| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ice: validate queue quanta parameters to prevent OOB access
Add queue wraparound prevention in quanta configuration.
Ensure end_qid does not overflow by validating start_qid and num_queues. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: init wiphy_work before allocating rfkill fails
syzbort reported a uninitialize wiphy_work_lock in cfg80211_dev_free. [1]
After rfkill allocation fails, the wiphy release process will be performed,
which will cause cfg80211_dev_free to access the uninitialized wiphy_work
related data.
Move the initialization of wiphy_work to before rfkill initialization to
avoid this issue.
[1]
INFO: trying to register non-static key.
The code is fine but needs lockdep annotation, or maybe
you didn't initialize this object before use?
turning off the locking correctness validator.
CPU: 0 UID: 0 PID: 5935 Comm: syz-executor550 Not tainted 6.14.0-rc6-syzkaller-00103-g4003c9e78778 #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
assign_lock_key kernel/locking/lockdep.c:983 [inline]
register_lock_class+0xc39/0x1240 kernel/locking/lockdep.c:1297
__lock_acquire+0x135/0x3c40 kernel/locking/lockdep.c:5103
lock_acquire.part.0+0x11b/0x380 kernel/locking/lockdep.c:5851
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0x3a/0x60 kernel/locking/spinlock.c:162
cfg80211_dev_free+0x30/0x3d0 net/wireless/core.c:1196
device_release+0xa1/0x240 drivers/base/core.c:2568
kobject_cleanup lib/kobject.c:689 [inline]
kobject_release lib/kobject.c:720 [inline]
kref_put include/linux/kref.h:65 [inline]
kobject_put+0x1e4/0x5a0 lib/kobject.c:737
put_device+0x1f/0x30 drivers/base/core.c:3774
wiphy_free net/wireless/core.c:1224 [inline]
wiphy_new_nm+0x1c1f/0x2160 net/wireless/core.c:562
ieee80211_alloc_hw_nm+0x1b7a/0x2260 net/mac80211/main.c:835
mac80211_hwsim_new_radio+0x1d6/0x54e0 drivers/net/wireless/virtual/mac80211_hwsim.c:5185
hwsim_new_radio_nl+0xb42/0x12b0 drivers/net/wireless/virtual/mac80211_hwsim.c:6242
genl_family_rcv_msg_doit+0x202/0x2f0 net/netlink/genetlink.c:1115
genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline]
genl_rcv_msg+0x565/0x800 net/netlink/genetlink.c:1210
netlink_rcv_skb+0x16b/0x440 net/netlink/af_netlink.c:2533
genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219
netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline]
netlink_unicast+0x53c/0x7f0 net/netlink/af_netlink.c:1338
netlink_sendmsg+0x8b8/0xd70 net/netlink/af_netlink.c:1882
sock_sendmsg_nosec net/socket.c:718 [inline]
__sock_sendmsg net/socket.c:733 [inline]
____sys_sendmsg+0xaaf/0xc90 net/socket.c:2573
___sys_sendmsg+0x135/0x1e0 net/socket.c:2627
__sys_sendmsg+0x16e/0x220 net/socket.c:2659
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
Close: https://syzkaller.appspot.com/bug?extid=aaf0488c83d1d5f4f029 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: goto right label 'out_mmap_sem' in ext4_setattr()
Otherwise, if ext4_inode_attach_jinode() fails, a hung task will
happen because filemap_invalidate_unlock() isn't called to unlock
mapping->invalidate_lock. Like this:
EXT4-fs error (device sda) in ext4_setattr:5557: Out of memory
INFO: task fsstress:374 blocked for more than 122 seconds.
Not tainted 6.14.0-rc1-next-20250206-xfstests-dirty #726
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:fsstress state:D stack:0 pid:374 tgid:374 ppid:373
task_flags:0x440140 flags:0x00000000
Call Trace:
<TASK>
__schedule+0x2c9/0x7f0
schedule+0x27/0xa0
schedule_preempt_disabled+0x15/0x30
rwsem_down_read_slowpath+0x278/0x4c0
down_read+0x59/0xb0
page_cache_ra_unbounded+0x65/0x1b0
filemap_get_pages+0x124/0x3e0
filemap_read+0x114/0x3d0
vfs_read+0x297/0x360
ksys_read+0x6c/0xe0
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix adding folio to bio
>4GB folio is possible on some ARCHs, such as aarch64, 16GB hugepage
is supported, then 'offset' of folio can't be held in 'unsigned int',
cause warning in bio_add_folio_nofail() and IO failure.
