| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability in the Smart Install feature of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to trigger a reload of an affected device, resulting in a denial of service (DoS) condition, or to execute arbitrary code on an affected device. The vulnerability is due to improper validation of packet data. An attacker could exploit this vulnerability by sending a crafted Smart Install message to an affected device on TCP port 4786. A successful exploit could allow the attacker to cause a buffer overflow on the affected device, which could have the following impacts: Triggering a reload of the device, Allowing the attacker to execute arbitrary code on the device, Causing an indefinite loop on the affected device that triggers a watchdog crash. Cisco Bug IDs: CSCvg76186. |
| iccDEV provides a set of libraries and tools for working with ICC color management profiles. Versions 2.3.1.1 and below are prone to have Undefined Behavior (UB) and Out of Memory errors. This issue is fixed in version 2.3.1.2. |
| Multiple Buffer Overflow vulnerabilities in the Link Layer Discovery Protocol (LLDP) subsystem of Cisco IOS Software, Cisco IOS XE Software, and Cisco IOS XR Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition or execute arbitrary code with elevated privileges on an affected device. Cisco Bug IDs: CSCuo17183, CSCvd73487. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. Versions prior to 2.3.1.2 have a heap-buffer-overflow vulnerability in `SIccCalcOp::Describe()` at `IccProfLib/IccMpeCalc.cpp`. This vulnerability affects users of the iccDEV library who process ICC color profiles. Version 2.3.1.2 contains a patch. No known workarounds are available. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. Versions prior to 2.3.1.2 have a heap-buffer-overflow vulnerability in `CIccProfileXml::ParseBasic()` at `IccXML/IccLibXML/IccProfileXml.cpp`. This vulnerability affects users of the iccDEV library who process ICC color profiles. Version 2.3.1.2 contains a patch. No known workarounds are available. |
| A vulnerability in the implementation of Internet Key Exchange Version 1 (IKEv1) functionality in Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a denial of service (DoS) condition. The vulnerability is due to improper validation of specific IKEv1 packets. An attacker could exploit this vulnerability by sending crafted IKEv1 packets to an affected device during an IKE negotiation. A successful exploit could allow the attacker to cause an affected device to reload, resulting in a DoS condition. Cisco Bug IDs: CSCuj73916. |
| A vulnerability in the Internet Key Exchange Version 2 (IKEv2) module of Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a memory leak or a reload of an affected device that leads to a denial of service (DoS) condition. The vulnerability is due to incorrect processing of certain IKEv2 packets. An attacker could exploit this vulnerability by sending crafted IKEv2 packets to an affected device to be processed. A successful exploit could cause an affected device to continuously consume memory and eventually reload, resulting in a DoS condition. Cisco Bug IDs: CSCvf22394. |
| In the Linux kernel, the following vulnerability has been resolved:
ixgbe: fix incorrect map used in eee linkmode
incorrectly used ixgbe_lp_map in loops intended to populate the
supported and advertised EEE linkmode bitmaps based on ixgbe_ls_map.
This results in incorrect bit setting and potential out-of-bounds
access, since ixgbe_lp_map and ixgbe_ls_map have different sizes
and purposes.
ixgbe_lp_map[i] -> ixgbe_ls_map[i]
Use ixgbe_ls_map for supported and advertised linkmodes, and keep
ixgbe_lp_map usage only for link partner (lp_advertised) mapping. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix out-of-bounds dynptr write in bpf_crypto_crypt
Stanislav reported that in bpf_crypto_crypt() the destination dynptr's
size is not validated to be at least as large as the source dynptr's
size before calling into the crypto backend with 'len = src_len'. This
can result in an OOB write when the destination is smaller than the
source.
