/proc: task_mmu.c: don't read mapcount for migration entry
The syzbot reported the below BUG:
kernel BUG at include/linux/page-flags.h:785!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 4392 Comm: syz-executor560 Not tainted 5.16.0-rc6-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:PageDoubleMap include/linux/page-flags.h:785 [inline]
RIP: 0010:__page_mapcount+0x2d2/0x350 mm/util.c:744
Call Trace:
page_mapcount include/linux/mm.h:837 [inline]
smaps_account+0x470/0xb10 fs/proc/task_mmu.c:466
smaps_pte_entry fs/proc/task_mmu.c:538 [inline]
smaps_pte_range+0x611/0x1250 fs/proc/task_mmu.c:601
walk_pmd_range mm/pagewalk.c:128 [inline]
walk_pud_range mm/pagewalk.c:205 [inline]
walk_p4d_range mm/pagewalk.c:240 [inline]
walk_pgd_range mm/pagewalk.c:277 [inline]
__walk_page_range+0xe23/0x1ea0 mm/pagewalk.c:379
walk_page_vma+0x277/0x350 mm/pagewalk.c:530
smap_gather_stats.part.0+0x148/0x260 fs/proc/task_mmu.c:768
smap_gather_stats fs/proc/task_mmu.c:741 [inline]
show_smap+0xc6/0x440 fs/proc/task_mmu.c:822
seq_read_iter+0xbb0/0x1240 fs/seq_file.c:272
seq_read+0x3e0/0x5b0 fs/seq_file.c:162
vfs_read+0x1b5/0x600 fs/read_write.c:479
ksys_read+0x12d/0x250 fs/read_write.c:619
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
The reproducer was trying to read /proc/$PID/smaps when calling
MADV_FREE at the mean time. MADV_FREE may split THPs if it is called
for partial THP. It may trigger the below race:
CPU A CPU B
----- -----
smaps walk: MADV_FREE:
page_mapcount()
PageCompound()
split_huge_page()
page = compound_head(page)
PageDoubleMap(page)
When calling PageDoubleMap() this page is not a tail page of THP anymore
so the BUG is triggered.
This could be fixed by elevated refcount of the page before calling
mapcount, but that would prevent it from counting migration entries, and
it seems overkilling because the race just could happen when PMD is
split so all PTE entries of tail pages are actually migration entries,
and smaps_account() does treat migration entries as mapcount == 1 as
Kirill pointed out.
Add a new parameter for smaps_account() to tell this entry is migration
entry then skip calling page_mapcount(). Don't skip getting mapcount
for device private entries since they do track references with mapcount.
Pagemap also has the similar issue although it was not reported. Fixed
it as well.
[[email protected]: v4]
[[email protected]: avoid unused variable warning in pagemap_pmd_range()] |
| In the Linux kernel, the following vulnerability has been resolved:
perf: Fix list corruption in perf_cgroup_switch()
There's list corruption on cgrp_cpuctx_list. This happens on the
following path:
perf_cgroup_switch: list_for_each_entry(cgrp_cpuctx_list)
cpu_ctx_sched_in
ctx_sched_in
ctx_pinned_sched_in
merge_sched_in
perf_cgroup_event_disable: remove the event from the list
Use list_for_each_entry_safe() to allow removing an entry during
iteration. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/cio: verify the driver availability for path_event call
If no driver is attached to a device or the driver does not provide the
path_event function, an FCES path-event on this device could end up in a
kernel-panic. Verify the driver availability before the path_event
function call. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: don't try to NUMA-migrate COW pages that have other uses
Oded Gabbay reports that enabling NUMA balancing causes corruption with
his Gaudi accelerator test load:
"All the details are in the bug, but the bottom line is that somehow,
this patch causes corruption when the numa balancing feature is
enabled AND we don't use process affinity AND we use GUP to pin pages
so our accelerator can DMA to/from system memory.