Fix it by adjusting 'page' & trimming 'offset' so that `->bi_offset` won't
be overflow, and folio can be added to bio successfully. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid accessing uninitialized curseg
syzbot reports a f2fs bug as below:
F2FS-fs (loop3): Stopped filesystem due to reason: 7
kworker/u8:7: attempt to access beyond end of device
BUG: unable to handle page fault for address: ffffed1604ea3dfa
RIP: 0010:get_ckpt_valid_blocks fs/f2fs/segment.h:361 [inline]
RIP: 0010:has_curseg_enough_space fs/f2fs/segment.h:570 [inline]
RIP: 0010:__get_secs_required fs/f2fs/segment.h:620 [inline]
RIP: 0010:has_not_enough_free_secs fs/f2fs/segment.h:633 [inline]
RIP: 0010:has_enough_free_secs+0x575/0x1660 fs/f2fs/segment.h:649
<TASK>
f2fs_is_checkpoint_ready fs/f2fs/segment.h:671 [inline]
f2fs_write_inode+0x425/0x540 fs/f2fs/inode.c:791
write_inode fs/fs-writeback.c:1525 [inline]
__writeback_single_inode+0x708/0x10d0 fs/fs-writeback.c:1745
writeback_sb_inodes+0x820/0x1360 fs/fs-writeback.c:1976
wb_writeback+0x413/0xb80 fs/fs-writeback.c:2156
wb_do_writeback fs/fs-writeback.c:2303 [inline]
wb_workfn+0x410/0x1080 fs/fs-writeback.c:2343
process_one_work kernel/workqueue.c:3236 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3317
worker_thread+0x870/0xd30 kernel/workqueue.c:3398
kthread+0x7a9/0x920 kernel/kthread.c:464
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Commit 8b10d3653735 ("f2fs: introduce FAULT_NO_SEGMENT") allows to trigger
no free segment fault in allocator, then it will update curseg->segno to
NULL_SEGNO, though, CP_ERROR_FLAG has been set, f2fs_write_inode() missed
to check the flag, and access invalid curseg->segno directly in below call
path, then resulting in panic:
- f2fs_write_inode
- f2fs_is_checkpoint_ready
- has_enough_free_secs
- has_not_enough_free_secs
- __get_secs_required
- has_curseg_enough_space
- get_ckpt_valid_blocks
: access invalid curseg->segno
To avoid this issue, let's:
- check CP_ERROR_FLAG flag in prior to f2fs_is_checkpoint_ready() in
f2fs_write_inode().
- in has_curseg_enough_space(), save curseg->segno into a temp variable,
and verify its validation before use. |
| In the Linux kernel, the following vulnerability has been resolved:
md/md-bitmap: fix wrong bitmap_limit for clustermd when write sb
In clustermd, separate write-intent-bitmaps are used for each cluster
node:
0 4k 8k 12k
-------------------------------------------------------------------
| idle | md super | bm super [0] + bits |
| bm bits[0, contd] | bm super[1] + bits | bm bits[1, contd] |
| bm super[2] + bits | bm bits [2, contd] | bm super[3] + bits |
| bm bits [3, contd] | | |
So in node 1, pg_index in __write_sb_page() could equal to
bitmap->storage.file_pages. Then bitmap_limit will be calculated to
0. md_super_write() will be called with 0 size.
That means the first 4k sb area of node 1 will never be updated
through filemap_write_page().
This bug causes hang of mdadm/clustermd_tests/01r1_Grow_resize.
Here use (pg_index % bitmap->storage.file_pages) to make calculation
of bitmap_limit correct. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid1,raid10: don't ignore IO flags
If blk-wbt is enabled by default, it's found that raid write performance
is quite bad because all IO are throttled by wbt of underlying disks,
due to flag REQ_IDLE is ignored. And turns out this behaviour exist since
blk-wbt is introduced.
