Search Results (16622 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-39935 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: codec: sma1307: Fix memory corruption in sma1307_setting_loaded() The sma1307->set.header_size is how many integers are in the header (there are 8 of them) but instead of allocating space of 8 integers we allocate 8 bytes. This leads to memory corruption when we copy data it on the next line: memcpy(sma1307->set.header, data, sma1307->set.header_size * sizeof(int)); Also since we're immediately copying over the memory in ->set.header, there is no need to zero it in the allocator. Use devm_kmalloc_array() to allocate the memory instead.
CVE-2025-39941 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: zram: fix slot write race condition Parallel concurrent writes to the same zram index result in leaked zsmalloc handles. Schematically we can have something like this: CPU0 CPU1 zram_slot_lock() zs_free(handle) zram_slot_lock() zram_slot_lock() zs_free(handle) zram_slot_lock() compress compress handle = zs_malloc() handle = zs_malloc() zram_slot_lock zram_set_handle(handle) zram_slot_lock zram_slot_lock zram_set_handle(handle) zram_slot_lock Either CPU0 or CPU1 zsmalloc handle will leak because zs_free() is done too early. In fact, we need to reset zram entry right before we set its new handle, all under the same slot lock scope.
CVE-2025-39942 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: smbdirect: verify remaining_data_length respects max_fragmented_recv_size This is inspired by the check for data_offset + data_length.
CVE-2025-39951 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: um: virtio_uml: Fix use-after-free after put_device in probe When register_virtio_device() fails in virtio_uml_probe(), the code sets vu_dev->registered = 1 even though the device was not successfully registered. This can lead to use-after-free or other issues.
CVE-2022-50490 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bpf: Propagate error from htab_lock_bucket() to userspace In __htab_map_lookup_and_delete_batch() if htab_lock_bucket() returns -EBUSY, it will go to next bucket. Going to next bucket may not only skip the elements in current bucket silently, but also incur out-of-bound memory access or expose kernel memory to userspace if current bucket_cnt is greater than bucket_size or zero. Fixing it by stopping batch operation and returning -EBUSY when htab_lock_bucket() fails, and the application can retry or skip the busy batch as needed.
CVE-2022-50477 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rtc: class: Fix potential memleak in devm_rtc_allocate_device() devm_rtc_allocate_device() will alloc a rtc_device first, and then run dev_set_name(). If dev_set_name() failed, the rtc_device will memleak. Move devm_add_action_or_reset() in front of dev_set_name() to prevent memleak. unreferenced object 0xffff888110a53000 (size 2048): comm "python3", pid 470, jiffies 4296078308 (age 58.882s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 08 30 a5 10 81 88 ff ff .........0...... 08 30 a5 10 81 88 ff ff 00 00 00 00 00 00 00 00 .0.............. backtrace: [<000000004aac0364>] kmalloc_trace+0x21/0x110 [<000000000ff02202>] devm_rtc_allocate_device+0xd4/0x400 [<000000001bdf5639>] devm_rtc_device_register+0x1a/0x80 [<00000000351bf81c>] rx4581_probe+0xdd/0x110 [rtc_rx4581] [<00000000f0eba0ae>] spi_probe+0xde/0x130 [<00000000bff89ee8>] really_probe+0x175/0x3f0 [<00000000128e8d84>] __driver_probe_device+0xe6/0x170 [<00000000ee5bf913>] device_driver_attach+0x32/0x80 [<00000000f3f28f92>] bind_store+0x10b/0x1a0 [<000000009ff812d8>] drv_attr_store+0x49/0x70 [<000000008139c323>] sysfs_kf_write+0x8d/0xb0 [<00000000b6146e01>] kernfs_fop_write_iter+0x214/0x2d0 [<00000000ecbe3895>] vfs_write+0x61a/0x7d0 [<00000000aa2196ea>] ksys_write+0xc8/0x190 [<0000000046a600f5>] do_syscall_64+0x37/0x90 [<00000000541a336f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2022-50472 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: IB/mad: Don't call to function that might sleep while in atomic context Tracepoints are not allowed to sleep, as such the following splat is generated due to call to ib_query_pkey() in atomic context. WARNING: CPU: 0 PID: 1888000 at kernel/trace/ring_buffer.c:2492 rb_commit+0xc1/0x220 CPU: 0 PID: 1888000 Comm: kworker/u9:0 Kdump: loaded Tainted: G OE --------- - - 4.18.0-305.3.1.el8.x86_64 #1 Hardware name: Red Hat KVM, BIOS 1.13.0-2.module_el8.3.0+555+a55c8938 04/01/2014 Workqueue: ib-comp-unb-wq ib_cq_poll_work [ib_core] RIP: 0010:rb_commit+0xc1/0x220 RSP: 0000:ffffa8ac80f9bca0 EFLAGS: 00010202 RAX: ffff8951c7c01300 RBX: ffff8951c7c14a00 RCX: 0000000000000246 RDX: ffff8951c707c000 RSI: ffff8951c707c57c RDI: ffff8951c7c14a00 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: ffff8951c7c01300 R11: 0000000000000001 R12: 0000000000000246 R13: 0000000000000000 R14: ffffffff964c70c0 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8951fbc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f20e8f39010 CR3: 000000002ca10005 CR4: 0000000000170ef0 Call Trace: ring_buffer_unlock_commit+0x1d/0xa0 trace_buffer_unlock_commit_regs+0x3b/0x1b0 trace_event_buffer_commit+0x67/0x1d0 trace_event_raw_event_ib_mad_recv_done_handler+0x11c/0x160 [ib_core] ib_mad_recv_done+0x48b/0xc10 [ib_core] ? trace_event_raw_event_cq_poll+0x6f/0xb0 [ib_core] __ib_process_cq+0x91/0x1c0 [ib_core] ib_cq_poll_work+0x26/0x80 [ib_core] process_one_work+0x1a7/0x360 ? create_worker+0x1a0/0x1a0 worker_thread+0x30/0x390 ? create_worker+0x1a0/0x1a0 kthread+0x116/0x130 ? kthread_flush_work_fn+0x10/0x10 ret_from_fork+0x35/0x40 ---[ end trace 78ba8509d3830a16 ]---
CVE-2022-50476 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ntb_netdev: Use dev_kfree_skb_any() in interrupt context TX/RX callback handlers (ntb_netdev_tx_handler(), ntb_netdev_rx_handler()) can be called in interrupt context via the DMA framework when the respective DMA operations have completed. As such, any calls by these routines to free skb's, should use the interrupt context safe dev_kfree_skb_any() function. Previously, these callback handlers would call the interrupt unsafe version of dev_kfree_skb(). This has not presented an issue on Intel IOAT DMA engines as that driver utilizes tasklets rather than a hard interrupt handler, like the AMD PTDMA DMA driver. On AMD systems, a kernel WARNING message is encountered, which is being issued from skb_release_head_state() due to in_hardirq() being true. Besides the user visible WARNING from the kernel, the other symptom of this bug was that TCP/IP performance across the ntb_netdev interface was very poor, i.e. approximately an order of magnitude below what was expected. With the repair to use dev_kfree_skb_any(), kernel WARNINGs from skb_release_head_state() ceased and TCP/IP performance, as measured by iperf, was on par with expected results, approximately 20 Gb/s on AMD Milan based server. Note that this performance is comparable with Intel based servers.
CVE-2022-50480 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: memory: pl353-smc: Fix refcount leak bug in pl353_smc_probe() The break of for_each_available_child_of_node() needs a corresponding of_node_put() when the reference 'child' is not used anymore. Here we do not need to call of_node_put() in fail path as '!match' means no break. While the of_platform_device_create() will created a new reference by 'child' but it has considered the refcounting.
CVE-2022-50481 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cxl: fix possible null-ptr-deref in cxl_guest_init_afu|adapter() If device_register() fails in cxl_register_afu|adapter(), the device is not added, device_unregister() can not be called in the error path, otherwise it will cause a null-ptr-deref because of removing not added device. As comment of device_register() says, it should use put_device() to give up the reference in the error path. So split device_unregister() into device_del() and put_device(), then goes to put dev when register fails.
CVE-2022-50482 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Clean up si_domain in the init_dmars() error path A splat from kmem_cache_destroy() was seen with a kernel prior to commit ee2653bbe89d ("iommu/vt-d: Remove domain and devinfo mempool") when there was a failure in init_dmars(), because the iommu_domain cache still had objects. While the mempool code is now gone, there still is a leak of the si_domain memory if init_dmars() fails. So clean up si_domain in the init_dmars() error path.