Either disabling numa balancing, using process affinity to bind to
specific numa-node or reverting this patch causes the bug to
disappear"
and Oded bisected the issue to commit 09854ba94c6a ("mm: do_wp_page()
simplification").
Now, the NUMA balancing shouldn't actually be changing the writability
of a page, and as such shouldn't matter for COW. But it appears it
does. Suspicious.
However, regardless of that, the condition for enabling NUMA faults in
change_pte_range() is nonsensical. It uses "page_mapcount(page)" to
decide if a COW page should be NUMA-protected or not, and that makes
absolutely no sense.
The number of mappings a page has is irrelevant: not only does GUP get a
reference to a page as in Oded's case, but the other mappings migth be
paged out and the only reference to them would be in the page count.
Since we should never try to NUMA-balance a page that we can't move
anyway due to other references, just fix the code to use 'page_count()'.
Oded confirms that that fixes his issue.
Now, this does imply that something in NUMA balancing ends up changing
page protections (other than the obvious one of making the page
inaccessible to get the NUMA faulting information). Otherwise the COW
simplification wouldn't matter - since doing the GUP on the page would
make sure it's writable.
The cause of that permission change would be good to figure out too,
since it clearly results in spurious COW events - but fixing the
nonsensical test that just happened to work before is obviously the
CorrectThing(tm) to do regardless. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: fix slab-use-after-free in decode_session6
When the xfrm device is set to the qdisc of the sfb type, the cb field
of the sent skb may be modified during enqueuing. Then,
slab-use-after-free may occur when the xfrm device sends IPv6 packets.
The stack information is as follows:
BUG: KASAN: slab-use-after-free in decode_session6+0x103f/0x1890
Read of size 1 at addr ffff8881111458ef by task swapper/3/0
CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.4.0-next-20230707 #409
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0xd9/0x150
print_address_description.constprop.0+0x2c/0x3c0
kasan_report+0x11d/0x130
decode_session6+0x103f/0x1890
__xfrm_decode_session+0x54/0xb0
xfrmi_xmit+0x173/0x1ca0
dev_hard_start_xmit+0x187/0x700
sch_direct_xmit+0x1a3/0xc30
__qdisc_run+0x510/0x17a0
__dev_queue_xmit+0x2215/0x3b10
neigh_connected_output+0x3c2/0x550
ip6_finish_output2+0x55a/0x1550
ip6_finish_output+0x6b9/0x1270
ip6_output+0x1f1/0x540
ndisc_send_skb+0xa63/0x1890
ndisc_send_rs+0x132/0x6f0
addrconf_rs_timer+0x3f1/0x870
call_timer_fn+0x1a0/0x580
expire_timers+0x29b/0x4b0
run_timer_softirq+0x326/0x910
__do_softirq+0x1d4/0x905
irq_exit_rcu+0xb7/0x120
sysvec_apic_timer_interrupt+0x97/0xc0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20
RIP: 0010:intel_idle_hlt+0x23/0x30
