| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: do not assume skb mac_header is set
Drivers must not assume in their ndo_start_xmit() that
skbs have their mac_header set. skb->data is all what is needed.
bonding seems to be one of the last offender as caught by syzbot:
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 skb_mac_offset include/linux/skbuff.h:2913 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_xmit_hash drivers/net/bonding/bond_main.c:4170 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5149 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_3ad_xor_xmit drivers/net/bonding/bond_main.c:5186 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 __bond_start_xmit drivers/net/bonding/bond_main.c:5442 [inline]
WARNING: CPU: 1 PID: 12155 at include/linux/skbuff.h:2907 bond_start_xmit+0x14ab/0x19d0 drivers/net/bonding/bond_main.c:5470
Modules linked in:
CPU: 1 PID: 12155 Comm: syz-executor.3 Not tainted 6.1.30-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/25/2023
RIP: 0010:skb_mac_header include/linux/skbuff.h:2907 [inline]
RIP: 0010:skb_mac_offset include/linux/skbuff.h:2913 [inline]
RIP: 0010:bond_xmit_hash drivers/net/bonding/bond_main.c:4170 [inline]
RIP: 0010:bond_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5149 [inline]
RIP: 0010:bond_3ad_xor_xmit drivers/net/bonding/bond_main.c:5186 [inline]
RIP: 0010:__bond_start_xmit drivers/net/bonding/bond_main.c:5442 [inline]
RIP: 0010:bond_start_xmit+0x14ab/0x19d0 drivers/net/bonding/bond_main.c:5470
Code: 8b 7c 24 30 e8 76 dd 1a 01 48 85 c0 74 0d 48 89 c3 e8 29 67 2e fe e9 15 ef ff ff e8 1f 67 2e fe e9 10 ef ff ff e8 15 67 2e fe <0f> 0b e9 45 f8 ff ff e8 09 67 2e fe e9 dc fa ff ff e8 ff 66 2e fe
RSP: 0018:ffffc90002fff6e0 EFLAGS: 00010283
RAX: ffffffff835874db RBX: 000000000000ffff RCX: 0000000000040000
RDX: ffffc90004dcf000 RSI: 00000000000000b5 RDI: 00000000000000b6
RBP: ffffc90002fff8b8 R08: ffffffff83586d16 R09: ffffffff83586584
R10: 0000000000000007 R11: ffff8881599fc780 R12: ffff88811b6a7b7e
R13: 1ffff110236d4f6f R14: ffff88811b6a7ac0 R15: 1ffff110236d4f76
FS: 00007f2e9eb47700(0000) GS:ffff8881f6b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b2e421000 CR3: 000000010e6d4000 CR4: 00000000003526e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
[<ffffffff8471a49f>] netdev_start_xmit include/linux/netdevice.h:4925 [inline]
[<ffffffff8471a49f>] __dev_direct_xmit+0x4ef/0x850 net/core/dev.c:4380
[<ffffffff851d845b>] dev_direct_xmit include/linux/netdevice.h:3043 [inline]
[<ffffffff851d845b>] packet_direct_xmit+0x18b/0x300 net/packet/af_packet.c:284
[<ffffffff851c7472>] packet_snd net/packet/af_packet.c:3112 [inline]
[<ffffffff851c7472>] packet_sendmsg+0x4a22/0x64d0 net/packet/af_packet.c:3143
[<ffffffff8467a4b2>] sock_sendmsg_nosec net/socket.c:716 [inline]
[<ffffffff8467a4b2>] sock_sendmsg net/socket.c:736 [inline]
[<ffffffff8467a4b2>] __sys_sendto+0x472/0x5f0 net/socket.c:2139
[<ffffffff8467a715>] __do_sys_sendto net/socket.c:2151 [inline]
[<ffffffff8467a715>] __se_sys_sendto net/socket.c:2147 [inline]
[<ffffffff8467a715>] __x64_sys_sendto+0xe5/0x100 net/socket.c:2147
[<ffffffff8553071f>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff8553071f>] do_syscall_64+0x2f/0x50 arch/x86/entry/common.c:80
[<ffffffff85600087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
perf: RISC-V: Remove PERF_HES_STOPPED flag checking in riscv_pmu_start()
Since commit 096b52fd2bb4 ("perf: RISC-V: throttle perf events") the
perf_sample_event_took() function was added to report time spent in
overflow interrupts. If the interrupt takes too long, the perf framework
will lower the sysctl_perf_event_sample_rate and max_samples_per_tick.