Concretely, in mentioned function, psrc and pdst are both linear
buffers fetched from each dynptr:
psrc = __bpf_dynptr_data(src, src_len);
[...]
pdst = __bpf_dynptr_data_rw(dst, dst_len);
[...]
err = decrypt ?
ctx->type->decrypt(ctx->tfm, psrc, pdst, src_len, piv) :
ctx->type->encrypt(ctx->tfm, psrc, pdst, src_len, piv);
The crypto backend expects pdst to be large enough with a src_len length
that can be written. Add an additional src_len > dst_len check and bail
out if it's the case. Note that these kfuncs are accessible under root
privileges only. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: check S1G action frame size
Before checking the action code, check that it even
exists in the frame. |
| Dell Encryption and Dell Security Management Server, versions prior to 11.11.0, contain an Improper Link Resolution Before File Access ('Link Following') Vulnerability. A local malicious user could potentially exploit this vulnerability, leading to privilege escalation. |
| In the Linux kernel, the following vulnerability has been resolved:
cacheinfo: Fix shared_cpu_map to handle shared caches at different levels
The cacheinfo sets up the shared_cpu_map by checking whether the caches
with the same index are shared between CPUs. However, this will trigger
slab-out-of-bounds access if the CPUs do not have the same cache hierarchy.
Another problem is the mismatched shared_cpu_map when the shared cache does
not have the same index between CPUs.
CPU0 I D L3
index 0 1 2 x
^ ^ ^ ^
index 0 1 2 3
CPU1 I D L2 L3
This patch checks each cache is shared with all caches on other CPUs. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: nvidia-shield: Reference hid_device devm allocation of input_dev name
Use hid_device for devm allocation of the input_dev name to avoid a
use-after-free. input_unregister_device would trigger devres cleanup of all
resources associated with the input_dev, free-ing the name. The name would
subsequently be used in a uevent fired at the end of unregistering the
input_dev. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: use RCU for hci_conn_params and iterate safely in hci_sync
hci_update_accept_list_sync iterates over hdev->pend_le_conns and
hdev->pend_le_reports, and waits for controller events in the loop body,
without holding hdev lock.
Meanwhile, these lists and the items may be modified e.g. by
le_scan_cleanup. This can invalidate the list cursor or any other item
in the list, resulting to invalid behavior (eg use-after-free).
Use RCU for the hci_conn_params action lists. Since the loop bodies in
hci_sync block and we cannot use RCU or hdev->lock for the whole loop,
copy list items first and then iterate on the copy. Only the flags field
is written from elsewhere, so READ_ONCE/WRITE_ONCE should guarantee we
read valid values.
Free params everywhere with hci_conn_params_free so the cleanup is
guaranteed to be done properly.
This fixes the following, which can be triggered e.g. by BlueZ new
mgmt-tester case "Add + Remove Device Nowait - Success", or by changing
hci_le_set_cig_params to always return false, and running iso-tester:
==================================================================
BUG: KASAN: slab-use-after-free in hci_update_passive_scan_sync (net/bluetooth/hci_sync.c:2536 net/bluetooth/hci_sync.c:2723 net/bluetooth/hci_sync.c:2841)
Read of size 8 at addr ffff888001265018 by task kworker/u3:0/32
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
dump_stack_lvl (./arch/x86/include/asm/irqflags.h:134 lib/dump_stack.c:107)
print_report (mm/kasan/report.c:320 mm/kasan/report.c:430)