Code: 1f 84 00 00 00 00 00 f3 0f 1e fa 41 54 41 89 d4 0f 1f 44 00 00 66 90 0f 1f 44 00 00 0f 00 2d c4 9f ab 00 0f 1f 44 00 00 fb f4 <fa> 44 89 e0 41 5c c3 66 0f 1f 44 00 00 f3 0f 1e fa 41 54 41 89 d4
RSP: 0018:ffffc90000197d78 EFLAGS: 00000246
RAX: 00000000000a83c3 RBX: ffffe8ffffd09c50 RCX: ffffffff8a22d8e5
RDX: 0000000000000001 RSI: ffffffff8d3f8080 RDI: ffffe8ffffd09c50
RBP: ffffffff8d3f8080 R08: 0000000000000001 R09: ffffed1026ba6d9d
R10: ffff888135d36ceb R11: 0000000000000001 R12: 0000000000000001
R13: ffffffff8d3f8100 R14: 0000000000000001 R15: 0000000000000000
cpuidle_enter_state+0xd3/0x6f0
cpuidle_enter+0x4e/0xa0
do_idle+0x2fe/0x3c0
cpu_startup_entry+0x18/0x20
start_secondary+0x200/0x290
secondary_startup_64_no_verify+0x167/0x16b
</TASK>
Allocated by task 939:
kasan_save_stack+0x22/0x40
kasan_set_track+0x25/0x30
__kasan_slab_alloc+0x7f/0x90
kmem_cache_alloc_node+0x1cd/0x410
kmalloc_reserve+0x165/0x270
__alloc_skb+0x129/0x330
inet6_ifa_notify+0x118/0x230
__ipv6_ifa_notify+0x177/0xbe0
addrconf_dad_completed+0x133/0xe00
addrconf_dad_work+0x764/0x1390
process_one_work+0xa32/0x16f0
worker_thread+0x67d/0x10c0
kthread+0x344/0x440
ret_from_fork+0x1f/0x30
The buggy address belongs to the object at ffff888111145800
which belongs to the cache skbuff_small_head of size 640
The buggy address is located 239 bytes inside of
freed 640-byte region [ffff888111145800, ffff888111145a80)
As commit f855691975bb ("xfrm6: Fix the nexthdr offset in
_decode_session6.") showed, xfrm_decode_session was originally intended
only for the receive path. IP6CB(skb)->nhoff is not set during
transmission. Therefore, set the cb field in the skb to 0 before
sending packets. |
| In the Linux kernel, the following vulnerability has been resolved:
qed: allow sleep in qed_mcp_trace_dump()
By default, qed_mcp_cmd_and_union() delays 10us at a time in a loop
that can run 500K times, so calls to qed_mcp_nvm_rd_cmd()
may block the current thread for over 5s.
We observed thread scheduling delays over 700ms in production,
with stacktraces pointing to this code as the culprit.
qed_mcp_trace_dump() is called from ethtool, so sleeping is permitted.
It already can sleep in qed_mcp_halt(), which calls qed_mcp_cmd().
Add a "can sleep" parameter to qed_find_nvram_image() and
qed_nvram_read() so they can sleep during qed_mcp_trace_dump().
qed_mcp_trace_get_meta_info() and qed_mcp_trace_read_meta(),
called only by qed_mcp_trace_dump(), allow these functions to sleep.
I can't tell if the other caller (qed_grc_dump_mcp_hw_dump()) can sleep,
so keep b_can_sleep set to false when it calls these functions.
An example stacktrace from a custom warning we added to the kernel
showing a thread that has not scheduled despite long needing resched:
[ 2745.362925,17] ------------[ cut here ]------------
[ 2745.362941,17] WARNING: CPU: 23 PID: 5640 at arch/x86/kernel/irq.c:233 do_IRQ+0x15e/0x1a0()
[ 2745.362946,17] Thread not rescheduled for 744 ms after irq 99
[ 2745.362956,17] Modules linked in: ...
