| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
uprobes/x86: Harden uretprobe syscall trampoline check
Jann reported a possible issue when trampoline_check_ip returns
address near the bottom of the address space that is allowed to
call into the syscall if uretprobes are not set up:
https://lore.kernel.org/bpf/202502081235.5A6F352985@keescook/T/#m9d416df341b8fbc11737dacbcd29f0054413cbbf
Though the mmap minimum address restrictions will typically prevent
creating mappings there, let's make sure uretprobe syscall checks
for that. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/microcode/AMD: Fix __apply_microcode_amd()'s return value
When verify_sha256_digest() fails, __apply_microcode_amd() should propagate
the failure by returning false (and not -1 which is promoted to true). |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: BPF: Don't override subprog's return value
The verifier test `calls: div by 0 in subprog` triggers a panic at the
ld.bu instruction. The ld.bu insn is trying to load byte from memory
address returned by the subprog. The subprog actually set the correct
address at the a5 register (dedicated register for BPF return values).
But at commit 73c359d1d356 ("LoongArch: BPF: Sign-extend return values")
we also sign extended a5 to the a0 register (return value in LoongArch).
For function call insn, we later propagate the a0 register back to a5
register. This is right for native calls but wrong for bpf2bpf calls
which expect zero-extended return value in a5 register. So only move a0
to a5 for native calls (i.e. non-BPF_PSEUDO_CALL). |
| In the Linux kernel, the following vulnerability has been resolved:
net: ibmveth: make veth_pool_store stop hanging
v2:
- Created a single error handling unlock and exit in veth_pool_store
- Greatly expanded commit message with previous explanatory-only text
Summary: Use rtnl_mutex to synchronize veth_pool_store with itself,
ibmveth_close and ibmveth_open, preventing multiple calls in a row to
napi_disable.
Background: Two (or more) threads could call veth_pool_store through
writing to /sys/devices/vio/30000002/pool*/*. You can do this easily
with a little shell script. This causes a hang.
I configured LOCKDEP, compiled ibmveth.c with DEBUG, and built a new
kernel. I ran this test again and saw:
Setting pool0/active to 0
Setting pool1/active to 1
[ 73.911067][ T4365] ibmveth 30000002 eth0: close starting
Setting pool1/active to 1
Setting pool1/active to 0
[ 73.911367][ T4366] ibmveth 30000002 eth0: close starting
[ 73.916056][ T4365] ibmveth 30000002 eth0: close complete
[ 73.916064][ T4365] ibmveth 30000002 eth0: open starting
[ 110.808564][ T712] systemd-journald[712]: Sent WATCHDOG=1 notification.
[ 230.808495][ T712] systemd-journald[712]: Sent WATCHDOG=1 notification.
[ 243.683786][ T123] INFO: task stress.sh:4365 blocked for more than 122 seconds.
[ 243.683827][ T123] Not tainted 6.14.0-01103-g2df0c02dab82-dirty #8
[ 243.683833][ T123] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 243.683838][ T123] task:stress.sh state:D stack:28096 pid:4365 tgid:4365 ppid:4364 task_flags:0x400040 flags:0x00042000
[ 243.683852][ T123] Call Trace:
[ 243.683857][ T123] [c00000000c38f690] [0000000000000001] 0x1 (unreliable)
[ 243.683868][ T123] [c00000000c38f840] [c00000000001f908] __switch_to+0x318/0x4e0
[ 243.683878][ T123] [c00000000c38f8a0] [c000000001549a70] __schedule+0x500/0x12a0
[ 243.683888][ T123] [c00000000c38f9a0] [c00000000154a878] schedule+0x68/0x210
[ 243.683896][ T123] [c00000000c38f9d0] [c00000000154ac80] schedule_preempt_disabled+0x30/0x50
[ 243.683904][ T123] [c00000000c38fa00] [c00000000154dbb0] __mutex_lock+0x730/0x10f0
[ 243.683913][ T123] [c00000000c38fb10] [c000000001154d40] napi_enable+0x30/0x60
[ 243.683921][ T123] [c00000000c38fb40] [c000000000f4ae94] ibmveth_open+0x68/0x5dc
[ 243.683928][ T123] [c00000000c38fbe0] [c000000000f4aa20] veth_pool_store+0x220/0x270
[ 243.683936][ T123] [c00000000c38fc70] [c000000000826278] sysfs_kf_write+0x68/0xb0
[ 243.683944][ T123] [c00000000c38fcb0] [c0000000008240b8] kernfs_fop_write_iter+0x198/0x2d0
[ 243.683951][ T123] [c00000000c38fd00] [c00000000071b9ac] vfs_write+0x34c/0x650
[ 243.683958][ T123] [c00000000c38fdc0] [c00000000071bea8] ksys_write+0x88/0x150
[ 243.683966][ T123] [c00000000c38fe10] [c0000000000317f4] system_call_exception+0x124/0x340
[ 243.683973][ T123] [c00000000c38fe50] [c00000000000d05c] system_call_vectored_common+0x15c/0x2ec
...