? __virt_addr_valid (./include/linux/mmzone.h:1915 ./include/linux/mmzone.h:2011 arch/x86/mm/physaddr.c:65)
? hci_update_passive_scan_sync (net/bluetooth/hci_sync.c:2536 net/bluetooth/hci_sync.c:2723 net/bluetooth/hci_sync.c:2841)
kasan_report (mm/kasan/report.c:538)
? hci_update_passive_scan_sync (net/bluetooth/hci_sync.c:2536 net/bluetooth/hci_sync.c:2723 net/bluetooth/hci_sync.c:2841)
hci_update_passive_scan_sync (net/bluetooth/hci_sync.c:2536 net/bluetooth/hci_sync.c:2723 net/bluetooth/hci_sync.c:2841)
? __pfx_hci_update_passive_scan_sync (net/bluetooth/hci_sync.c:2780)
? mutex_lock (kernel/locking/mutex.c:282)
? __pfx_mutex_lock (kernel/locking/mutex.c:282)
? __pfx_mutex_unlock (kernel/locking/mutex.c:538)
? __pfx_update_passive_scan_sync (net/bluetooth/hci_sync.c:2861)
hci_cmd_sync_work (net/bluetooth/hci_sync.c:306)
process_one_work (./arch/x86/include/asm/preempt.h:27 kernel/workqueue.c:2399)
worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2538)
? __pfx_worker_thread (kernel/workqueue.c:2480)
kthread (kernel/kthread.c:376)
? __pfx_kthread (kernel/kthread.c:331)
ret_from_fork (arch/x86/entry/entry_64.S:314)
</TASK>
Allocated by task 31:
kasan_save_stack (mm/kasan/common.c:46)
kasan_set_track (mm/kasan/common.c:52)
__kasan_kmalloc (mm/kasan/common.c:374 mm/kasan/common.c:383)
hci_conn_params_add (./include/linux/slab.h:580 ./include/linux/slab.h:720 net/bluetooth/hci_core.c:2277)
hci_connect_le_scan (net/bluetooth/hci_conn.c:1419 net/bluetooth/hci_conn.c:1589)
hci_connect_cis (net/bluetooth/hci_conn.c:2266)
iso_connect_cis (net/bluetooth/iso.c:390)
iso_sock_connect (net/bluetooth/iso.c:899)
__sys_connect (net/socket.c:2003 net/socket.c:2020)
__x64_sys_connect (net/socket.c:2027)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
Freed by task 15:
kasan_save_stack (mm/kasan/common.c:46)
kasan_set_track (mm/kasan/common.c:52)
kasan_save_free_info (mm/kasan/generic.c:523)
__kasan_slab_free (mm/kasan/common.c:238 mm/kasan/common.c:200 mm/kasan/common.c:244)
__kmem_cache_free (mm/slub.c:1807 mm/slub.c:3787 mm/slub.c:3800)
hci_conn_params_del (net/bluetooth/hci_core.c:2323)
le_scan_cleanup (net/bluetooth/hci_conn.c:202)
process_one_work (./arch/x86/include/asm/preempt.
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
phy: hisilicon: Fix an out of bounds check in hisi_inno_phy_probe()
The size of array 'priv->ports[]' is INNO_PHY_PORT_NUM.
In the for loop, 'i' is used as the index for array 'priv->ports[]'
with a check (i > INNO_PHY_PORT_NUM) which indicates that
INNO_PHY_PORT_NUM is allowed value for 'i' in the same loop.
This > comparison needs to be changed to >=, otherwise it potentially leads
to an out of bounds write on the next iteration through the loop |
| In the Linux kernel, the following vulnerability has been resolved:
drm/tests: helpers: Avoid a driver uaf
when using __drm_kunit_helper_alloc_drm_device() the driver may be
dereferenced by device-managed resources up until the device is
freed, which is typically later than the kunit-managed resource code
frees it. Fix this by simply make the driver device-managed as well.
In short, the sequence leading to the UAF is as follows:
INIT:
Code allocates a struct device as a kunit-managed resource.
Code allocates a drm driver as a kunit-managed resource.
Code allocates a drm device as a device-managed resource.
EXIT:
Kunit resource cleanup frees the drm driver
Kunit resource cleanup puts the struct device, which starts a
device-managed resource cleanup
device-managed cleanup calls drm_dev_put()
drm_dev_put() dereferences the (now freed) drm driver -> Boom.