[ 2745.363339,17] CPU: 23 PID: 5640 Comm: lldpd Tainted: P O 4.4.182+ #202104120910+6d1da174272d.61x
[ 2745.363343,17] Hardware name: FOXCONN MercuryB/Quicksilver Controller, BIOS H11P1N09 07/08/2020
[ 2745.363346,17] 0000000000000000 ffff885ec07c3ed8 ffffffff8131eb2f ffff885ec07c3f20
[ 2745.363358,17] ffffffff81d14f64 ffff885ec07c3f10 ffffffff81072ac2 ffff88be98ed0000
[ 2745.363369,17] 0000000000000063 0000000000000174 0000000000000074 0000000000000000
[ 2745.363379,17] Call Trace:
[ 2745.363382,17] <IRQ> [<ffffffff8131eb2f>] dump_stack+0x8e/0xcf
[ 2745.363393,17] [<ffffffff81072ac2>] warn_slowpath_common+0x82/0xc0
[ 2745.363398,17] [<ffffffff81072b4c>] warn_slowpath_fmt+0x4c/0x50
[ 2745.363404,17] [<ffffffff810d5a8e>] ? rcu_irq_exit+0xae/0xc0
[ 2745.363408,17] [<ffffffff817c99fe>] do_IRQ+0x15e/0x1a0
[ 2745.363413,17] [<ffffffff817c7ac9>] common_interrupt+0x89/0x89
[ 2745.363416,17] <EOI> [<ffffffff8132aa74>] ? delay_tsc+0x24/0x50
[ 2745.363425,17] [<ffffffff8132aa04>] __udelay+0x34/0x40
[ 2745.363457,17] [<ffffffffa04d45ff>] qed_mcp_cmd_and_union+0x36f/0x7d0 [qed]
[ 2745.363473,17] [<ffffffffa04d5ced>] qed_mcp_nvm_rd_cmd+0x4d/0x90 [qed]
[ 2745.363490,17] [<ffffffffa04e1dc7>] qed_mcp_trace_dump+0x4a7/0x630 [qed]
[ 2745.363504,17] [<ffffffffa04e2556>] ? qed_fw_asserts_dump+0x1d6/0x1f0 [qed]
[ 2745.363520,17] [<ffffffffa04e4ea7>] qed_dbg_mcp_trace_get_dump_buf_size+0x37/0x80 [qed]
[ 2745.363536,17] [<ffffffffa04ea881>] qed_dbg_feature_size+0x61/0xa0 [qed]
[ 2745.363551,17] [<ffffffffa04eb427>] qed_dbg_all_data_size+0x247/0x260 [qed]
[ 2745.363560,17] [<ffffffffa0482c10>] qede_get_regs_len+0x30/0x40 [qede]
[ 2745.363566,17] [<ffffffff816c9783>] ethtool_get_drvinfo+0xe3/0x190
[ 2745.363570,17] [<ffffffff816cc152>] dev_ethtool+0x1362/0x2140
[ 2745.363575,17] [<ffffffff8109bcc6>] ? finish_task_switch+0x76/0x260
[ 2745.363580,17] [<ffffffff817c2116>] ? __schedule+0x3c6/0x9d0
[ 2745.363585,17] [<ffffffff810dbd50>] ? hrtimer_start_range_ns+0x1d0/0x370
[ 2745.363589,17] [<ffffffff816c1e5b>] ? dev_get_by_name_rcu+0x6b/0x90
[ 2745.363594,17] [<ffffffff816de6a8>] dev_ioctl+0xe8/0x710
[ 2745.363599,17] [<ffffffff816a58a8>] sock_do_ioctl+0x48/0x60
[ 2745.363603,17] [<ffffffff816a5d87>] sock_ioctl+0x1c7/0x280
[ 2745.363608,17] [<ffffffff8111f393>] ? seccomp_phase1+0x83/0x220
[ 2745.363612,17] [<ffffffff811e3503>] do_vfs_ioctl+0x2b3/0x4e0
[ 2745.363616,17] [<ffffffff811e3771>] SyS_ioctl+0x41/0x70
[ 2745.363619,17] [<ffffffff817c6ffe>] entry_SYSCALL_64_fastpath+0x1e/0x79
[ 2745.363622,17] ---[ end trace f6954aa440266421 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
jbd2: check 'jh->b_transaction' before removing it from checkpoint
Following process will corrupt ext4 image:
Step 1:
jbd2_journal_commit_transaction
__jbd2_journal_insert_checkpoint(jh, commit_transaction)
// Put jh into trans1->t_checkpoint_list
journal->j_checkpoint_transactions = commit_transaction
// Put trans1 into journal->j_checkpoint_transactions
Step 2:
do_get_write_access
test_clear_buffer_dirty(bh) // clear buffer dirty,set jbd dirty
__jbd2_journal_file_buffer(jh, transaction) // jh belongs to trans2
Step 3:
drop_cache
journal_shrink_one_cp_list
jbd2_journal_try_remove_checkpoint
if (!trylock_buffer(bh)) // lock bh, true
if (buffer_dirty(bh)) // buffer is not dirty
__jbd2_journal_remove_checkpoint(jh)
// remove jh from trans1->t_checkpoint_list
Step 4:
jbd2_log_do_checkpoint
trans1 = journal->j_checkpoint_transactions
// jh is not in trans1->t_checkpoint_list
jbd2_cleanup_journal_tail(journal) // trans1 is done
Step 5: Power cut, trans2 is not committed, jh is lost in next mounting.