Other than REQ_IDLE, other flags should not be ignored as well, for
example REQ_META can be set for filesystems, clearing it can cause priority
reverse problems; And REQ_NOWAIT should not be cleared as well, because
io will wait instead of failing directly in underlying disks.
Fix those problems by keep IO flags from master bio.
Fises: f51d46d0e7cb ("md: add support for REQ_NOWAIT") |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix potential deadloop in prepare_compress_overwrite()
Jan Prusakowski reported a kernel hang issue as below:
When running xfstests on linux-next kernel (6.14.0-rc3, 6.12) I
encountered a problem in generic/475 test where fsstress process
gets blocked in __f2fs_write_data_pages() and the test hangs.
The options I used are:
MKFS_OPTIONS -- -O compression -O extra_attr -O project_quota -O quota /dev/vdc
MOUNT_OPTIONS -- -o acl,user_xattr -o discard,compress_extension=* /dev/vdc /vdc
INFO: task kworker/u8:0:11 blocked for more than 122 seconds.
Not tainted 6.14.0-rc3-xfstests-lockdep #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u8:0 state:D stack:0 pid:11 tgid:11 ppid:2 task_flags:0x4208160 flags:0x00004000
Workqueue: writeback wb_workfn (flush-253:0)
Call Trace:
<TASK>
__schedule+0x309/0x8e0
schedule+0x3a/0x100
schedule_preempt_disabled+0x15/0x30
__mutex_lock+0x59a/0xdb0
__f2fs_write_data_pages+0x3ac/0x400
do_writepages+0xe8/0x290
__writeback_single_inode+0x5c/0x360
writeback_sb_inodes+0x22f/0x570
wb_writeback+0xb0/0x410
wb_do_writeback+0x47/0x2f0
wb_workfn+0x5a/0x1c0
process_one_work+0x223/0x5b0
worker_thread+0x1d5/0x3c0
kthread+0xfd/0x230
ret_from_fork+0x31/0x50
ret_from_fork_asm+0x1a/0x30
</TASK>
The root cause is: once generic/475 starts toload error table to dm
device, f2fs_prepare_compress_overwrite() will loop reading compressed
cluster pages due to IO error, meanwhile it has held .writepages lock,
it can block all other writeback tasks.
Let's fix this issue w/ below changes:
- add f2fs_handle_page_eio() in prepare_compress_overwrite() to
detect IO error.
- detect cp_error earler in f2fs_read_multi_pages(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Clear affinity hint before calling ath12k_pci_free_irq() in error path
If a shared IRQ is used by the driver due to platform limitation, then the
IRQ affinity hint is set right after the allocation of IRQ vectors in
ath12k_pci_msi_alloc(). This does no harm unless one of the functions
requesting the IRQ fails and attempt to free the IRQ.
This may end up with a warning from the IRQ core that is expecting the
affinity hint to be cleared before freeing the IRQ:
kernel/irq/manage.c:
/* make sure affinity_hint is cleaned up */
if (WARN_ON_ONCE(desc->affinity_hint))
desc->affinity_hint = NULL;
So to fix this issue, clear the IRQ affinity hint before calling
ath12k_pci_free_irq() in the error path. The affinity will be cleared once
again further down the error path due to code organization, but that does
no harm. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: Initialize the chan_stats array to zero
The adapter->chan_stats[] array is initialized in
mwifiex_init_channel_scan_gap() with vmalloc(), which doesn't zero out
memory. The array is filled in mwifiex_update_chan_statistics()
and then the user can query the data in mwifiex_cfg80211_dump_survey().
There are two potential issues here. What if the user calls
mwifiex_cfg80211_dump_survey() before the data has been filled in.
Also the mwifiex_update_chan_statistics() function doesn't necessarily
initialize the whole array. Since the array was not initialized at
the start that could result in an information leak.
