| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: af_alg - zero initialize memory allocated via sock_kmalloc
Several crypto user API contexts and requests allocated with
sock_kmalloc() were left uninitialized, relying on callers to
set fields explicitly. This resulted in the use of uninitialized
data in certain error paths or when new fields are added in the
future.
The ACVP patches also contain two user-space interface files:
algif_kpp.c and algif_akcipher.c. These too rely on proper
initialization of their context structures.
A particular issue has been observed with the newly added
'inflight' variable introduced in af_alg_ctx by commit:
67b164a871af ("crypto: af_alg - Disallow multiple in-flight AIO requests")
Because the context is not memset to zero after allocation,
the inflight variable has contained garbage values. As a result,
af_alg_alloc_areq() has incorrectly returned -EBUSY randomly when
the garbage value was interpreted as true:
https://github.com/gregkh/linux/blame/master/crypto/af_alg.c#L1209
The check directly tests ctx->inflight without explicitly
comparing against true/false. Since inflight is only ever set to
true or false later, an uninitialized value has triggered
-EBUSY failures. Zero-initializing memory allocated with
sock_kmalloc() ensures inflight and other fields start in a known
state, removing random issues caused by uninitialized data. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: avoid double free special payload
If a discard request needs to be retried, and that retry may fail before
a new special payload is added, a double free will result. Clear the
RQF_SPECIAL_LOAD when the request is cleaned. |
| In the Linux kernel, the following vulnerability has been resolved:
block/ioctl: prefer different overflow check
Running syzkaller with the newly reintroduced signed integer overflow
sanitizer shows this report:
[ 62.982337] ------------[ cut here ]------------
[ 62.985692] cgroup: Invalid name
[ 62.986211] UBSAN: signed-integer-overflow in ../block/ioctl.c:36:46
[ 62.989370] 9pnet_fd: p9_fd_create_tcp (7343): problem connecting socket to 127.0.0.1
[ 62.992992] 9223372036854775807 + 4095 cannot be represented in type 'long long'
[ 62.997827] 9pnet_fd: p9_fd_create_tcp (7345): problem connecting socket to 127.0.0.1
[ 62.999369] random: crng reseeded on system resumption
[ 63.000634] GUP no longer grows the stack in syz-executor.2 (7353): 20002000-20003000 (20001000)
[ 63.000668] CPU: 0 PID: 7353 Comm: syz-executor.2 Not tainted 6.8.0-rc2-00035-gb3ef86b5a957 #1
[ 63.000677] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 63.000682] Call Trace:
[ 63.000686] <TASK>
[ 63.000731] dump_stack_lvl+0x93/0xd0
[ 63.000919] __get_user_pages+0x903/0xd30
[ 63.001030] __gup_longterm_locked+0x153e/0x1ba0
[ 63.001041] ? _raw_read_unlock_irqrestore+0x17/0x50
[ 63.001072] ? try_get_folio+0x29c/0x2d0
[ 63.001083] internal_get_user_pages_fast+0x1119/0x1530
[ 63.001109] iov_iter_extract_pages+0x23b/0x580
[ 63.001206] bio_iov_iter_get_pages+0x4de/0x1220
[ 63.001235] iomap_dio_bio_iter+0x9b6/0x1410
[ 63.001297] __iomap_dio_rw+0xab4/0x1810
[ 63.001316] iomap_dio_rw+0x45/0xa0
[ 63.001328] ext4_file_write_iter+0xdde/0x1390
[ 63.001372] vfs_write+0x599/0xbd0
[ 63.001394] ksys_write+0xc8/0x190
[ 63.001403] do_syscall_64+0xd4/0x1b0
[ 63.001421] ? arch_exit_to_user_mode_prepare+0x3a/0x60
[ 63.001479] entry_SYSCALL_64_after_hwframe+0x6f/0x77
[ 63.001535] RIP: 0033:0x7f7fd3ebf539
[ 63.001551] Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 f1 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
[ 63.001562] RSP: 002b:00007f7fd32570c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 63.001584] RAX: ffffffffffffffda RBX: 00007f7fd3ff3f80 RCX: 00007f7fd3ebf539
[ 63.001590] RDX: 4db6d1e4f7e43360 RSI: 0000000020000000 RDI: 0000000000000004
[ 63.001595] RBP: 00007f7fd3f1e496 R08: 0000000000000000 R09: 0000000000000000
[ 63.001599] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[ 63.001604] R13: 0000000000000006 R14: 00007f7fd3ff3f80 R15: 00007ffd415ad2b8
...