[ 243.684087][ T123] Showing all locks held in the system:
[ 243.684095][ T123] 1 lock held by khungtaskd/123:
[ 243.684099][ T123] #0: c00000000278e370 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x50/0x248
[ 243.684114][ T123] 4 locks held by stress.sh/4365:
[ 243.684119][ T123] #0: c00000003a4cd3f8 (sb_writers#3){.+.+}-{0:0}, at: ksys_write+0x88/0x150
[ 243.684132][ T123] #1: c000000041aea888 (&of->mutex#2){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x154/0x2d0
[ 243.684143][ T123] #2: c0000000366fb9a8 (kn->active#64){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x160/0x2d0
[ 243.684155][ T123] #3: c000000035ff4cb8 (&dev->lock){+.+.}-{3:3}, at: napi_enable+0x30/0x60
[ 243.684166][ T123] 5 locks held by stress.sh/4366:
[ 243.684170][ T123] #0: c00000003a4cd3f8 (sb_writers#3){.+.+}-{0:0}, at: ksys_write+0x88/0x150
[ 243.
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: decrease cached dst counters in dst_release
Upstream fix ac888d58869b ("net: do not delay dst_entries_add() in
dst_release()") moved decrementing the dst count from dst_destroy to
dst_release to avoid accessing already freed data in case of netns
dismantle. However in case CONFIG_DST_CACHE is enabled and OvS+tunnels
are used, this fix is incomplete as the same issue will be seen for
cached dsts:
Unable to handle kernel paging request at virtual address ffff5aabf6b5c000
Call trace:
percpu_counter_add_batch+0x3c/0x160 (P)
dst_release+0xec/0x108
dst_cache_destroy+0x68/0xd8
dst_destroy+0x13c/0x168
dst_destroy_rcu+0x1c/0xb0
rcu_do_batch+0x18c/0x7d0
rcu_core+0x174/0x378
rcu_core_si+0x18/0x30
Fix this by invalidating the cache, and thus decrementing cached dst
counters, in dst_release too. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/gup: reject FOLL_SPLIT_PMD with hugetlb VMAs
Patch series "mm: fixes for device-exclusive entries (hmm)", v2.
Discussing the PageTail() call in make_device_exclusive_range() with
Willy, I recently discovered [1] that device-exclusive handling does not
properly work with THP, making the hmm-tests selftests fail if THPs are
enabled on the system.
Looking into more details, I found that hugetlb is not properly fenced,
and I realized that something that was bugging me for longer -- how
device-exclusive entries interact with mapcounts -- completely breaks
migration/swapout/split/hwpoison handling of these folios while they have
device-exclusive PTEs.
The program below can be used to allocate 1 GiB worth of pages and making
them device-exclusive on a kernel with CONFIG_TEST_HMM.
Once they are device-exclusive, these folios cannot get swapped out
(proc$pid/smaps_rollup will always indicate 1 GiB RSS no matter how much
one forces memory reclaim), and when having a memory block onlined to
ZONE_MOVABLE, trying to offline it will loop forever and complain about
failed migration of a page that should be movable.