When hwc->interrupts is larger than max_samples_per_tick, the
hwc->interrupts will be set to MAX_INTERRUPTS, and events will be
throttled within the __perf_event_account_interrupt() function.
However, the RISC-V PMU driver doesn't call riscv_pmu_stop() to update the
PERF_HES_STOPPED flag after perf_event_overflow() in pmu_sbi_ovf_handler()
function to avoid throttling. When the perf framework unthrottled the event
in the timer interrupt handler, it triggers riscv_pmu_start() function
and causes a WARN_ON_ONCE() warning, as shown below:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 240 at drivers/perf/riscv_pmu.c:184 riscv_pmu_start+0x7c/0x8e
Modules linked in:
CPU: 0 PID: 240 Comm: ls Not tainted 6.4-rc4-g19d0788e9ef2 #1
Hardware name: SiFive (DT)
epc : riscv_pmu_start+0x7c/0x8e
ra : riscv_pmu_start+0x28/0x8e
epc : ffffffff80aef864 ra : ffffffff80aef810 sp : ffff8f80004db6f0
gp : ffffffff81c83750 tp : ffffaf80069f9bc0 t0 : ffff8f80004db6c0
t1 : 0000000000000000 t2 : 000000000000001f s0 : ffff8f80004db720
s1 : ffffaf8008ca1068 a0 : 0000ffffffffffff a1 : 0000000000000000
a2 : 0000000000000001 a3 : 0000000000000870 a4 : 0000000000000000
a5 : 0000000000000000 a6 : 0000000000000840 a7 : 0000000000000030
s2 : 0000000000000000 s3 : ffffaf8005165800 s4 : ffffaf800424da00
s5 : ffffffffffffffff s6 : ffffffff81cc7590 s7 : 0000000000000000
s8 : 0000000000000006 s9 : 0000000000000001 s10: ffffaf807efbc340
s11: ffffaf807efbbf00 t3 : ffffaf8006a16028 t4 : 00000000dbfbb796
t5 : 0000000700000000 t6 : ffffaf8005269870
status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000003
[<ffffffff80aef864>] riscv_pmu_start+0x7c/0x8e
[<ffffffff80185b56>] perf_adjust_freq_unthr_context+0x15e/0x174
[<ffffffff80188642>] perf_event_task_tick+0x88/0x9c
[<ffffffff800626a8>] scheduler_tick+0xfe/0x27c
[<ffffffff800b5640>] update_process_times+0x9a/0xba
[<ffffffff800c5bd4>] tick_sched_handle+0x32/0x66
[<ffffffff800c5e0c>] tick_sched_timer+0x64/0xb0
[<ffffffff800b5e50>] __hrtimer_run_queues+0x156/0x2f4
[<ffffffff800b6bdc>] hrtimer_interrupt+0xe2/0x1fe
[<ffffffff80acc9e8>] riscv_timer_interrupt+0x38/0x42
[<ffffffff80090a16>] handle_percpu_devid_irq+0x90/0x1d2
[<ffffffff8008a9f4>] generic_handle_domain_irq+0x28/0x36
After referring other PMU drivers like Arm, Loongarch, Csky, and Mips,
they don't call *_pmu_stop() to update with PERF_HES_STOPPED flag
after perf_event_overflow() function nor do they add PERF_HES_STOPPED
flag checking in *_pmu_start() which don't cause this warning.
Thus, it's recommended to remove this unnecessary check in
riscv_pmu_start() function to prevent this warning. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Check for probe() id argument being NULL
The probe() id argument may be NULL in 2 scenarios:
1. brcmf_pcie_pm_leave_D3() calling brcmf_pcie_probe() to reprobe
the device.
2. If a user tries to manually bind the driver from sysfs then the sdio /
pcie / usb probe() function gets called with NULL as id argument.
1. Is being hit by users causing the following oops on resume and causing
wifi to stop working:
BUG: kernel NULL pointer dereference, address: 0000000000000018
<snip>
Hardware name: Dell Inc. XPS 13 9350/0PWNCR, BIDS 1.13.0 02/10/2020
Workgueue: events_unbound async_run_entry_fn
RIP: 0010:brcmf_pcie_probe+Ox16b/0x7a0 [brcmfmac]
<snip>
Call Trace:
<TASK>
brcmf_pcie_pm_leave_D3+0xc5/8x1a0 [brcmfmac be3b4cefca451e190fa35be8f00db1bbec293887]
? pci_pm_resume+0x5b/0xf0
? pci_legacy_resume+0x80/0x80
dpm_run_callback+0x47/0x150
device_resume+0xa2/0x1f0
async_resume+0x1d/0x30
<snip>
Fix this by checking for id being NULL.
In the PCI and USB cases try a manual lookup of the id so that manually
binding the driver through sysfs and more importantly brcmf_pcie_probe()
on resume will work.
For the SDIO case there is no helper to do a manual sdio_device_id lookup,
so just directly error out on a NULL id there. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix vram leak on bind errors
Make sure to release the VRAM buffer also in a case a subcomponent fails
to bind.
Patchwork: https://patchwork.freedesktop.org/patch/525094/ |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: mtk_drm_crtc: Add checks for devm_kcalloc
As the devm_kcalloc may return NULL, the return value needs to be checked
to avoid NULL poineter dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: u_serial: Add null pointer check in gserial_resume
Consider a case where gserial_disconnect has already cleared
gser->ioport. And if a wakeup interrupt triggers afterwards,
gserial_resume gets called, which will lead to accessing of
gser->ioport and thus causing null pointer dereference.Add
a null pointer check to prevent this.
Added a static spinlock to prevent gser->ioport from becoming
null after the newly added check. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: imx: scu: use _safe list iterator to avoid a use after free
This loop is freeing "clk" so it needs to use list_for_each_entry_safe().
Otherwise it dereferences a freed variable to get the next item on the
loop. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: rs9: Fix suspend/resume
Disabling the cache in commit 2ff4ba9e3702 ("clk: rs9: Fix I2C accessors")
without removing cache synchronization in resume path results in a
kernel panic as map->cache_ops is unset, due to REGCACHE_NONE.
Enable flat cache again to support resume again. num_reg_defaults_raw
is necessary to read the cache defaults from hardware. Some registers
are strapped in hardware and cannot be provided in software. |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: fix resource leak in device_add()
When calling kobject_add() failed in device_add(), it will call
cleanup_glue_dir() to free resource. But in kobject_add(),
dev->kobj.parent has been set to NULL. This will cause resource leak.
The process is as follows:
device_add()
get_device_parent()
class_dir_create_and_add()
kobject_add() //kobject_get()
...
dev->kobj.parent = kobj;
...
kobject_add() //failed, but set dev->kobj.parent = NULL
...
glue_dir = get_glue_dir(dev) //glue_dir = NULL, and goto
//"Error" label
...
cleanup_glue_dir() //becaues glue_dir is NULL, not call
//kobject_put()
The preceding problem may cause insmod mac80211_hwsim.ko to failed.