Also this array is pretty small. It's a maximum of 900 bytes so it's
more appropriate to use kcalloc() instead vmalloc(). |
| In the Linux kernel, the following vulnerability has been resolved:
iio: light: as73211: Ensure buffer holes are zeroed
Given that the buffer is copied to a kfifo that ultimately user space
can read, ensure we zero it. |
| In the Linux kernel, the following vulnerability has been resolved:
tls: fix handling of zero-length records on the rx_list
Each recvmsg() call must process either
- only contiguous DATA records (any number of them)
- one non-DATA record
If the next record has different type than what has already been
processed we break out of the main processing loop. If the record
has already been decrypted (which may be the case for TLS 1.3 where
we don't know type until decryption) we queue the pending record
to the rx_list. Next recvmsg() will pick it up from there.
Queuing the skb to rx_list after zero-copy decrypt is not possible,
since in that case we decrypted directly to the user space buffer,
and we don't have an skb to queue (darg.skb points to the ciphertext
skb for access to metadata like length).
Only data records are allowed zero-copy, and we break the processing
loop after each non-data record. So we should never zero-copy and
then find out that the record type has changed. The corner case
we missed is when the initial record comes from rx_list, and it's
zero length. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: reject on-disk inodes of an unsupported type
Syzbot has reported the following BUG:
kernel BUG at fs/inode.c:668!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 3 UID: 0 PID: 139 Comm: jfsCommit Not tainted 6.12.0-rc4-syzkaller-00085-g4e46774408d9 #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
RIP: 0010:clear_inode+0x168/0x190
Code: 4c 89 f7 e8 ba fe e5 ff e9 61 ff ff ff 44 89 f1 80 e1 07 80 c1 03 38 c1 7c c1 4c 89 f7 e8 90 ff e5 ff eb b7
0b e8 01 5d 7f ff 90 0f 0b e8 f9 5c 7f ff 90 0f 0b e8 f1 5c 7f
RSP: 0018:ffffc900027dfae8 EFLAGS: 00010093
RAX: ffffffff82157a87 RBX: 0000000000000001 RCX: ffff888104d4b980
RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000
RBP: ffffc900027dfc90 R08: ffffffff82157977 R09: fffff520004fbf38
R10: dffffc0000000000 R11: fffff520004fbf38 R12: dffffc0000000000
R13: ffff88811315bc00 R14: ffff88811315bda8 R15: ffff88811315bb80
FS: 0000000000000000(0000) GS:ffff888135f00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005565222e0578 CR3: 0000000026ef0000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __die_body+0x5f/0xb0
? die+0x9e/0xc0
? do_trap+0x15a/0x3a0
? clear_inode+0x168/0x190
? do_error_trap+0x1dc/0x2c0
? clear_inode+0x168/0x190
? __pfx_do_error_trap+0x10/0x10
? report_bug+0x3cd/0x500
? handle_invalid_op+0x34/0x40
? clear_inode+0x168/0x190
? exc_invalid_op+0x38/0x50
? asm_exc_invalid_op+0x1a/0x20
? clear_inode+0x57/0x190
? clear_inode+0x167/0x190
? clear_inode+0x168/0x190
? clear_inode+0x167/0x190
jfs_evict_inode+0xb5/0x440
? __pfx_jfs_evict_inode+0x10/0x10
evict+0x4ea/0x9b0
? __pfx_evict+0x10/0x10
? iput+0x713/0xa50
txUpdateMap+0x931/0xb10
? __pfx_txUpdateMap+0x10/0x10
jfs_lazycommit+0x49a/0xb80
? _raw_spin_unlock_irqrestore+0x8f/0x140
? lockdep_hardirqs_on+0x99/0x150
? __pfx_jfs_lazycommit+0x10/0x10
? __pfx_default_wake_function+0x10/0x10
? __kthread_parkme+0x169/0x1d0
? __pfx_jfs_lazycommit+0x10/0x10
kthread+0x2f2/0x390
? __pfx_jfs_lazycommit+0x10/0x10
? __pfx_kthread+0x10/0x10
ret_from_fork+0x4d/0x80
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
This happens when 'clear_inode()' makes an attempt to finalize an underlying
JFS inode of unknown type. According to JFS layout description from
https://jfs.sourceforge.net/project/pub/jfslayout.pdf, inode types from 5 to
15 are reserved for future extensions and should not be encountered on a valid
filesystem. So add an extra check for valid inode type in 'copy_from_dinode()'. |
| In the Linux kernel, the following vulnerability has been resolved:
hrtimers: Force migrate away hrtimers queued after CPUHP_AP_HRTIMERS_DYING
hrtimers are migrated away from the dying CPU to any online target at
the CPUHP_AP_HRTIMERS_DYING stage in order not to delay bandwidth timers
handling tasks involved in the CPU hotplug forward progress.