# echo offline > /sys/devices/system/memory/memory136/state
# echo online_movable > /sys/devices/system/memory/memory136/state
# ./hmm-swap &
... wait until everything is device-exclusive
# echo offline > /sys/devices/system/memory/memory136/state
[ 285.193431][T14882] page: refcount:2 mapcount:0 mapping:0000000000000000
index:0x7f20671f7 pfn:0x442b6a
[ 285.196618][T14882] memcg:ffff888179298000
[ 285.198085][T14882] anon flags: 0x5fff0000002091c(referenced|uptodate|
dirty|active|owner_2|swapbacked|node=1|zone=3|lastcpupid=0x7ff)
[ 285.201734][T14882] raw: ...
[ 285.204464][T14882] raw: ...
[ 285.207196][T14882] page dumped because: migration failure
[ 285.209072][T14882] page_owner tracks the page as allocated
[ 285.210915][T14882] page last allocated via order 0, migratetype
Movable, gfp_mask 0x140dca(GFP_HIGHUSER_MOVABLE|__GFP_COMP|__GFP_ZERO),
id 14926, tgid 14926 (hmm-swap), ts 254506295376, free_ts 227402023774
[ 285.216765][T14882] post_alloc_hook+0x197/0x1b0
[ 285.218874][T14882] get_page_from_freelist+0x76e/0x3280
[ 285.220864][T14882] __alloc_frozen_pages_noprof+0x38e/0x2740
[ 285.223302][T14882] alloc_pages_mpol+0x1fc/0x540
[ 285.225130][T14882] folio_alloc_mpol_noprof+0x36/0x340
[ 285.227222][T14882] vma_alloc_folio_noprof+0xee/0x1a0
[ 285.229074][T14882] __handle_mm_fault+0x2b38/0x56a0
[ 285.230822][T14882] handle_mm_fault+0x368/0x9f0
...
This series fixes all issues I found so far. There is no easy way to fix
without a bigger rework/cleanup. I have a bunch of cleanups on top (some
previous sent, some the result of the discussion in v1) that I will send
out separately once this landed and I get to it.
I wish we could just use some special present PROT_NONE PTEs instead of
these (non-present, non-none) fake-swap entries; but that just results in
the same problem we keep having (lack of spare PTE bits), and staring at
other similar fake-swap entries, that ship has sailed.
With this series, make_device_exclusive() doesn't actually belong into
mm/rmap.c anymore, but I'll leave moving that for another day.
I only tested this series with the hmm-tests selftests due to lack of HW,
so I'd appreciate some testing, especially if the interaction between two
GPUs wanting a device-exclusive entry works as expected.
<program>
#include <stdio.h>
#include <fcntl.h>
#include <stdint.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/ioctl.h>
#define HMM_DMIRROR_EXCLUSIVE _IOWR('H', 0x05, struct hmm_dmirror_cmd)
struct hmm_dmirror_cmd {
__u64 addr;
__u64 ptr;
__u64 npages;
__u64 cpages;
__u64 faults;
};
const size_t size = 1 * 1024 * 1024 * 1024ul;
const size_t chunk_size = 2 * 1024 * 1024ul;
int m
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Fix null-ptr-deref in avs_component_probe()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
avs_component_probe() does not check for this case, which results in a
NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: free routing table on probe failure
If complete = true in dsa_tree_setup(), it means that we are the last
switch of the tree which is successfully probing, and we should be
setting up all switches from our probe path.
After "complete" becomes true, dsa_tree_setup_cpu_ports() or any
subsequent function may fail. If that happens, the entire tree setup is
in limbo: the first N-1 switches have successfully finished probing
(doing nothing but having allocated persistent memory in the tree's
dst->ports, and maybe dst->rtable), and switch N failed to probe, ending
the tree setup process before anything is tangible from the user's PoV.
If switch N fails to probe, its memory (ports) will be freed and removed
from dst->ports. However, the dst->rtable elements pointing to its ports,
as created by dsa_link_touch(), will remain there, and will lead to
use-after-free if dereferenced.