[ 63.018142] ---[ end trace ]---
Historically, the signed integer overflow sanitizer did not work in the
kernel due to its interaction with `-fwrapv` but this has since been
changed [1] in the newest version of Clang; It was re-enabled in the
kernel with Commit 557f8c582a9ba8ab ("ubsan: Reintroduce signed overflow
sanitizer").
Let's rework this overflow checking logic to not actually perform an
overflow during the check itself, thus avoiding the UBSAN splat.
[1]: https://github.com/llvm/llvm-project/pull/82432 |
| A vulnerability was found in systemd-coredump. This flaw allows an attacker to force a SUID process to crash and replace it with a non-SUID binary to access the original's privileged process coredump, allowing the attacker to read sensitive data, such as /etc/shadow content, loaded by the original process.
A SUID binary or process has a special type of permission, which allows the process to run with the file owner's permissions, regardless of the user executing the binary. This allows the process to access more restricted data than unprivileged users or processes would be able to. An attacker can leverage this flaw by forcing a SUID process to crash and force the Linux kernel to recycle the process PID before systemd-coredump can analyze the /proc/pid/auxv file. If the attacker wins the race condition, they gain access to the original's SUID process coredump file. They can read sensitive content loaded into memory by the original binary, affecting data confidentiality. |
| Unspecified vulnerability in the ExternalInterface ActionScript functionality in Adobe Flash Player before 10.3.183.67 and 11.x before 11.6.602.171 on Windows and Mac OS X, and before 10.3.183.67 and 11.x before 11.2.202.273 on Linux, allows remote attackers to execute arbitrary code via crafted SWF content, as exploited in the wild in February 2013. |
| In the Linux kernel, the following vulnerability has been resolved:
media: venus: Add a check for packet size after reading from shared memory
Add a check to ensure that the packet size does not exceed the number of
available words after reading the packet header from shared memory. This
ensures that the size provided by the firmware is safe to process and
prevent potential out-of-bounds memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
media: usbtv: Lock resolution while streaming
When an program is streaming (ffplay) and another program (qv4l2)
changes the TV standard from NTSC to PAL, the kernel crashes due to trying
to copy to unmapped memory.
Changing from NTSC to PAL increases the resolution in the usbtv struct,
but the video plane buffer isn't adjusted, so it overflows.
[hverkuil: call vb2_is_busy instead of vb2_is_streaming] |
| In the Linux kernel, the following vulnerability has been resolved:
serial: 8250: fix panic due to PSLVERR
When the PSLVERR_RESP_EN parameter is set to 1, the device generates
an error response if an attempt is made to read an empty RBR (Receive
Buffer Register) while the FIFO is enabled.
In serial8250_do_startup(), calling serial_port_out(port, UART_LCR,
UART_LCR_WLEN8) triggers dw8250_check_lcr(), which invokes
dw8250_force_idle() and serial8250_clear_and_reinit_fifos(). The latter
function enables the FIFO via serial_out(p, UART_FCR, p->fcr).
Execution proceeds to the serial_port_in(port, UART_RX).
This satisfies the PSLVERR trigger condition.
When another CPU (e.g., using printk()) is accessing the UART (UART
is busy), the current CPU fails the check (value & ~UART_LCR_SPAR) ==
(lcr & ~UART_LCR_SPAR) in dw8250_check_lcr(), causing it to enter
dw8250_force_idle().