Related KASAN message:
[55272.551542] ==================================================================
[55272.551551] BUG: KASAN: slab-use-after-free in drm_dev_put.part.0+0xd4/0xe0 [drm]
[55272.551603] Read of size 8 at addr ffff888127502828 by task kunit_try_catch/10353
[55272.551612] CPU: 4 PID: 10353 Comm: kunit_try_catch Tainted: G U N 6.5.0-rc7+ #155
[55272.551620] Hardware name: ASUS System Product Name/PRIME B560M-A AC, BIOS 0403 01/26/2021
[55272.551626] Call Trace:
[55272.551629] <TASK>
[55272.551633] dump_stack_lvl+0x57/0x90
[55272.551639] print_report+0xcf/0x630
[55272.551645] ? _raw_spin_lock_irqsave+0x5f/0x70
[55272.551652] ? drm_dev_put.part.0+0xd4/0xe0 [drm]
[55272.551694] kasan_report+0xd7/0x110
[55272.551699] ? drm_dev_put.part.0+0xd4/0xe0 [drm]
[55272.551742] drm_dev_put.part.0+0xd4/0xe0 [drm]
[55272.551783] devres_release_all+0x15d/0x1f0
[55272.551790] ? __pfx_devres_release_all+0x10/0x10
[55272.551797] device_unbind_cleanup+0x16/0x1a0
[55272.551802] device_release_driver_internal+0x3e5/0x540
[55272.551808] ? kobject_put+0x5d/0x4b0
[55272.551814] bus_remove_device+0x1f1/0x3f0
[55272.551819] device_del+0x342/0x910
[55272.551826] ? __pfx_device_del+0x10/0x10
[55272.551830] ? lock_release+0x339/0x5e0
[55272.551836] ? kunit_remove_resource+0x128/0x290 [kunit]
[55272.551845] ? __pfx_lock_release+0x10/0x10
[55272.551851] platform_device_del.part.0+0x1f/0x1e0
[55272.551856] ? _raw_spin_unlock_irqrestore+0x30/0x60
[55272.551863] kunit_remove_resource+0x195/0x290 [kunit]
[55272.551871] ? _raw_spin_unlock_irqrestore+0x30/0x60
[55272.551877] kunit_cleanup+0x78/0x120 [kunit]
[55272.551885] ? __kthread_parkme+0xc1/0x1f0
[55272.551891] ? __pfx_kunit_try_run_case_cleanup+0x10/0x10 [kunit]
[55272.551900] ? __pfx_kunit_generic_run_threadfn_adapter+0x10/0x10 [kunit]
[55272.551909] kunit_generic_run_threadfn_adapter+0x4a/0x90 [kunit]
[55272.551919] kthread+0x2e7/0x3c0
[55272.551924] ? __pfx_kthread+0x10/0x10
[55272.551929] ret_from_fork+0x2d/0x70
[55272.551935] ? __pfx_kthread+0x10/0x10
[55272.551940] ret_from_fork_asm+0x1b/0x30
[55272.551948] </TASK>
[55272.551953] Allocated by task 10351:
[55272.551956] kasan_save_stack+0x1c/0x40
[55272.551962] kasan_set_track+0x21/0x30
[55272.551966] __kasan_kmalloc+0x8b/0x90
[55272.551970] __kmalloc+0x5e/0x160
[55272.551976] kunit_kmalloc_array+0x1c/0x50 [kunit]
[55272.551984] drm_exec_test_init+0xfa/0x2c0 [drm_exec_test]
[55272.551991] kunit_try_run_case+0xdd/0x250 [kunit]
[55272.551999] kunit_generic_run_threadfn_adapter+0x4a/0x90 [kunit]
[55272.552008] kthread+0x2e7/0x3c0
[55272.552012] ret_from_fork+0x2d/0x70
[55272.552017] ret_from_fork_asm+0x1b/0x30
[55272.552024] Freed by task 10353:
[55272.552027] kasan_save_stack+0x1c/0x40
[55272.552032] kasan_set_track+0x21/0x30
[55272.552036] kasan_save_free_info+0x27/0x40
[55272.552041] __kasan_slab_free+0x106/0x180
[55272.552046] slab_free_freelist_hook+0xb3/0x160
[55272.552051] __kmem_cache_free+0xb2/0x290
[55272.552056] kunit_remove_resource+0x195/0x290 [kunit]
[55272.552064] kunit_cleanup+0x7
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: jfs_dmap: Validate db_l2nbperpage while mounting
In jfs_dmap.c at line 381, BLKTODMAP is used to get a logical block
number inside dbFree(). db_l2nbperpage, which is the log2 number of
blocks per page, is passed as an argument to BLKTODMAP which uses it
for shifting.
Syzbot reported a shift out-of-bounds crash because db_l2nbperpage is
too big. This happens because the large value is set without any
validation in dbMount() at line 181.
Thus, make sure that db_l2nbperpage is correct while mounting.
Max number of blocks per page = Page size / Min block size
=> log2(Max num_block per page) = log2(Page size / Min block size)
= log2(Page size) - log2(Min block size)
=> Max db_l2nbperpage = L2PSIZE - L2MINBLOCKSIZE |
| In the Linux kernel, the following vulnerability has been resolved:
media: netup_unidvb: fix use-after-free at del_timer()
When Universal DVB card is detaching, netup_unidvb_dma_fini()
uses del_timer() to stop dma->timeout timer. But when timer
handler netup_unidvb_dma_timeout() is running, del_timer()
could not stop it. As a result, the use-after-free bug could
happen. The process is shown below:
(cleanup routine) | (timer routine)
| mod_timer(&dev->tx_sim_timer, ..)
netup_unidvb_finidev() | (wait a time)
netup_unidvb_dma_fini() | netup_unidvb_dma_timeout()
del_timer(&dma->timeout); |
| ndev->pci_dev->dev //USE
Fix by changing del_timer() to del_timer_sync(). |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Make it so that a waiting process can be aborted
When sendmsg() creates an rxrpc call, it queues it to wait for a connection
and channel to be assigned and then waits before it can start shovelling
data as the encrypted DATA packet content includes a summary of the
connection parameters.
However, sendmsg() may get interrupted before a connection gets assigned
and further sendmsg() calls will fail with EBUSY until an assignment is
made.
Fix this so that the call can at least be aborted without failing on
EBUSY. We have to be careful here as sendmsg() mustn't be allowed to start
the call timer if the call doesn't yet have a connection assigned as an
oops may follow shortly thereafter. |
| In the Linux kernel, the following vulnerability has been resolved:
nubus: Partially revert proc_create_single_data() conversion
The conversion to proc_create_single_data() introduced a regression
whereby reading a file in /proc/bus/nubus results in a seg fault:
# grep -r . /proc/bus/nubus/e/
Data read fault at 0x00000020 in Super Data (pc=0x1074c2)
BAD KERNEL BUSERR
Oops: 00000000
Modules linked in:
PC: [<001074c2>] PDE_DATA+0xc/0x16
SR: 2010 SP: 38284958 a2: 01152370
d0: 00000001 d1: 01013000 d2: 01002790 d3: 00000000
d4: 00000001 d5: 0008ce2e a0: 00000000 a1: 00222a40
Process grep (pid: 45, task=142f8727)
Frame format=B ssw=074d isc=2008 isb=4e5e daddr=00000020 dobuf=01199e70
baddr=001074c8 dibuf=ffffffff ver=f
Stack from 01199e48:
01199e70 00222a58 01002790 00000000 011a3000 01199eb0 015000c0 00000000
00000000 01199ec0 01199ec0 000d551a 011a3000 00000001 00000000 00018000
d003f000 00000003 00000001 0002800d 01052840 01199fa8 c01f8000 00000000
00000029 0b532b80 00000000 00000000 00000029 0b532b80 01199ee4 00103640
011198c0 d003f000 00018000 01199fa8 00000000 011198c0 00000000 01199f4c
000b3344 011198c0 d003f000 00018000 01199fa8 00000000 00018000 011198c0
Call Trace: [<00222a58>] nubus_proc_rsrc_show+0x18/0xa0
[<000d551a>] seq_read+0xc4/0x510
[<00018000>] fp_fcos+0x2/0x82
[<0002800d>] __sys_setreuid+0x115/0x1c6
[<00103640>] proc_reg_read+0x5c/0xb0
[<00018000>] fp_fcos+0x2/0x82
[<000b3344>] __vfs_read+0x2c/0x13c
[<00018000>] fp_fcos+0x2/0x82
[<00018000>] fp_fcos+0x2/0x82
[<000b8aa2>] sys_statx+0x60/0x7e
[<000b34b6>] vfs_read+0x62/0x12a
[<00018000>] fp_fcos+0x2/0x82
[<00018000>] fp_fcos+0x2/0x82
[<000b39c2>] ksys_read+0x48/0xbe
[<00018000>] fp_fcos+0x2/0x82
[<000b3a4e>] sys_read+0x16/0x1a
[<00018000>] fp_fcos+0x2/0x82
[<00002b84>] syscall+0x8/0xc
[<00018000>] fp_fcos+0x2/0x82
[<0000c016>] not_ext+0xa/0x18
Code: 4e5e 4e75 4e56 0000 206e 0008 2068 ffe8 <2068> 0020 2008 4e5e 4e75 4e56 0000 2f0b 206e 0008 2068 0004 2668 0020 206b ffe8
Disabling lock debugging due to kernel taint
Segmentation fault
The proc_create_single_data() conversion does not work because
single_open(file, nubus_proc_rsrc_show, PDE_DATA(inode)) is not
equivalent to the original code. |