If dsa_tree_setup_switches() returns -EPROBE_DEFER, which is entirely
possible because that is where ds->ops->setup() is, we get a kasan
report like this:
==================================================================
BUG: KASAN: slab-use-after-free in mv88e6xxx_setup_upstream_port+0x240/0x568
Read of size 8 at addr ffff000004f56020 by task kworker/u8:3/42
Call trace:
__asan_report_load8_noabort+0x20/0x30
mv88e6xxx_setup_upstream_port+0x240/0x568
mv88e6xxx_setup+0xebc/0x1eb0
dsa_register_switch+0x1af4/0x2ae0
mv88e6xxx_register_switch+0x1b8/0x2a8
mv88e6xxx_probe+0xc4c/0xf60
mdio_probe+0x78/0xb8
really_probe+0x2b8/0x5a8
__driver_probe_device+0x164/0x298
driver_probe_device+0x78/0x258
__device_attach_driver+0x274/0x350
Allocated by task 42:
__kasan_kmalloc+0x84/0xa0
__kmalloc_cache_noprof+0x298/0x490
dsa_switch_touch_ports+0x174/0x3d8
dsa_register_switch+0x800/0x2ae0
mv88e6xxx_register_switch+0x1b8/0x2a8
mv88e6xxx_probe+0xc4c/0xf60
mdio_probe+0x78/0xb8
really_probe+0x2b8/0x5a8
__driver_probe_device+0x164/0x298
driver_probe_device+0x78/0x258
__device_attach_driver+0x274/0x350
Freed by task 42:
__kasan_slab_free+0x48/0x68
kfree+0x138/0x418
dsa_register_switch+0x2694/0x2ae0
mv88e6xxx_register_switch+0x1b8/0x2a8
mv88e6xxx_probe+0xc4c/0xf60
mdio_probe+0x78/0xb8
really_probe+0x2b8/0x5a8
__driver_probe_device+0x164/0x298
driver_probe_device+0x78/0x258
__device_attach_driver+0x274/0x350
The simplest way to fix the bug is to delete the routing table in its
entirety. dsa_tree_setup_routing_table() has no problem in regenerating
it even if we deleted links between ports other than those of switch N,
because dsa_link_touch() first checks whether the port pair already
exists in dst->rtable, allocating if not.
The deletion of the routing table in its entirety already exists in
dsa_tree_teardown(), so refactor that into a function that can also be
called from the tree setup error path.
In my analysis of the commit to blame, it is the one which added
dsa_link elements to dst->rtable. Prior to that, each switch had its own
ds->rtable which is freed when the switch fails to probe. But the tree
is potentially persistent memory. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "openvswitch: switch to per-action label counting in conntrack"
Currently, ovs_ct_set_labels() is only called for confirmed conntrack
entries (ct) within ovs_ct_commit(). However, if the conntrack entry
does not have the labels_ext extension, attempting to allocate it in
ovs_ct_get_conn_labels() for a confirmed entry triggers a warning in
nf_ct_ext_add():
WARN_ON(nf_ct_is_confirmed(ct));
This happens when the conntrack entry is created externally before OVS
increments net->ct.labels_used. The issue has become more likely since
commit fcb1aa5163b1 ("openvswitch: switch to per-action label counting
in conntrack"), which changed to use per-action label counting and
increment net->ct.labels_used when a flow with ct action is added.
Since there’s no straightforward way to fully resolve this issue at the
moment, this reverts the commit to avoid breaking existing use cases. |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Validate prev_cpu in scx_bpf_select_cpu_dfl()
If a BPF scheduler provides an invalid CPU (outside the nr_cpu_ids
range) as prev_cpu to scx_bpf_select_cpu_dfl() it can cause a kernel
crash.
To prevent this, validate prev_cpu in scx_bpf_select_cpu_dfl() and
trigger an scx error if an invalid CPU is specified. |
| Authorization Bypass Through User-Controlled Key vulnerability in Salesforce Tableau Server on Windows, Linux (tab-doc api modules) allows Interface Manipulation (data access to the production database cluster).This issue affects Tableau Server: before 2025.1.3, before 2024.2.12, before 2023.3.19. |
| Authorization Bypass Through User-Controlled Key vulnerability in Salesforce Tableau Server on Windows, Linux (set-initial-sql tabdoc command modules) allows Interface Manipulation (data access to the production database cluster). This issue affects Tableau Server: before 2025.1.3, before 2024.2.12, before 2023.3.19. |
| Authorization Bypass Through User-Controlled Key vulnerability in Salesforce Tableau Server on Windows, Linux (validate-initial-sql api modules) allows Interface Manipulation (data access to the production database cluster). This issue affects Tableau Server: before 2025.1.3, before 2024.2.12, before 2023.3.19. |
| Unrestricted Upload of File with Dangerous Type vulnerability in Salesforce Tableau Server on Windows, Linux (Extensible Protocol Service modules) allows Alternative Execution Due to Deceptive Filenames (RCE). This issue affects Tableau Server: before 2025.1.3, before 2024.2.12, before 2023.3.19. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mctp: unshare packets when reassembling
Ensure that the frag_list used for reassembly isn't shared with other
packets. This avoids incorrect reassembly when packets are cloned, and
prevents a memory leak due to circular references between fragments and
their skb_shared_info.
The upcoming MCTP-over-USB driver uses skb_clone which can trigger the
problem - other MCTP drivers don't share SKBs.
A kunit test is added to reproduce the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
eth: bnxt: return fail if interface is down in bnxt_queue_mem_alloc()
The bnxt_queue_mem_alloc() is called to allocate new queue memory when
a queue is restarted.
It internally accesses rx buffer descriptor corresponding to the index.
The rx buffer descriptor is allocated and set when the interface is up
and it's freed when the interface is down.
So, if queue is restarted if interface is down, kernel panic occurs.
Splat looks like:
BUG: unable to handle page fault for address: 000000000000b240
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 3 UID: 0 PID: 1563 Comm: ncdevmem2 Not tainted 6.14.0-rc2+ #9 844ddba6e7c459cafd0bf4db9a3198e
Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021
RIP: 0010:bnxt_queue_mem_alloc+0x3f/0x4e0 [bnxt_en]
Code: 41 54 4d 89 c4 4d 69 c0 c0 05 00 00 55 48 89 f5 53 48 89 fb 4c 8d b5 40 05 00 00 48 83 ec 15
RSP: 0018:ffff9dcc83fef9e8 EFLAGS: 00010202
RAX: ffffffffc0457720 RBX: ffff934ed8d40000 RCX: 0000000000000000
RDX: 000000000000001f RSI: ffff934ea508f800 RDI: ffff934ea508f808
RBP: ffff934ea508f800 R08: 000000000000b240 R09: ffff934e84f4b000
R10: ffff9dcc83fefa30 R11: ffff934e84f4b000 R12: 000000000000001f
R13: ffff934ed8d40ac0 R14: ffff934ea508fd40 R15: ffff934e84f4b000
FS: 00007fa73888c740(0000) GS:ffff93559f780000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000000b240 CR3: 0000000145a2e000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
<TASK>
? __die+0x20/0x70
? page_fault_oops+0x15a/0x460
? exc_page_fault+0x6e/0x180
? asm_exc_page_fault+0x22/0x30
? __pfx_bnxt_queue_mem_alloc+0x10/0x10 [bnxt_en 7f85e76f4d724ba07471d7e39d9e773aea6597b7]
? bnxt_queue_mem_alloc+0x3f/0x4e0 [bnxt_en 7f85e76f4d724ba07471d7e39d9e773aea6597b7]
netdev_rx_queue_restart+0xc5/0x240
net_devmem_bind_dmabuf_to_queue+0xf8/0x200
netdev_nl_bind_rx_doit+0x3a7/0x450
genl_family_rcv_msg_doit+0xd9/0x130
genl_rcv_msg+0x184/0x2b0
? __pfx_netdev_nl_bind_rx_doit+0x10/0x10
? __pfx_genl_rcv_msg+0x10/0x10
netlink_rcv_skb+0x54/0x100
genl_rcv+0x24/0x40
... |
| IBM Concert Software
1.0.0 through 2.0.0 could allow a user to modify system logs due to improper neutralization of log input. |
| IBM Concert Software
1.0.0 through 2.0.0 could allow a local user to obtain sensitive information from buffers due to improper clearing of heap memory before release. |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: Avoid use of GFP_KERNEL in atomic context
Using GFP_KERNEL in preemption disable context, causing below warning
when CONFIG_DEBUG_ATOMIC_SLEEP is enabled.
[ 32.542271] BUG: sleeping function called from invalid context at include/linux/sched/mm.h:274
[ 32.550883] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
[ 32.558707] preempt_count: 1, expected: 0
[ 32.562710] RCU nest depth: 0, expected: 0
[ 32.566800] CPU: 3 PID: 1 Comm: swapper/0 Tainted: G W 6.2.0-rc2-00269-gae9dcb91c606 #7
[ 32.576188] Hardware name: Marvell CN106XX board (DT)
[ 32.581232] Call trace:
[ 32.583670] dump_backtrace.part.0+0xe0/0xf0
[ 32.587937] show_stack+0x18/0x30
[ 32.591245] dump_stack_lvl+0x68/0x84
[ 32.594900] dump_stack+0x18/0x34
[ 32.598206] __might_resched+0x12c/0x160
[ 32.602122] __might_sleep+0x48/0xa0
[ 32.605689] __kmem_cache_alloc_node+0x2b8/0x2e0
[ 32.610301] __kmalloc+0x58/0x190
[ 32.613610] otx2_sq_aura_pool_init+0x1a8/0x314
[ 32.618134] otx2_open+0x1d4/0x9d0
To avoid use of GFP_ATOMIC for memory allocation, disable preemption
after all memory allocation is done. |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: Fix the use of GFP_KERNEL in atomic context on rt
The commit 4af1b64f80fb ("octeontx2-pf: Fix lmtst ID used in aura
free") uses the get/put_cpu() to protect the usage of percpu pointer
in ->aura_freeptr() callback, but it also unnecessarily disable the
preemption for the blockable memory allocation. The commit 87b93b678e95
("octeontx2-pf: Avoid use of GFP_KERNEL in atomic context") tried to
fix these sleep inside atomic warnings. But it only fix the one for
the non-rt kernel. For the rt kernel, we still get the similar warnings
like below.
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
3 locks held by swapper/0/1:
#0: ffff800009fc5fe8 (rtnl_mutex){+.+.}-{3:3}, at: rtnl_lock+0x24/0x30
#1: ffff000100c276c0 (&mbox->lock){+.+.}-{3:3}, at: otx2_init_hw_resources+0x8c/0x3a4
#2: ffffffbfef6537e0 (&cpu_rcache->lock){+.+.}-{2:2}, at: alloc_iova_fast+0x1ac/0x2ac
Preemption disabled at:
[<ffff800008b1908c>] otx2_rq_aura_pool_init+0x14c/0x284
CPU: 20 PID: 1 Comm: swapper/0 Tainted: G W 6.2.0-rc3-rt1-yocto-preempt-rt #1
Hardware name: Marvell OcteonTX CN96XX board (DT)
Call trace:
dump_backtrace.part.0+0xe8/0xf4
show_stack+0x20/0x30
dump_stack_lvl+0x9c/0xd8
dump_stack+0x18/0x34
__might_resched+0x188/0x224
rt_spin_lock+0x64/0x110
alloc_iova_fast+0x1ac/0x2ac
iommu_dma_alloc_iova+0xd4/0x110
__iommu_dma_map+0x80/0x144
iommu_dma_map_page+0xe8/0x260
dma_map_page_attrs+0xb4/0xc0
__otx2_alloc_rbuf+0x90/0x150
otx2_rq_aura_pool_init+0x1c8/0x284
otx2_init_hw_resources+0xe4/0x3a4
otx2_open+0xf0/0x610
__dev_open+0x104/0x224
__dev_change_flags+0x1e4/0x274
dev_change_flags+0x2c/0x7c
ic_open_devs+0x124/0x2f8
ip_auto_config+0x180/0x42c
do_one_initcall+0x90/0x4dc
do_basic_setup+0x10c/0x14c
kernel_init_freeable+0x10c/0x13c
kernel_init+0x2c/0x140
ret_from_fork+0x10/0x20
Of course, we can shuffle the get/put_cpu() to only wrap the invocation
of ->aura_freeptr() as what commit 87b93b678e95 does. But there are only
two ->aura_freeptr() callbacks, otx2_aura_freeptr() and
cn10k_aura_freeptr(). There is no usage of perpcu variable in the
otx2_aura_freeptr() at all, so the get/put_cpu() seems redundant to it.
We can move the get/put_cpu() into the corresponding callback which
really has the percpu variable usage and avoid the sprinkling of
get/put_cpu() in several places. |