However wakeups can still be performed by the outgoing CPU after
CPUHP_AP_HRTIMERS_DYING. Those can result again in bandwidth timers being
armed. Depending on several considerations (crystal ball power management
based election, earliest timer already enqueued, timer migration enabled or
not), the target may eventually be the current CPU even if offline. If that
happens, the timer is eventually ignored.
The most notable example is RCU which had to deal with each and every of
those wake-ups by deferring them to an online CPU, along with related
workarounds:
_ e787644caf76 (rcu: Defer RCU kthreads wakeup when CPU is dying)
_ 9139f93209d1 (rcu/nocb: Fix RT throttling hrtimer armed from offline CPU)
_ f7345ccc62a4 (rcu/nocb: Fix rcuog wake-up from offline softirq)
The problem isn't confined to RCU though as the stop machine kthread
(which runs CPUHP_AP_HRTIMERS_DYING) reports its completion at the end
of its work through cpu_stop_signal_done() and performs a wake up that
eventually arms the deadline server timer:
WARNING: CPU: 94 PID: 588 at kernel/time/hrtimer.c:1086 hrtimer_start_range_ns+0x289/0x2d0
CPU: 94 UID: 0 PID: 588 Comm: migration/94 Not tainted
Stopper: multi_cpu_stop+0x0/0x120 <- stop_machine_cpuslocked+0x66/0xc0
RIP: 0010:hrtimer_start_range_ns+0x289/0x2d0
Call Trace:
<TASK>
start_dl_timer
enqueue_dl_entity
dl_server_start
enqueue_task_fair
enqueue_task
ttwu_do_activate
try_to_wake_up
complete
cpu_stopper_thread
Instead of providing yet another bandaid to work around the situation, fix
it in the hrtimers infrastructure instead: always migrate away a timer to
an online target whenever it is enqueued from an offline CPU.
This will also allow to revert all the above RCU disgraceful hacks. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: hugetlb: independent PMD page table shared count
The folio refcount may be increased unexpectly through try_get_folio() by
caller such as split_huge_pages. In huge_pmd_unshare(), we use refcount
to check whether a pmd page table is shared. The check is incorrect if
the refcount is increased by the above caller, and this can cause the page
table leaked:
BUG: Bad page state in process sh pfn:109324
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x66 pfn:0x109324
flags: 0x17ffff800000000(node=0|zone=2|lastcpupid=0xfffff)
page_type: f2(table)
raw: 017ffff800000000 0000000000000000 0000000000000000 0000000000000000
raw: 0000000000000066 0000000000000000 00000000f2000000 0000000000000000
page dumped because: nonzero mapcount
...
CPU: 31 UID: 0 PID: 7515 Comm: sh Kdump: loaded Tainted: G B 6.13.0-rc2master+ #7
Tainted: [B]=BAD_PAGE
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
Call trace:
show_stack+0x20/0x38 (C)
dump_stack_lvl+0x80/0xf8
dump_stack+0x18/0x28
bad_page+0x8c/0x130
free_page_is_bad_report+0xa4/0xb0
free_unref_page+0x3cc/0x620
__folio_put+0xf4/0x158
split_huge_pages_all+0x1e0/0x3e8
split_huge_pages_write+0x25c/0x2d8
full_proxy_write+0x64/0xd8
vfs_write+0xcc/0x280
ksys_write+0x70/0x110
__arm64_sys_write+0x24/0x38
invoke_syscall+0x50/0x120
el0_svc_common.constprop.0+0xc8/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x34/0x128
el0t_64_sync_handler+0xc8/0xd0
el0t_64_sync+0x190/0x198
The issue may be triggered by damon, offline_page, page_idle, etc, which
will increase the refcount of page table.
1. The page table itself will be discarded after reporting the
"nonzero mapcount".