Put serial_port_out(port, UART_LCR, UART_LCR_WLEN8) under the port->lock
to fix this issue.
Panic backtrace:
[ 0.442336] Oops - unknown exception [#1]
[ 0.442343] epc : dw8250_serial_in32+0x1e/0x4a
[ 0.442351] ra : serial8250_do_startup+0x2c8/0x88e
...
[ 0.442416] console_on_rootfs+0x26/0x70 |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix filehandle bounds checking in nfs_fh_to_dentry()
The function needs to check the minimal filehandle length before it can
access the embedded filehandle. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "fs/ntfs3: Replace inode_trylock with inode_lock"
This reverts commit 69505fe98f198ee813898cbcaf6770949636430b.
Initially, conditional lock acquisition was removed to fix an xfstest bug
that was observed during internal testing. The deadlock reported by syzbot
is resolved by reintroducing conditional acquisition. The xfstest bug no
longer occurs on kernel version 6.16-rc1 during internal testing. I
assume that changes in other modules may have contributed to this. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: Fix use-after-free in cifs_fill_dirent
There is a race condition in the readdir concurrency process, which may
access the rsp buffer after it has been released, triggering the
following KASAN warning.
==================================================================
BUG: KASAN: slab-use-after-free in cifs_fill_dirent+0xb03/0xb60 [cifs]
Read of size 4 at addr ffff8880099b819c by task a.out/342975
CPU: 2 UID: 0 PID: 342975 Comm: a.out Not tainted 6.15.0-rc6+ #240 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x53/0x70
print_report+0xce/0x640
kasan_report+0xb8/0xf0
cifs_fill_dirent+0xb03/0xb60 [cifs]
cifs_readdir+0x12cb/0x3190 [cifs]
iterate_dir+0x1a1/0x520
__x64_sys_getdents+0x134/0x220
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f996f64b9f9
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89
f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01
f0 ff ff 0d f7 c3 0c 00 f7 d8 64 89 8
RSP: 002b:00007f996f53de78 EFLAGS: 00000207 ORIG_RAX: 000000000000004e
RAX: ffffffffffffffda RBX: 00007f996f53ecdc RCX: 00007f996f64b9f9
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 00007f996f53dea0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000207 R12: ffffffffffffff88
R13: 0000000000000000 R14: 00007ffc8cd9a500 R15: 00007f996f51e000
</TASK>
Allocated by task 408:
kasan_save_stack+0x20/0x40
kasan_save_track+0x14/0x30
__kasan_slab_alloc+0x6e/0x70
kmem_cache_alloc_noprof+0x117/0x3d0
mempool_alloc_noprof+0xf2/0x2c0
cifs_buf_get+0x36/0x80 [cifs]
allocate_buffers+0x1d2/0x330 [cifs]
cifs_demultiplex_thread+0x22b/0x2690 [cifs]
kthread+0x394/0x720
ret_from_fork+0x34/0x70
ret_from_fork_asm+0x1a/0x30
Freed by task 342979:
kasan_save_stack+0x20/0x40
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x37/0x50
kmem_cache_free+0x2b8/0x500
cifs_buf_release+0x3c/0x70 [cifs]
cifs_readdir+0x1c97/0x3190 [cifs]
iterate_dir+0x1a1/0x520
__x64_sys_getdents64+0x134/0x220
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The buggy address belongs to the object at ffff8880099b8000
which belongs to the cache cifs_request of size 16588
The buggy address is located 412 bytes inside of
freed 16588-byte region [ffff8880099b8000, ffff8880099bc0cc)
The buggy address belongs to the physical page:
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x99b8
head: order:3 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
anon flags: 0x80000000000040(head|node=0|zone=1)
page_type: f5(slab)
raw: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001
raw: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000
head: 0080000000000040 ffff888001e03400 0000000000000000 dead000000000001
head: 0000000000000000 0000000000010001 00000000f5000000 0000000000000000
head: 0080000000000003 ffffea0000266e01 00000000ffffffff 00000000ffffffff
head: ffffffffffffffff 0000000000000000 00000000ffffffff 0000000000000008
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8880099b8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880099b8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8880099b8180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8880099b8200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880099b8280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
POC is available in the link [1].