CVE-2022-50488 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: block, bfq: fix possible uaf for 'bfqq->bic' Our test report a uaf for 'bfqq->bic' in 5.10: ================================================================== BUG: KASAN: use-after-free in bfq_select_queue+0x378/0xa30 CPU: 6 PID: 2318352 Comm: fsstress Kdump: loaded Not tainted 5.10.0-60.18.0.50.h602.kasan.eulerosv2r11.x86_64 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58-20220320_160524-szxrtosci10000 04/01/2014 Call Trace: bfq_select_queue+0x378/0xa30 bfq_dispatch_request+0xe8/0x130 blk_mq_do_dispatch_sched+0x62/0xb0 __blk_mq_sched_dispatch_requests+0x215/0x2a0 blk_mq_sched_dispatch_requests+0x8f/0xd0 __blk_mq_run_hw_queue+0x98/0x180 __blk_mq_delay_run_hw_queue+0x22b/0x240 blk_mq_run_hw_queue+0xe3/0x190 blk_mq_sched_insert_requests+0x107/0x200 blk_mq_flush_plug_list+0x26e/0x3c0 blk_finish_plug+0x63/0x90 __iomap_dio_rw+0x7b5/0x910 iomap_dio_rw+0x36/0x80 ext4_dio_read_iter+0x146/0x190 [ext4] ext4_file_read_iter+0x1e2/0x230 [ext4] new_sync_read+0x29f/0x400 vfs_read+0x24e/0x2d0 ksys_read+0xd5/0x1b0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x61/0xc6 Commit 3bc5e683c67d ("bfq: Split shared queues on move between cgroups") changes that move process to a new cgroup will allocate a new bfqq to use, however, the old bfqq and new bfqq can point to the same bic: 1) Initial state, two process with io in the same cgroup. Process 1 Process 2 (BIC1) (BIC2) | Λ | Λ | | | | V | V | bfqq1 bfqq2 2) bfqq1 is merged to bfqq2. Process 1 Process 2 (BIC1) (BIC2) | | \-------------\| V bfqq1 bfqq2(coop) 3) Process 1 exit, then issue new io(denoce IOA) from Process 2. (BIC2) | Λ | | V | bfqq2(coop) 4) Before IOA is completed, move Process 2 to another cgroup and issue io. Process 2 (BIC2) Λ |\--------------\ | V bfqq2 bfqq3 Now that BIC2 points to bfqq3, while bfqq2 and bfqq3 both point to BIC2. If all the requests are completed, and Process 2 exit, BIC2 will be freed while there is no guarantee that bfqq2 will be freed before BIC2. Fix the problem by clearing bfqq->bic while bfqq is detached from bic.
CVE-2022-50489 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mipi-dsi: Detach devices when removing the host Whenever the MIPI-DSI host is unregistered, the code of mipi_dsi_host_unregister() loops over every device currently found on that bus and will unregister it. However, it doesn't detach it from the bus first, which leads to all kind of resource leaks if the host wants to perform some clean up whenever a device is detached.
CVE-2022-50492 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm: fix use-after-free on probe deferral The bridge counter was never reset when tearing down the DRM device so that stale pointers to deallocated structures would be accessed on the next tear down (e.g. after a second late bind deferral). Given enough bridges and a few probe deferrals this could currently also lead to data beyond the bridge array being corrupted. Patchwork: https://patchwork.freedesktop.org/patch/502665/
CVE-2025-39932 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: let smbd_destroy() call disable_work_sync(&info->post_send_credits_work) In smbd_destroy() we may destroy the memory so we better wait until post_send_credits_work is no longer pending and will never be started again. I actually just hit the case using rxe: WARNING: CPU: 0 PID: 138 at drivers/infiniband/sw/rxe/rxe_verbs.c:1032 rxe_post_recv+0x1ee/0x480 [rdma_rxe] ... [ 5305.686979] [ T138] smbd_post_recv+0x445/0xc10 [cifs] [ 5305.687135] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687149] [ T138] ? __kasan_check_write+0x14/0x30 [ 5305.687185] [ T138] ? __pfx_smbd_post_recv+0x10/0x10 [cifs] [ 5305.687329] [ T138] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 5305.687356] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687368] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687378] [ T138] ? _raw_spin_unlock_irqrestore+0x11/0x60 [ 5305.687389] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687399] [ T138] ? get_receive_buffer+0x168/0x210 [cifs] [ 5305.687555] [ T138] smbd_post_send_credits+0x382/0x4b0 [cifs] [ 5305.687701] [ T138] ? __pfx_smbd_post_send_credits+0x10/0x10 [cifs] [ 5305.687855] [ T138] ? __pfx___schedule+0x10/0x10 [ 5305.687865] [ T138] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 5305.687875] [ T138] ? queue_delayed_work_on+0x8e/0xa0 [ 5305.687889] [ T138] process_one_work+0x629/0xf80 [ 5305.687908] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687917] [ T138] ? __kasan_check_write+0x14/0x30 [ 5305.687933] [ T138] worker_thread+0x87f/0x1570 ... It means rxe_post_recv was called after rdma_destroy_qp(). This happened because put_receive_buffer() was triggered by ib_drain_qp() and called: queue_work(info->workqueue, &info->post_send_credits_work);
CVE-2025-39933 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: let recv_done verify data_offset, data_length and remaining_data_length This is inspired by the related server fixes.
CVE-2025-39934 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm: bridge: anx7625: Fix NULL pointer dereference with early IRQ If the interrupt occurs before resource initialization is complete, the interrupt handler/worker may access uninitialized data such as the I2C tcpc_client device, potentially leading to NULL pointer dereference.
CVE-2025-39936 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: ccp - Always pass in an error pointer to __sev_platform_shutdown_locked() When 9770b428b1a2 ("crypto: ccp - Move dev_info/err messages for SEV/SNP init and shutdown") moved the error messages dumping so that they don't need to be issued by the callers, it missed the case where __sev_firmware_shutdown() calls __sev_platform_shutdown_locked() with a NULL argument which leads to a NULL ptr deref on the shutdown path, during suspend to disk: #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 0 UID: 0 PID: 983 Comm: hib.sh Not tainted 6.17.0-rc4+ #1 PREEMPT(voluntary) Hardware name: Supermicro Super Server/H12SSL-i, BIOS 2.5 09/08/2022 RIP: 0010:__sev_platform_shutdown_locked.cold+0x0/0x21 [ccp] That rIP is: 00000000000006fd <__sev_platform_shutdown_locked.cold>: 6fd: 8b 13 mov (%rbx),%edx 6ff: 48 8b 7d 00 mov 0x0(%rbp),%rdi 703: 89 c1 mov %eax,%ecx Code: 74 05 31 ff 41 89 3f 49 8b 3e 89 ea 48 c7 c6 a0 8e 54 a0 41 bf 92 ff ff ff e8 e5 2e 09 e1 c6 05 2a d4 38 00 01 e9 26 af ff ff <8b> 13 48 8b 7d 00 89 c1 48 c7 c6 18 90 54 a0 89 44 24 04 e8 c1 2e RSP: 0018:ffffc90005467d00 EFLAGS: 00010282 RAX: 00000000ffffff92 RBX: 0000000000000000 RCX: 0000000000000000 ^^^^^^^^^^^^^^^^ and %rbx is nice and clean. Call Trace: <TASK> __sev_firmware_shutdown.isra.0 sev_dev_destroy psp_dev_destroy sp_destroy pci_device_shutdown device_shutdown kernel_power_off hibernate.cold state_store kernfs_fop_write_iter vfs_write ksys_write do_syscall_64 entry_SYSCALL_64_after_hwframe Pass in a pointer to the function-local error var in the caller. With that addressed, suspending the ccp shows the error properly at least: ccp 0000:47:00.1: sev command 0x2 timed out, disabling PSP ccp 0000:47:00.1: SEV: failed to SHUTDOWN error 0x0, rc -110 SEV-SNP: Leaking PFN range 0x146800-0x146a00 SEV-SNP: PFN 0x146800 unassigned, dumping non-zero entries in 2M PFN region: [0x146800 - 0x146a00] ... ccp 0000:47:00.1: SEV-SNP firmware shutdown failed, rc -16, error 0x0 ACPI: PM: Preparing to enter system sleep state S5 kvm: exiting hardware virtualization reboot: Power down Btw, this driver is crying to be cleaned up to pass in a proper I/O struct which can be used to store information between the different functions, otherwise stuff like that will happen in the future again.
CVE-2025-39938 1 Linux 1 Linux Kernel 2025-10-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: qcom: q6apm-lpass-dais: Fix NULL pointer dereference if source graph failed If earlier opening of source graph fails (e.g. ADSP rejects due to incorrect audioreach topology), the graph is closed and "dai_data->graph[dai->id]" is assigned NULL. Preparing the DAI for sink graph continues though and next call to q6apm_lpass_dai_prepare() receives dai_data->graph[dai->id]=NULL leading to NULL pointer exception: qcom-apm gprsvc:service:2:1: Error (1) Processing 0x01001002 cmd qcom-apm gprsvc:service:2:1: DSP returned error[1001002] 1 q6apm-lpass-dais 30000000.remoteproc:glink-edge:gpr:service@1:bedais: fail to start APM port 78 q6apm-lpass-dais 30000000.remoteproc:glink-edge:gpr:service@1:bedais: ASoC: error at snd_soc_pcm_dai_prepare on TX_CODEC_DMA_TX_3: -22 Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a8 ... Call trace: q6apm_graph_media_format_pcm+0x48/0x120 (P) q6apm_lpass_dai_prepare+0x110/0x1b4 snd_soc_pcm_dai_prepare+0x74/0x108 __soc_pcm_prepare+0x44/0x160 dpcm_be_dai_prepare+0x124/0x1c0
CVE-2025-39939 1 Linux 1 Linux Kernel 2025-10-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: iommu/s390: Fix memory corruption when using identity domain zpci_get_iommu_ctrs() returns counter information to be reported as part of device statistics; these counters are stored as part of the s390_domain. The problem, however, is that the identity domain is not backed by an s390_domain and so the conversion via to_s390_domain() yields a bad address that is zero'd initially and read on-demand later via a sysfs read. These counters aren't necessary for the identity domain; just return NULL in this case. This issue was discovered via KASAN with reports that look like: BUG: KASAN: global-out-of-bounds in zpci_fmb_enable_device when using the identity domain for a device on s390.