sysfs: cannot create duplicate filename '/devices/virtual/mac80211_hwsim'
Call Trace:
<TASK>
dump_stack_lvl+0x8e/0xd1
sysfs_warn_dup.cold+0x1c/0x29
sysfs_create_dir_ns+0x224/0x280
kobject_add_internal+0x2aa/0x880
kobject_add+0x135/0x1a0
get_device_parent+0x3d7/0x590
device_add+0x2aa/0x1cb0
device_create_groups_vargs+0x1eb/0x260
device_create+0xdc/0x110
mac80211_hwsim_new_radio+0x31e/0x4790 [mac80211_hwsim]
init_mac80211_hwsim+0x48d/0x1000 [mac80211_hwsim]
do_one_initcall+0x10f/0x630
do_init_module+0x19f/0x5e0
load_module+0x64b7/0x6eb0
__do_sys_finit_module+0x140/0x200
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
kobject_add_internal failed for mac80211_hwsim with -EEXIST, don't try to
register things with the same name in the same directory. |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip: Fix refcount leak in platform_irqchip_probe
of_irq_find_parent() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: don't trust firmware n_channels
If the firmware sends us a corrupted MCC response with
n_channels much larger than the command response can be,
we might copy far too much (uninitialized) memory and
even crash if the n_channels is large enough to make it
run out of the one page allocated for the FW response.
Fix that by checking the lengths. Doing a < comparison
would be sufficient, but the firmware should be doing
it correctly, so check more strictly. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, cpumap: Make sure kthread is running before map update returns
The following warning was reported when running stress-mode enabled
xdp_redirect_cpu with some RT threads:
------------[ cut here ]------------
WARNING: CPU: 4 PID: 65 at kernel/bpf/cpumap.c:135
CPU: 4 PID: 65 Comm: kworker/4:1 Not tainted 6.5.0-rc2+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Workqueue: events cpu_map_kthread_stop
RIP: 0010:put_cpu_map_entry+0xda/0x220
......
Call Trace:
<TASK>
? show_regs+0x65/0x70
? __warn+0xa5/0x240
......
? put_cpu_map_entry+0xda/0x220
cpu_map_kthread_stop+0x41/0x60
process_one_work+0x6b0/0xb80
worker_thread+0x96/0x720
kthread+0x1a5/0x1f0
ret_from_fork+0x3a/0x70
ret_from_fork_asm+0x1b/0x30
</TASK>
The root cause is the same as commit 436901649731 ("bpf: cpumap: Fix memory
leak in cpu_map_update_elem"). The kthread is stopped prematurely by
kthread_stop() in cpu_map_kthread_stop(), and kthread() doesn't call
cpu_map_kthread_run() at all but XDP program has already queued some
frames or skbs into ptr_ring. So when __cpu_map_ring_cleanup() checks
the ptr_ring, it will find it was not emptied and report a warning.
An alternative fix is to use __cpu_map_ring_cleanup() to drop these
pending frames or skbs when kthread_stop() returns -EINTR, but it may
confuse the user, because these frames or skbs have been handled
correctly by XDP program. So instead of dropping these frames or skbs,
just make sure the per-cpu kthread is running before
__cpu_map_entry_alloc() returns.
After apply the fix, the error handle for kthread_stop() will be
unnecessary because it will always return 0, so just remove it. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix mid leak during reconnection after timeout threshold
When the number of responses with status of STATUS_IO_TIMEOUT
exceeds a specified threshold (NUM_STATUS_IO_TIMEOUT), we reconnect
the connection. But we do not return the mid, or the credits
returned for the mid, or reduce the number of in-flight requests.
This bug could result in the server->in_flight count to go bad,
and also cause a leak in the mids.
This change moves the check to a few lines below where the
response is decrypted, even of the response is read from the
transform header. This way, the code for returning the mids
can be reused.
Also, the cifs_reconnect was reconnecting just the transport
connection before. In case of multi-channel, this may not be
what we want to do after several timeouts. Changed that to
reconnect the session and the tree too.
Also renamed NUM_STATUS_IO_TIMEOUT to a more appropriate name
MAX_STATUS_IO_TIMEOUT. |
| In the Linux kernel, the following vulnerability has been resolved:
net: qrtr: Fix an uninit variable access bug in qrtr_tx_resume()
Syzbot reported a bug as following:
=====================================================
BUG: KMSAN: uninit-value in qrtr_tx_resume+0x185/0x1f0 net/qrtr/af_qrtr.c:230
qrtr_tx_resume+0x185/0x1f0 net/qrtr/af_qrtr.c:230
qrtr_endpoint_post+0xf85/0x11b0 net/qrtr/af_qrtr.c:519
qrtr_tun_write_iter+0x270/0x400 net/qrtr/tun.c:108
call_write_iter include/linux/fs.h:2189 [inline]
aio_write+0x63a/0x950 fs/aio.c:1600
io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019
__do_sys_io_submit fs/aio.c:2078 [inline]
__se_sys_io_submit+0x293/0x770 fs/aio.c:2048
__x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook mm/slab.h:766 [inline]
slab_alloc_node mm/slub.c:3452 [inline]
__kmem_cache_alloc_node+0x71f/0xce0 mm/slub.c:3491
__do_kmalloc_node mm/slab_common.c:967 [inline]
__kmalloc_node_track_caller+0x114/0x3b0 mm/slab_common.c:988
kmalloc_reserve net/core/skbuff.c:492 [inline]
__alloc_skb+0x3af/0x8f0 net/core/skbuff.c:565
__netdev_alloc_skb+0x120/0x7d0 net/core/skbuff.c:630
qrtr_endpoint_post+0xbd/0x11b0 net/qrtr/af_qrtr.c:446
qrtr_tun_write_iter+0x270/0x400 net/qrtr/tun.c:108
call_write_iter include/linux/fs.h:2189 [inline]
aio_write+0x63a/0x950 fs/aio.c:1600
io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019
__do_sys_io_submit fs/aio.c:2078 [inline]
__se_sys_io_submit+0x293/0x770 fs/aio.c:2048
__x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
It is because that skb->len requires at least sizeof(struct qrtr_ctrl_pkt)
in qrtr_tx_resume(). And skb->len equals to size in qrtr_endpoint_post().
But size is less than sizeof(struct qrtr_ctrl_pkt) when qrtr_cb->type
equals to QRTR_TYPE_RESUME_TX in qrtr_endpoint_post() under the syzbot
scenario. This triggers the uninit variable access bug.
Add size check when qrtr_cb->type equals to QRTR_TYPE_RESUME_TX in
qrtr_endpoint_post() to fix the bug. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: Gadget: core: Help prevent panic during UVC unconfigure
Avichal Rakesh reported a kernel panic that occurred when the UVC
gadget driver was removed from a gadget's configuration. The panic
involves a somewhat complicated interaction between the kernel driver
and a userspace component (as described in the Link tag below), but
the analysis did make one thing clear: The Gadget core should
accomodate gadget drivers calling usb_gadget_deactivate() as part of
their unbind procedure.
Currently this doesn't work. gadget_unbind_driver() calls
driver->unbind() while holding the udc->connect_lock mutex, and
usb_gadget_deactivate() attempts to acquire that mutex, which will
result in a deadlock.
The simple fix is for gadget_unbind_driver() to release the mutex when
invoking the ->unbind() callback. There is no particular reason for
it to be holding the mutex at that time, and the mutex isn't held
while the ->bind() callback is invoked. So we'll drop the mutex
before performing the unbind callback and reacquire it afterward.
We'll also add a couple of comments to usb_gadget_activate() and
usb_gadget_deactivate(). Because they run in process context they
must not be called from a gadget driver's ->disconnect() callback,
which (according to the kerneldoc for struct usb_gadget_driver in
include/linux/usb/gadget.h) may run in interrupt context. This may
help prevent similar bugs from arising in the future. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Check for NOT_READY flag state after locking
Currently the check for NOT_READY flag is performed before obtaining the
necessary lock. This opens a possibility for race condition when the flow
is concurrently removed from unready_flows list by the workqueue task,
which causes a double-removal from the list and a crash[0]. Fix the issue
by moving the flag check inside the section protected by
uplink_priv->unready_flows_lock mutex.
[0]:
[44376.389654] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] SMP
[44376.391665] CPU: 7 PID: 59123 Comm: tc Not tainted 6.4.0-rc4+ #1
[44376.392984] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[44376.395342] RIP: 0010:mlx5e_tc_del_fdb_flow+0xb3/0x340 [mlx5_core]
[44376.396857] Code: 00 48 8b b8 68 ce 02 00 e8 8a 4d 02 00 4c 8d a8 a8 01 00 00 4c 89 ef e8 8b 79 88 e1 48 8b 83 98 06 00 00 48 8b 93 90 06 00 00 <48> 89 42 08 48 89 10 48 b8 00 01 00 00 00 00 ad de 48 89 83 90 06
[44376.399167] RSP: 0018:ffff88812cc97570 EFLAGS: 00010246
[44376.399680] RAX: dead000000000122 RBX: ffff8881088e3800 RCX: ffff8881881bac00
[44376.400337] RDX: dead000000000100 RSI: ffff88812cc97500 RDI: ffff8881242f71b0
[44376.401001] RBP: ffff88811cbb0940 R08: 0000000000000400 R09: 0000000000000001
[44376.401663] R10: 0000000000000001 R11: 0000000000000000 R12: ffff88812c944000
[44376.402342] R13: ffff8881242f71a8 R14: ffff8881222b4000 R15: 0000000000000000
[44376.402999] FS: 00007f0451104800(0000) GS:ffff88852cb80000(0000) knlGS:0000000000000000
[44376.403787] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[44376.404343] CR2: 0000000000489108 CR3: 0000000123a79003 CR4: 0000000000370ea0
[44376.405004] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[44376.405665] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[44376.406339] Call Trace:
[44376.406651] <TASK>
[44376.406939] ? die_addr+0x33/0x90
[44376.407311] ? exc_general_protection+0x192/0x390
[44376.407795] ? asm_exc_general_protection+0x22/0x30
[44376.408292] ? mlx5e_tc_del_fdb_flow+0xb3/0x340 [mlx5_core]
[44376.408876] __mlx5e_tc_del_fdb_peer_flow+0xbc/0xe0 [mlx5_core]
[44376.409482] mlx5e_tc_del_flow+0x42/0x210 [mlx5_core]
[44376.410055] mlx5e_flow_put+0x25/0x50 [mlx5_core]
[44376.410529] mlx5e_delete_flower+0x24b/0x350 [mlx5_core]
[44376.411043] tc_setup_cb_reoffload+0x22/0x80
[44376.411462] fl_reoffload+0x261/0x2f0 [cls_flower]
[44376.411907] ? mlx5e_rep_indr_setup_ft_cb+0x160/0x160 [mlx5_core]
[44376.412481] ? mlx5e_rep_indr_setup_ft_cb+0x160/0x160 [mlx5_core]
[44376.413044] tcf_block_playback_offloads+0x76/0x170
[44376.413497] tcf_block_unbind+0x7b/0xd0
[44376.413881] tcf_block_setup+0x17d/0x1c0
[44376.414269] tcf_block_offload_cmd.isra.0+0xf1/0x130
[44376.414725] tcf_block_offload_unbind+0x43/0x70
[44376.415153] __tcf_block_put+0x82/0x150
[44376.415532] ingress_destroy+0x22/0x30 [sch_ingress]
[44376.415986] qdisc_destroy+0x3b/0xd0
[44376.416343] qdisc_graft+0x4d0/0x620
[44376.416706] tc_get_qdisc+0x1c9/0x3b0
[44376.417074] rtnetlink_rcv_msg+0x29c/0x390
[44376.419978] ? rep_movs_alternative+0x3a/0xa0
[44376.420399] ? rtnl_calcit.isra.0+0x120/0x120
[44376.420813] netlink_rcv_skb+0x54/0x100
[44376.421192] netlink_unicast+0x1f6/0x2c0
[44376.421573] netlink_sendmsg+0x232/0x4a0
[44376.421980] sock_sendmsg+0x38/0x60
[44376.422328] ____sys_sendmsg+0x1d0/0x1e0
[44376.422709] ? copy_msghdr_from_user+0x6d/0xa0
[44376.423127] ___sys_sendmsg+0x80/0xc0
[44376.423495] ? ___sys_recvmsg+0x8b/0xc0
[44376.423869] __sys_sendmsg+0x51/0x90
[44376.424226] do_syscall_64+0x3d/0x90
[44376.424587] entry_SYSCALL_64_after_hwframe+0x46/0xb0
[44376.425046] RIP: 0033:0x7f045134f887
[44376.425403] Code: 0a 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b9 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: Rework long task execution when adding/deleting entries
When adding/deleting large number of elements in one step in ipset, it can
take a reasonable amount of time and can result in soft lockup errors. The
patch 5f7b51bf09ba ("netfilter: ipset: Limit the maximal range of
consecutive elements to add/delete") tried to fix it by limiting the max
elements to process at all. However it was not enough, it is still possible
that we get hung tasks. Lowering the limit is not reasonable, so the
approach in this patch is as follows: rely on the method used at resizing
sets and save the state when we reach a smaller internal batch limit,
unlock/lock and proceed from the saved state. Thus we can avoid long
continuous tasks and at the same time removed the limit to add/delete large
number of elements in one step.
The nfnl mutex is held during the whole operation which prevents one to
issue other ipset commands in parallel. |
| In the Linux kernel, the following vulnerability has been resolved:
dax: Fix dax_mapping_release() use after free
A CONFIG_DEBUG_KOBJECT_RELEASE test of removing a device-dax region
provider (like modprobe -r dax_hmem) yields:
kobject: 'mapping0' (ffff93eb460e8800): kobject_release, parent 0000000000000000 (delayed 2000)
[..]
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 23 PID: 282 at kernel/locking/lockdep.c:232 __lock_acquire+0x9fc/0x2260
[..]
RIP: 0010:__lock_acquire+0x9fc/0x2260
[..]
Call Trace:
<TASK>
[..]
lock_acquire+0xd4/0x2c0
? ida_free+0x62/0x130
_raw_spin_lock_irqsave+0x47/0x70
? ida_free+0x62/0x130
ida_free+0x62/0x130
dax_mapping_release+0x1f/0x30
device_release+0x36/0x90
kobject_delayed_cleanup+0x46/0x150
Due to attempting ida_free() on an ida object that has already been
freed. Devices typically only hold a reference on their parent while
registered. If a child needs a parent object to complete its release it
needs to hold a reference that it drops from its release callback.
Arrange for a dax_mapping to pin its parent dev_dax instance until
dax_mapping_release(). |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: Fix UAF in destroy()
Dm_cache also has the same UAF problem when dm_resume()
and dm_destroy() are concurrent.
Therefore, cancelling timer again in destroy(). |
| In the Linux kernel, the following vulnerability has been resolved:
eth: alx: take rtnl_lock on resume
Zbynek reports that alx trips an rtnl assertion on resume:
RTNL: assertion failed at net/core/dev.c (2891)
RIP: 0010:netif_set_real_num_tx_queues+0x1ac/0x1c0
Call Trace:
<TASK>
__alx_open+0x230/0x570 [alx]
alx_resume+0x54/0x80 [alx]
? pci_legacy_resume+0x80/0x80
dpm_run_callback+0x4a/0x150
device_resume+0x8b/0x190
async_resume+0x19/0x30
async_run_entry_fn+0x30/0x130
process_one_work+0x1e5/0x3b0
indeed the driver does not hold rtnl_lock during its internal close
and re-open functions during suspend/resume. Note that this is not
a huge bug as the driver implements its own locking, and does not
implement changing the number of queues, but we need to silence
the splat. |