The problem triggering process is as follows:
Process 1 Process 2
-----------------------------------
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/ipv6: release expired exception dst cached in socket
Dst objects get leaked in ip6_negative_advice() when this function is
executed for an expired IPv6 route located in the exception table. There
are several conditions that must be fulfilled for the leak to occur:
* an ICMPv6 packet indicating a change of the MTU for the path is received,
resulting in an exception dst being created
* a TCP connection that uses the exception dst for routing packets must
start timing out so that TCP begins retransmissions
* after the exception dst expires, the FIB6 garbage collector must not run
before TCP executes ip6_negative_advice() for the expired exception dst
When TCP executes ip6_negative_advice() for an exception dst that has
expired and if no other socket holds a reference to the exception dst, the
refcount of the exception dst is 2, which corresponds to the increment
made by dst_init() and the increment made by the TCP socket for which the
connection is timing out. The refcount made by the socket is never
released. The refcount of the dst is decremented in sk_dst_reset() but
that decrement is counteracted by a dst_hold() intentionally placed just
before the sk_dst_reset() in ip6_negative_advice(). After
ip6_negative_advice() has finished, there is no other object tied to the
dst. The socket lost its reference stored in sk_dst_cache and the dst is
no longer in the exception table. The exception dst becomes a leaked
object.
As a result of this dst leak, an unbalanced refcount is reported for the
loopback device of a net namespace being destroyed under kernels that do
not contain e5f80fcf869a ("ipv6: give an IPv6 dev to blackhole_netdev"):
unregister_netdevice: waiting for lo to become free. Usage count = 2
Fix the dst leak by removing the dst_hold() in ip6_negative_advice(). The
patch that introduced the dst_hold() in ip6_negative_advice() was
92f1655aa2b22 ("net: fix __dst_negative_advice() race"). But 92f1655aa2b22
merely refactored the code with regards to the dst refcount so the issue
was present even before 92f1655aa2b22. The bug was introduced in
54c1a859efd9f ("ipv6: Don't drop cache route entry unless timer actually
expired.") where the expired cached route is deleted and the sk_dst_cache
member of the socket is set to NULL by calling dst_negative_advice() but
the refcount belonging to the socket is left unbalanced.
The IPv4 version - ipv4_negative_advice() - is not affected by this bug.
When the TCP connection times out ipv4_negative_advice() merely resets the
sk_dst_cache of the socket while decrementing the refcount of the
exception dst. |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/mchp-eic: Fix error code in mchp_eic_domain_alloc()
If irq_domain_translate_twocell() sets "hwirq" to >= MCHP_EIC_NIRQ (2) then
it results in an out of bounds access.
The code checks for invalid values, but doesn't set the error code. Return
-EINVAL in that case, instead of returning success. |
| In the Linux kernel, the following vulnerability has been resolved:
mt76: mt7615: Fix memory leak in mt7615_mcu_wtbl_sta_add()
In mt7615_mcu_wtbl_sta_add(), an skb sskb is allocated. If the
subsequent call to mt76_connac_mcu_alloc_wtbl_req() fails, the function
returns an error without freeing sskb, leading to a memory leak.
Fix this by calling dev_kfree_skb() on sskb in the error handling path
to ensure it is properly released. |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Automounted filesystems should inherit ro,noexec,nodev,sync flags
When a filesystem is being automounted, it needs to preserve the
user-set superblock mount options, such as the "ro" flag. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: starfive - Correctly handle return of sg_nents_for_len
The return value of sg_nents_for_len was assigned to an unsigned long
in starfive_hash_digest, causing negative error codes to be converted
to large positive integers.
Add error checking for sg_nents_for_len and return immediately on
failure to prevent potential buffer overflows. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtl818x: Fix potential memory leaks in rtl8180_init_rx_ring()
In rtl8180_init_rx_ring(), memory is allocated for skb packets and DMA
allocations in a loop. When an allocation fails, the previously
successful allocations are not freed on exit.
Fix that by jumping to err_free_rings label on error, which calls
rtl8180_free_rx_ring() to free the allocations. Remove the free of
rx_ring in rtl8180_init_rx_ring() error path, and set the freed
priv->rx_buf entry to null, to avoid double free. |
| In the Linux kernel, the following vulnerability has been resolved:
backlight: led-bl: Add devlink to supplier LEDs
LED Backlight is a consumer of one or multiple LED class devices, but
devlink is currently unable to create correct supplier-producer links when
the supplier is a class device. It creates instead a link where the
supplier is the parent of the expected device.
One consequence is that removal order is not correctly enforced.
Issues happen for example with the following sections in a device tree
overlay:
// An LED driver chip
pca9632@62 {
compatible = "nxp,pca9632";
reg = <0x62>;
// ...
addon_led_pwm: led-pwm@3 {
reg = <3>;
label = "addon:led:pwm";
};
};
backlight-addon {
compatible = "led-backlight";
leds = <&addon_led_pwm>;
brightness-levels = <255>;
default-brightness-level = <255>;
};
In this example, the devlink should be created between the backlight-addon
(consumer) and the pca9632@62 (supplier). Instead it is created between the
backlight-addon (consumer) and the parent of the pca9632@62, which is
typically the I2C bus adapter.
On removal of the above overlay, the LED driver can be removed before the
backlight device, resulting in:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
...
Call trace:
led_put+0xe0/0x140
devm_led_release+0x6c/0x98
Another way to reproduce the bug without any device tree overlays is
unbinding the LED class device (pca9632@62) before unbinding the consumer
(backlight-addon):
echo 11-0062 >/sys/bus/i2c/drivers/leds-pca963x/unbind
echo ...backlight-dock >/sys/bus/platform/drivers/led-backlight/unbind
Fix by adding a devlink between the consuming led-backlight device and the
supplying LED device, as other drivers and subsystems do as well. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vgem-fence: Fix potential deadlock on release
A timer that expires a vgem fence automatically in 10 seconds is now
released with timer_delete_sync() from fence->ops.release() called on last
dma_fence_put(). In some scenarios, it can run in IRQ context, which is
not safe unless TIMER_IRQSAFE is used. One potentially risky scenario was
demonstrated in Intel DRM CI trybot, BAT run on machine bat-adlp-6, while
working on new IGT subtests syncobj_timeline@stress-* as user space
replacements of some problematic test cases of a dma-fence-chain selftest
[1].
[117.004338] ================================
[117.004340] WARNING: inconsistent lock state
[117.004342] 6.17.0-rc7-CI_DRM_17270-g7644974e648c+ #1 Tainted: G S U
[117.004346] --------------------------------
[117.004347] inconsistent {HARDIRQ-ON-W} -> {IN-HARDIRQ-W} usage.