Fix it by checking 'jh->b_transaction' before remove it from checkpoint. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cma: Allow UD qp_type to join multicast only
As for multicast:
- The SIDR is the only mode that makes sense;
- Besides PS_UDP, other port spaces like PS_IB is also allowed, as it is
UD compatible. In this case qkey also needs to be set [1].
This patch allows only UD qp_type to join multicast, and set qkey to
default if it's not set, to fix an uninit-value error: the ib->rec.qkey
field is accessed without being initialized.
=====================================================
BUG: KMSAN: uninit-value in cma_set_qkey drivers/infiniband/core/cma.c:510 [inline]
BUG: KMSAN: uninit-value in cma_make_mc_event+0xb73/0xe00 drivers/infiniband/core/cma.c:4570
cma_set_qkey drivers/infiniband/core/cma.c:510 [inline]
cma_make_mc_event+0xb73/0xe00 drivers/infiniband/core/cma.c:4570
cma_iboe_join_multicast drivers/infiniband/core/cma.c:4782 [inline]
rdma_join_multicast+0x2b83/0x30a0 drivers/infiniband/core/cma.c:4814
ucma_process_join+0xa76/0xf60 drivers/infiniband/core/ucma.c:1479
ucma_join_multicast+0x1e3/0x250 drivers/infiniband/core/ucma.c:1546
ucma_write+0x639/0x6d0 drivers/infiniband/core/ucma.c:1732
vfs_write+0x8ce/0x2030 fs/read_write.c:588
ksys_write+0x28c/0x520 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__ia32_sys_write+0xdb/0x120 fs/read_write.c:652
do_syscall_32_irqs_on arch/x86/entry/common.c:114 [inline]
__do_fast_syscall_32+0x96/0xf0 arch/x86/entry/common.c:180
do_fast_syscall_32+0x34/0x70 arch/x86/entry/common.c:205
do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:248
entry_SYSENTER_compat_after_hwframe+0x4d/0x5c
Local variable ib.i created at:
cma_iboe_join_multicast drivers/infiniband/core/cma.c:4737 [inline]
rdma_join_multicast+0x586/0x30a0 drivers/infiniband/core/cma.c:4814
ucma_process_join+0xa76/0xf60 drivers/infiniband/core/ucma.c:1479
CPU: 0 PID: 29874 Comm: syz-executor.3 Not tainted 5.16.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
=====================================================
[1] https://lore.kernel.org/linux-rdma/[email protected]/ |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: Fix memory leak in rtw88_usb
Kmemleak shows the following leak arising from routine in the usb
probe routine:
unreferenced object 0xffff895cb29bba00 (size 512):
comm "(udev-worker)", pid 534, jiffies 4294903932 (age 102751.088s)
hex dump (first 32 bytes):
77 30 30 30 00 00 00 00 02 2f 2d 2b 30 00 00 00 w000...../-+0...