2. The HugeTLB page mapped by the page table miss freeing since we
treat the page table as shared and a shared page table will not be
unmapped.
Fix it by introducing independent PMD page table shared count. As
described by comment, pt_index/pt_mm/pt_frag_refcount are used for s390
gmap, x86 pgds and powerpc, pt_share_count is used for x86/arm64/riscv
pmds, so we can reuse the field as pt_share_count. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: check folio mapping after unlock in relocate_one_folio()
When we call btrfs_read_folio() to bring a folio uptodate, we unlock the
folio. The result of that is that a different thread can modify the
mapping (like remove it with invalidate) before we call folio_lock().
This results in an invalid page and we need to try again.
In particular, if we are relocating concurrently with aborting a
transaction, this can result in a crash like the following:
BUG: kernel NULL pointer dereference, address: 0000000000000000
PGD 0 P4D 0
Oops: 0000 [#1] SMP
CPU: 76 PID: 1411631 Comm: kworker/u322:5
Workqueue: events_unbound btrfs_reclaim_bgs_work
RIP: 0010:set_page_extent_mapped+0x20/0xb0
RSP: 0018:ffffc900516a7be8 EFLAGS: 00010246
RAX: ffffea009e851d08 RBX: ffffea009e0b1880 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffc900516a7b90 RDI: ffffea009e0b1880
RBP: 0000000003573000 R08: 0000000000000001 R09: ffff88c07fd2f3f0
R10: 0000000000000000 R11: 0000194754b575be R12: 0000000003572000
R13: 0000000003572fff R14: 0000000000100cca R15: 0000000005582fff
FS: 0000000000000000(0000) GS:ffff88c07fd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000407d00f002 CR4: 00000000007706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? __die+0x78/0xc0
? page_fault_oops+0x2a8/0x3a0
? __switch_to+0x133/0x530
? wq_worker_running+0xa/0x40
? exc_page_fault+0x63/0x130
? asm_exc_page_fault+0x22/0x30
? set_page_extent_mapped+0x20/0xb0
relocate_file_extent_cluster+0x1a7/0x940
relocate_data_extent+0xaf/0x120
relocate_block_group+0x20f/0x480
btrfs_relocate_block_group+0x152/0x320
btrfs_relocate_chunk+0x3d/0x120
btrfs_reclaim_bgs_work+0x2ae/0x4e0
process_scheduled_works+0x184/0x370
worker_thread+0xc6/0x3e0
? blk_add_timer+0xb0/0xb0
kthread+0xae/0xe0
? flush_tlb_kernel_range+0x90/0x90
ret_from_fork+0x2f/0x40
? flush_tlb_kernel_range+0x90/0x90
ret_from_fork_asm+0x11/0x20
</TASK>
This occurs because cleanup_one_transaction() calls
destroy_delalloc_inodes() which calls invalidate_inode_pages2() which
takes the folio_lock before setting mapping to NULL. We fail to check
this, and subsequently call set_extent_mapping(), which assumes that
mapping != NULL (in fact it asserts that in debug mode)
Note that the "fixes" patch here is not the one that introduced the
race (the very first iteration of this code from 2009) but a more recent
change that made this particular crash happen in practice. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check link_res->hpo_dp_link_enc before using it
[WHAT & HOW]
Functions dp_enable_link_phy and dp_disable_link_phy can pass link_res
without initializing hpo_dp_link_enc and it is necessary to check for
null before dereferencing.
This fixes 2 FORWARD_NULL issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
ptp: Fix possible memory leak in ptp_clock_register()
I got memory leak as follows when doing fault injection test:
unreferenced object 0xffff88800906c618 (size 8):
comm "i2c-idt82p33931", pid 4421, jiffies 4294948083 (age 13.188s)
hex dump (first 8 bytes):
70 74 70 30 00 00 00 00 ptp0....