[117.004349] swapper/0/0 [HC1[1]:SC1[1]:HE0:SE0] takes:
[117.004352] ffff888138f86aa8 ((&fence->timer)){?.-.}-{0:0}, at: __timer_delete_sync+0x4b/0x190
[117.004361] {HARDIRQ-ON-W} state was registered at:
[117.004363] lock_acquire+0xc4/0x2e0
[117.004366] call_timer_fn+0x80/0x2a0
[117.004368] __run_timers+0x231/0x310
[117.004370] run_timer_softirq+0x76/0xe0
[117.004372] handle_softirqs+0xd4/0x4d0
[117.004375] __irq_exit_rcu+0x13f/0x160
[117.004377] irq_exit_rcu+0xe/0x20
[117.004379] sysvec_apic_timer_interrupt+0xa0/0xc0
[117.004382] asm_sysvec_apic_timer_interrupt+0x1b/0x20
[117.004385] cpuidle_enter_state+0x12b/0x8a0
[117.004388] cpuidle_enter+0x2e/0x50
[117.004393] call_cpuidle+0x22/0x60
[117.004395] do_idle+0x1fd/0x260
[117.004398] cpu_startup_entry+0x29/0x30
[117.004401] start_secondary+0x12d/0x160
[117.004404] common_startup_64+0x13e/0x141
[117.004407] irq event stamp: 2282669
[117.004409] hardirqs last enabled at (2282668): [<ffffffff8289db71>] _raw_spin_unlock_irqrestore+0x51/0x80
[117.004414] hardirqs last disabled at (2282669): [<ffffffff82882021>] sysvec_irq_work+0x11/0xc0
[117.004419] softirqs last enabled at (2254702): [<ffffffff8289fd00>] __do_softirq+0x10/0x18
[117.004423] softirqs last disabled at (2254725): [<ffffffff813d4ddf>] __irq_exit_rcu+0x13f/0x160
[117.004426]
other info that might help us debug this:
[117.004429] Possible unsafe locking scenario:
[117.004432] CPU0
[117.004433] ----
[117.004434] lock((&fence->timer));
[117.004436] <Interrupt>
[117.004438] lock((&fence->timer));
[117.004440]
*** DEADLOCK ***
[117.004443] 1 lock held by swapper/0/0:
[117.004445] #0: ffffc90000003d50 ((&fence->timer)){?.-.}-{0:0}, at: call_timer_fn+0x7a/0x2a0
[117.004450]
stack backtrace:
[117.004453] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Tainted: G S U 6.17.0-rc7-CI_DRM_17270-g7644974e648c+ #1 PREEMPT(voluntary)
[117.004455] Tainted: [S]=CPU_OUT_OF_SPEC, [U]=USER
[117.004455] Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR4 RVP, BIOS RPLPFWI1.R00.4035.A00.2301200723 01/20/2023
[117.004456] Call Trace:
[117.004456] <IRQ>
[117.004457] dump_stack_lvl+0x91/0xf0
[117.004460] dump_stack+0x10/0x20
[117.004461] print_usage_bug.part.0+0x260/0x360
[117.004463] mark_lock+0x76e/0x9c0
[117.004465] ? register_lock_class+0x48/0x4a0
[117.004467] __lock_acquire+0xbc3/0x2860
[117.004469] lock_acquire+0xc4/0x2e0
[117.004470] ? __timer_delete_sync+0x4b/0x190
[117.004472] ? __timer_delete_sync+0x4b/0x190
[117.004473] __timer_delete_sync+0x68/0x190
[117.004474] ? __timer_delete_sync+0x4b/0x190
[117.004475] timer_delete_sync+0x10/0x20
[117.004476] vgem_fence_release+0x19/0x30 [vgem]
[117.004478] dma_fence_release+0xc1/0x3b0
[117.004480] ? dma_fence_release+0xa1/0x3b0
[117.004481] dma_fence_chain_release+0xe7/0x130
[117.004483] dma_fence_release+0xc1/0x3b0
[117.004484] ? _raw_spin_unlock_irqrestore+0x27/0x80
[117.004485] dma_fence_chain_irq_work+0x59/0x80
[117.004487] irq_work_single+0x75/0xa0
[117.004490] irq_work_r
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
block: Use RCU in blk_mq_[un]quiesce_tagset() instead of set->tag_list_lock
blk_mq_{add,del}_queue_tag_set() functions add and remove queues from
tagset, the functions make sure that tagset and queues are marked as
shared when two or more queues are attached to the same tagset.
Initially a tagset starts as unshared and when the number of added
queues reaches two, blk_mq_add_queue_tag_set() marks it as shared along
with all the queues attached to it. When the number of attached queues
drops to 1 blk_mq_del_queue_tag_set() need to mark both the tagset and
the remaining queues as unshared.
Both functions need to freeze current queues in tagset before setting on
unsetting BLK_MQ_F_TAG_QUEUE_SHARED flag. While doing so, both functions
hold set->tag_list_lock mutex, which makes sense as we do not want
queues to be added or deleted in the process. This used to work fine
until commit 98d81f0df70c ("nvme: use blk_mq_[un]quiesce_tagset")
made the nvme driver quiesce tagset instead of quiscing individual
queues. blk_mq_quiesce_tagset() does the job and quiesce the queues in
set->tag_list while holding set->tag_list_lock also.
This results in deadlock between two threads with these stacktraces:
__schedule+0x47c/0xbb0
? timerqueue_add+0x66/0xb0
schedule+0x1c/0xa0
schedule_preempt_disabled+0xa/0x10
__mutex_lock.constprop.0+0x271/0x600
blk_mq_quiesce_tagset+0x25/0xc0
nvme_dev_disable+0x9c/0x250
nvme_timeout+0x1fc/0x520
blk_mq_handle_expired+0x5c/0x90
bt_iter+0x7e/0x90
blk_mq_queue_tag_busy_iter+0x27e/0x550
? __blk_mq_complete_request_remote+0x10/0x10
? __blk_mq_complete_request_remote+0x10/0x10
? __call_rcu_common.constprop.0+0x1c0/0x210
blk_mq_timeout_work+0x12d/0x170
process_one_work+0x12e/0x2d0
worker_thread+0x288/0x3a0
? rescuer_thread+0x480/0x480
kthread+0xb8/0xe0
? kthread_park+0x80/0x80
ret_from_fork+0x2d/0x50
? kthread_park+0x80/0x80
ret_from_fork_asm+0x11/0x20
__schedule+0x47c/0xbb0
? xas_find+0x161/0x1a0
schedule+0x1c/0xa0
blk_mq_freeze_queue_wait+0x3d/0x70
? destroy_sched_domains_rcu+0x30/0x30
blk_mq_update_tag_set_shared+0x44/0x80
blk_mq_exit_queue+0x141/0x150
del_gendisk+0x25a/0x2d0
nvme_ns_remove+0xc9/0x170
nvme_remove_namespaces+0xc7/0x100
nvme_remove+0x62/0x150
pci_device_remove+0x23/0x60
device_release_driver_internal+0x159/0x200
unbind_store+0x99/0xa0
kernfs_fop_write_iter+0x112/0x1e0
vfs_write+0x2b1/0x3d0
ksys_write+0x4e/0xb0
do_syscall_64+0x5b/0x160
entry_SYSCALL_64_after_hwframe+0x4b/0x53
The top stacktrace is showing nvme_timeout() called to handle nvme
command timeout. timeout handler is trying to disable the controller and
as a first step, it needs to blk_mq_quiesce_tagset() to tell blk-mq not
to call queue callback handlers. The thread is stuck waiting for
set->tag_list_lock as it tries to walk the queues in set->tag_list.
The lock is held by the second thread in the bottom stack which is
waiting for one of queues to be frozen. The queue usage counter will
drop to zero after nvme_timeout() finishes, and this will not happen
because the thread will wait for this mutex forever.
Given that [un]quiescing queue is an operation that does not need to
sleep, update blk_mq_[un]quiesce_tagset() to use RCU instead of taking
set->tag_list_lock, update blk_mq_{add,del}_queue_tag_set() to use RCU
safe list operations. Also, delete INIT_LIST_HEAD(&q->tag_set_list)
in blk_mq_del_queue_tag_set() because we can not re-initialize it while
the list is being traversed under RCU. The deleted queue will not be
added/deleted to/from a tagset and it will be freed in blk_free_queue()
after the end of RCU grace period. |