02 00 2a 28 00 00 00 00 ff 55 ff ff ff 00 00 00 ..*(.....U......
backtrace:
[<ffffffff9265fa36>] kmalloc_trace+0x26/0x90
[<ffffffffc17eec41>] rtw_usb_probe+0x2f1/0x680 [rtw_usb]
[<ffffffffc03e19fd>] usb_probe_interface+0xdd/0x2e0 [usbcore]
[<ffffffff92b4f2fe>] really_probe+0x18e/0x3d0
[<ffffffff92b4f5b8>] __driver_probe_device+0x78/0x160
[<ffffffff92b4f6bf>] driver_probe_device+0x1f/0x90
[<ffffffff92b4f8df>] __driver_attach+0xbf/0x1b0
[<ffffffff92b4d350>] bus_for_each_dev+0x70/0xc0
[<ffffffff92b4e51e>] bus_add_driver+0x10e/0x210
[<ffffffff92b50935>] driver_register+0x55/0xf0
[<ffffffffc03e0708>] usb_register_driver+0x88/0x140 [usbcore]
[<ffffffff92401153>] do_one_initcall+0x43/0x210
[<ffffffff9254f42a>] do_init_module+0x4a/0x200
[<ffffffff92551d1c>] __do_sys_finit_module+0xac/0x120
[<ffffffff92ee6626>] do_syscall_64+0x56/0x80
[<ffffffff9300006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
The leak was verified to be real by unloading the driver, which resulted
in a dangling pointer to the allocation.
The allocated memory is freed in rtw_usb_intf_deinit(). |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: fix time stamp counter initialization
If the gs_usb device driver is unloaded (or unbound) before the
interface is shut down, the USB stack first calls the struct
usb_driver::disconnect and then the struct net_device_ops::ndo_stop
callback.
In gs_usb_disconnect() all pending bulk URBs are killed, i.e. no more
RX'ed CAN frames are send from the USB device to the host. Later in
gs_can_close() a reset control message is send to each CAN channel to
remove the controller from the CAN bus. In this race window the USB
device can still receive CAN frames from the bus and internally queue
them to be send to the host.
At least in the current version of the candlelight firmware, the queue
of received CAN frames is not emptied during the reset command. After
loading (or binding) the gs_usb driver, new URBs are submitted during
the struct net_device_ops::ndo_open callback and the candlelight
firmware starts sending its already queued CAN frames to the host.
However, this scenario was not considered when implementing the
hardware timestamp function. The cycle counter/time counter
infrastructure is set up (gs_usb_timestamp_init()) after the USBs are
submitted, resulting in a NULL pointer dereference if
timecounter_cyc2time() (via the call chain:
gs_usb_receive_bulk_callback() -> gs_usb_set_timestamp() ->
gs_usb_skb_set_timestamp()) is called too early.
Move the gs_usb_timestamp_init() function before the URBs are
submitted to fix this problem.
For a comprehensive solution, we need to consider gs_usb devices with
more than 1 channel. The cycle counter/time counter infrastructure is
setup per channel, but the RX URBs are per device. Once gs_can_open()
of _a_ channel has been called, and URBs have been submitted, the
gs_usb_receive_bulk_callback() can be called for _all_ available
channels, even for channels that are not running, yet. As cycle
counter/time counter has not set up, this will again lead to a NULL
pointer dereference.
Convert the cycle counter/time counter from a "per channel" to a "per
device" functionality. Also set it up, before submitting any URBs to
the device.
Further in gs_usb_receive_bulk_callback(), don't process any URBs for
not started CAN channels, only resubmit the URB. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: tegra: tegra124-emc: Fix potential memory leak
The tegra and tegra needs to be freed in the error handling path, otherwise
it will be leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/amd/iommu_v2: Fix pasid_state refcount dec hit 0 warning on pasid unbind
When unbinding pasid - a race condition exists vs outstanding page faults.
To prevent this, the pasid_state object contains a refcount.
* set to 1 on pasid bind
* incremented on each ppr notification start
* decremented on each ppr notification done
* decremented on pasid unbind
Since refcount_dec assumes that refcount will never reach 0:
the current implementation causes the following to be invoked on
pasid unbind:
REFCOUNT_WARN("decrement hit 0; leaking memory")
Fix this issue by changing refcount_dec to refcount_dec_and_test
to explicitly handle refcount=1. |