backtrace:
[<00000000312ed458>] __kmalloc_track_caller+0x19f/0x3a0
[<0000000079f6e2ff>] kvasprintf+0xb5/0x150
[<0000000026aae54f>] kvasprintf_const+0x60/0x190
[<00000000f323a5f7>] kobject_set_name_vargs+0x56/0x150
[<000000004e35abdd>] dev_set_name+0xc0/0x100
[<00000000f20cfe25>] ptp_clock_register+0x9f4/0xd30 [ptp]
[<000000008bb9f0de>] idt82p33_probe.cold+0x8b6/0x1561 [ptp_idt82p33]
When posix_clock_register() returns an error, the name allocated
in dev_set_name() will be leaked, the put_device() should be used
to give up the device reference, then the name will be freed in
kobject_cleanup() and other memory will be freed in ptp_clock_release(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: handle the case of pci_channel_io_frozen only in amdgpu_pci_resume
In current code, when a PCI error state pci_channel_io_normal is detectd,
it will report PCI_ERS_RESULT_CAN_RECOVER status to PCI driver, and PCI
driver will continue the execution of PCI resume callback report_resume by
pci_walk_bridge, and the callback will go into amdgpu_pci_resume
finally, where write lock is releasd unconditionally without acquiring
such lock first. In this case, a deadlock will happen when other threads
start to acquire the read lock.
To fix this, add a member in amdgpu_device strucutre to cache
pci_channel_state, and only continue the execution in amdgpu_pci_resume
when it's pci_channel_io_frozen. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Return CQE error if invalid lkey was supplied
RXE is missing update of WQE status in LOCAL_WRITE failures. This caused
the following kernel panic if someone sent an atomic operation with an
explicitly wrong lkey.
[leonro@vm ~]$ mkt test
test_atomic_invalid_lkey (tests.test_atomic.AtomicTest) ...
WARNING: CPU: 5 PID: 263 at drivers/infiniband/sw/rxe/rxe_comp.c:740 rxe_completer+0x1a6d/0x2e30 [rdma_rxe]
Modules linked in: crc32_generic rdma_rxe ip6_udp_tunnel udp_tunnel rdma_ucm rdma_cm ib_umad ib_ipoib iw_cm ib_cm mlx5_ib ib_uverbs ib_core mlx5_core ptp pps_core
CPU: 5 PID: 263 Comm: python3 Not tainted 5.13.0-rc1+ #2936
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:rxe_completer+0x1a6d/0x2e30 [rdma_rxe]
Code: 03 0f 8e 65 0e 00 00 3b 93 10 06 00 00 0f 84 82 0a 00 00 4c 89 ff 4c 89 44 24 38 e8 2d 74 a9 e1 4c 8b 44 24 38 e9 1c f5 ff ff <0f> 0b e9 0c e8 ff ff b8 05 00 00 00 41 bf 05 00 00 00 e9 ab e7 ff
RSP: 0018:ffff8880158af090 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888016a78000 RCX: ffffffffa0cf1652
RDX: 1ffff9200004b442 RSI: 0000000000000004 RDI: ffffc9000025a210
RBP: dffffc0000000000 R08: 00000000ffffffea R09: ffff88801617740b
R10: ffffed1002c2ee81 R11: 0000000000000007 R12: ffff88800f3b63e8
R13: ffff888016a78008 R14: ffffc9000025a180 R15: 000000000000000c
FS: 00007f88b622a740(0000) GS:ffff88806d540000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f88b5a1fa10 CR3: 000000000d848004 CR4: 0000000000370ea0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
rxe_do_task+0x130/0x230 [rdma_rxe]
rxe_rcv+0xb11/0x1df0 [rdma_rxe]
rxe_loopback+0x157/0x1e0 [rdma_rxe]
rxe_responder+0x5532/0x7620 [rdma_rxe]
rxe_do_task+0x130/0x230 [rdma_rxe]
rxe_rcv+0x9c8/0x1df0 [rdma_rxe]
rxe_loopback+0x157/0x1e0 [rdma_rxe]
rxe_requester+0x1efd/0x58c0 [rdma_rxe]
rxe_do_task+0x130/0x230 [rdma_rxe]
rxe_post_send+0x998/0x1860 [rdma_rxe]
ib_uverbs_post_send+0xd5f/0x1220 [ib_uverbs]
ib_uverbs_write+0x847/0xc80 [ib_uverbs]
vfs_write+0x1c5/0x840
ksys_write+0x176/0x1d0
do_syscall_64+0x3f/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae |