Total
684 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-49708 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-24 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ext4: fix bug_on ext4_mb_use_inode_pa Hulk Robot reported a BUG_ON: ================================================================== kernel BUG at fs/ext4/mballoc.c:3211! [...] RIP: 0010:ext4_mb_mark_diskspace_used.cold+0x85/0x136f [...] Call Trace: ext4_mb_new_blocks+0x9df/0x5d30 ext4_ext_map_blocks+0x1803/0x4d80 ext4_map_blocks+0x3a4/0x1a10 ext4_writepages+0x126d/0x2c30 do_writepages+0x7f/0x1b0 __filemap_fdatawrite_range+0x285/0x3b0 file_write_and_wait_range+0xb1/0x140 ext4_sync_file+0x1aa/0xca0 vfs_fsync_range+0xfb/0x260 do_fsync+0x48/0xa0 [...] ================================================================== Above issue may happen as follows: ------------------------------------- do_fsync vfs_fsync_range ext4_sync_file file_write_and_wait_range __filemap_fdatawrite_range do_writepages ext4_writepages mpage_map_and_submit_extent mpage_map_one_extent ext4_map_blocks ext4_mb_new_blocks ext4_mb_normalize_request >>> start + size <= ac->ac_o_ex.fe_logical ext4_mb_regular_allocator ext4_mb_simple_scan_group ext4_mb_use_best_found ext4_mb_new_preallocation ext4_mb_new_inode_pa ext4_mb_use_inode_pa >>> set ac->ac_b_ex.fe_len <= 0 ext4_mb_mark_diskspace_used >>> BUG_ON(ac->ac_b_ex.fe_len <= 0); we can easily reproduce this problem with the following commands: `fallocate -l100M disk` `mkfs.ext4 -b 1024 -g 256 disk` `mount disk /mnt` `fsstress -d /mnt -l 0 -n 1000 -p 1` The size must be smaller than or equal to EXT4_BLOCKS_PER_GROUP. Therefore, "start + size <= ac->ac_o_ex.fe_logical" may occur when the size is truncated. So start should be the start position of the group where ac_o_ex.fe_logical is located after alignment. In addition, when the value of fe_logical or EXT4_BLOCKS_PER_GROUP is very large, the value calculated by start_off is more accurate. | ||||
| CVE-2025-59530 | 1 Quic-go Project | 1 Quic-go | 2025-10-21 | 7.5 High |
| quic-go is an implementation of the QUIC protocol in Go. In versions prior to 0.49.0, 0.54.1, and 0.55.0, a misbehaving or malicious server can cause a denial-of-service (DoS) attack on the quic-go client by triggering an assertion failure, leading to a process crash. This requires no authentication and can be exploited during the handshake phase. This was observed in the wild with certain server implementations. quic-go needs to be able to handle misbehaving server implementations, including those that prematurely send a HANDSHAKE_DONE frame. Versions 0.49.0, 0.54.1, and 0.55.0 discard Initial keys when receiving a HANDSHAKE_DONE frame, thereby correctly handling premature HANDSHAKE_DONE frames. | ||||
| CVE-2022-49348 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-21 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ext4: filter out EXT4_FC_REPLAY from on-disk superblock field s_state The EXT4_FC_REPLAY bit in sbi->s_mount_state is used to indicate that we are in the middle of replay the fast commit journal. This was actually a mistake, since the sbi->s_mount_info is initialized from es->s_state. Arguably s_mount_state is misleadingly named, but the name is historical --- s_mount_state and s_state dates back to ext2. What should have been used is the ext4_{set,clear,test}_mount_flag() inline functions, which sets EXT4_MF_* bits in sbi->s_mount_flags. The problem with using EXT4_FC_REPLAY is that a maliciously corrupted superblock could result in EXT4_FC_REPLAY getting set in s_mount_state. This bypasses some sanity checks, and this can trigger a BUG() in ext4_es_cache_extent(). As a easy-to-backport-fix, filter out the EXT4_FC_REPLAY bit for now. We should eventually transition away from EXT4_FC_REPLAY to something like EXT4_MF_REPLAY. | ||||
| CVE-2025-55560 | 2 Linuxfoundation, Pytorch | 2 Pytorch, Pytorch | 2025-10-14 | 7.5 High |
| An issue in pytorch v2.7.0 can lead to a Denial of Service (DoS) when a PyTorch model consists of torch.Tensor.to_sparse() and torch.Tensor.to_dense() and is compiled by Inductor. | ||||
| CVE-2023-5871 | 1 Redhat | 2 Enterprise Linux, Libnbd | 2025-10-09 | 5.3 Medium |
| A flaw was found in libnbd, due to a malicious Network Block Device (NBD), a protocol for accessing Block Devices such as hard disks over a Network. This issue may allow a malicious NBD server to cause a Denial of Service. | ||||
| CVE-2025-46149 | 2 Linuxfoundation, Pytorch | 2 Pytorch, Pytorch | 2025-10-03 | 5.3 Medium |
| In PyTorch before 2.7.0, when inductor is used, nn.Fold has an assertion error. | ||||
| CVE-2025-55551 | 2 Linuxfoundation, Pytorch | 2 Pytorch, Pytorch | 2025-10-03 | 7.5 High |
| An issue in the component torch.linalg.lu of pytorch v2.8.0 allows attackers to cause a Denial of Service (DoS) when performing a slice operation. | ||||
| CVE-2024-40916 | 1 Linux | 1 Linux Kernel | 2025-10-03 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/exynos: hdmi: report safe 640x480 mode as a fallback when no EDID found When reading EDID fails and driver reports no modes available, the DRM core adds an artificial 1024x786 mode to the connector. Unfortunately some variants of the Exynos HDMI (like the one in Exynos4 SoCs) are not able to drive such mode, so report a safe 640x480 mode instead of nothing in case of the EDID reading failure. This fixes the following issue observed on Trats2 board since commit 13d5b040363c ("drm/exynos: do not return negative values from .get_modes()"): [drm] Exynos DRM: using 11c00000.fimd device for DMA mapping operations exynos-drm exynos-drm: bound 11c00000.fimd (ops fimd_component_ops) exynos-drm exynos-drm: bound 12c10000.mixer (ops mixer_component_ops) exynos-dsi 11c80000.dsi: [drm:samsung_dsim_host_attach] Attached s6e8aa0 device (lanes:4 bpp:24 mode-flags:0x10b) exynos-drm exynos-drm: bound 11c80000.dsi (ops exynos_dsi_component_ops) exynos-drm exynos-drm: bound 12d00000.hdmi (ops hdmi_component_ops) [drm] Initialized exynos 1.1.0 20180330 for exynos-drm on minor 1 exynos-hdmi 12d00000.hdmi: [drm:hdmiphy_enable.part.0] *ERROR* PLL could not reach steady state panel-samsung-s6e8aa0 11c80000.dsi.0: ID: 0xa2, 0x20, 0x8c exynos-mixer 12c10000.mixer: timeout waiting for VSYNC ------------[ cut here ]------------ WARNING: CPU: 1 PID: 11 at drivers/gpu/drm/drm_atomic_helper.c:1682 drm_atomic_helper_wait_for_vblanks.part.0+0x2b0/0x2b8 [CRTC:70:crtc-1] vblank wait timed out Modules linked in: CPU: 1 PID: 11 Comm: kworker/u16:0 Not tainted 6.9.0-rc5-next-20240424 #14913 Hardware name: Samsung Exynos (Flattened Device Tree) Workqueue: events_unbound deferred_probe_work_func Call trace: unwind_backtrace from show_stack+0x10/0x14 show_stack from dump_stack_lvl+0x68/0x88 dump_stack_lvl from __warn+0x7c/0x1c4 __warn from warn_slowpath_fmt+0x11c/0x1a8 warn_slowpath_fmt from drm_atomic_helper_wait_for_vblanks.part.0+0x2b0/0x2b8 drm_atomic_helper_wait_for_vblanks.part.0 from drm_atomic_helper_commit_tail_rpm+0x7c/0x8c drm_atomic_helper_commit_tail_rpm from commit_tail+0x9c/0x184 commit_tail from drm_atomic_helper_commit+0x168/0x190 drm_atomic_helper_commit from drm_atomic_commit+0xb4/0xe0 drm_atomic_commit from drm_client_modeset_commit_atomic+0x23c/0x27c drm_client_modeset_commit_atomic from drm_client_modeset_commit_locked+0x60/0x1cc drm_client_modeset_commit_locked from drm_client_modeset_commit+0x24/0x40 drm_client_modeset_commit from __drm_fb_helper_restore_fbdev_mode_unlocked+0x9c/0xc4 __drm_fb_helper_restore_fbdev_mode_unlocked from drm_fb_helper_set_par+0x2c/0x3c drm_fb_helper_set_par from fbcon_init+0x3d8/0x550 fbcon_init from visual_init+0xc0/0x108 visual_init from do_bind_con_driver+0x1b8/0x3a4 do_bind_con_driver from do_take_over_console+0x140/0x1ec do_take_over_console from do_fbcon_takeover+0x70/0xd0 do_fbcon_takeover from fbcon_fb_registered+0x19c/0x1ac fbcon_fb_registered from register_framebuffer+0x190/0x21c register_framebuffer from __drm_fb_helper_initial_config_and_unlock+0x350/0x574 __drm_fb_helper_initial_config_and_unlock from exynos_drm_fbdev_client_hotplug+0x6c/0xb0 exynos_drm_fbdev_client_hotplug from drm_client_register+0x58/0x94 drm_client_register from exynos_drm_bind+0x160/0x190 exynos_drm_bind from try_to_bring_up_aggregate_device+0x200/0x2d8 try_to_bring_up_aggregate_device from __component_add+0xb0/0x170 __component_add from mixer_probe+0x74/0xcc mixer_probe from platform_probe+0x5c/0xb8 platform_probe from really_probe+0xe0/0x3d8 really_probe from __driver_probe_device+0x9c/0x1e4 __driver_probe_device from driver_probe_device+0x30/0xc0 driver_probe_device from __device_attach_driver+0xa8/0x120 __device_attach_driver from bus_for_each_drv+0x80/0xcc bus_for_each_drv from __device_attach+0xac/0x1fc __device_attach from bus_probe_device+0x8c/0x90 bus_probe_device from deferred_probe_work_func+0 ---truncated--- | ||||
| CVE-2024-39949 | 1 Dahuasecurity | 115 Nvr4104-4ks2\/l, Nvr4104-4ks2\/l Firmware, Nvr4104-4ks3 and 112 more | 2025-09-30 | 7.5 High |
| A vulnerability has been found in Dahua products. Attackers can send carefully crafted data packets to the interface with vulnerabilities, causing the device to crash. | ||||
| CVE-2024-3374 | 1 Mongodb | 1 Mongodb | 2025-09-29 | 5.3 Medium |
| An unauthenticated user can trigger a fatal assertion in the server while generating ftdc diagnostic metrics due to attempting to build a BSON object that exceeds certain memory sizes. This issue affects MongoDB Server v5.0 versions prior to and including 5.0.16 and MongoDB Server v6.0 versions prior to and including 6.0.5. | ||||
| CVE-2024-57923 | 1 Linux | 1 Linux Kernel | 2025-09-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: zlib: fix avail_in bytes for s390 zlib HW compression path Since the input data length passed to zlib_compress_folios() can be arbitrary, always setting strm.avail_in to a multiple of PAGE_SIZE may cause read-in bytes to exceed the input range. Currently this triggers an assert in btrfs_compress_folios() on the debug kernel (see below). Fix strm.avail_in calculation for S390 hardware acceleration path. assertion failed: *total_in <= orig_len, in fs/btrfs/compression.c:1041 ------------[ cut here ]------------ kernel BUG at fs/btrfs/compression.c:1041! monitor event: 0040 ilc:2 [#1] PREEMPT SMP CPU: 16 UID: 0 PID: 325 Comm: kworker/u273:3 Not tainted 6.13.0-20241204.rc1.git6.fae3b21430ca.300.fc41.s390x+debug #1 Hardware name: IBM 3931 A01 703 (z/VM 7.4.0) Workqueue: btrfs-delalloc btrfs_work_helper Krnl PSW : 0704d00180000000 0000021761df6538 (btrfs_compress_folios+0x198/0x1a0) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3 Krnl GPRS: 0000000080000000 0000000000000001 0000000000000047 0000000000000000 0000000000000006 ffffff01757bb000 000001976232fcc0 000000000000130c 000001976232fcd0 000001976232fcc8 00000118ff4a0e30 0000000000000001 00000111821ab400 0000011100000000 0000021761df6534 000001976232fb58 Krnl Code: 0000021761df6528: c020006f5ef4 larl %r2,0000021762be2310 0000021761df652e: c0e5ffbd09d5 brasl %r14,00000217615978d8 #0000021761df6534: af000000 mc 0,0 >0000021761df6538: 0707 bcr 0,%r7 0000021761df653a: 0707 bcr 0,%r7 0000021761df653c: 0707 bcr 0,%r7 0000021761df653e: 0707 bcr 0,%r7 0000021761df6540: c004004bb7ec brcl 0,000002176276d518 Call Trace: [<0000021761df6538>] btrfs_compress_folios+0x198/0x1a0 ([<0000021761df6534>] btrfs_compress_folios+0x194/0x1a0) [<0000021761d97788>] compress_file_range+0x3b8/0x6d0 [<0000021761dcee7c>] btrfs_work_helper+0x10c/0x160 [<0000021761645760>] process_one_work+0x2b0/0x5d0 [<000002176164637e>] worker_thread+0x20e/0x3e0 [<000002176165221a>] kthread+0x15a/0x170 [<00000217615b859c>] __ret_from_fork+0x3c/0x60 [<00000217626e72d2>] ret_from_fork+0xa/0x38 INFO: lockdep is turned off. Last Breaking-Event-Address: [<0000021761597924>] _printk+0x4c/0x58 Kernel panic - not syncing: Fatal exception: panic_on_oops | ||||
| CVE-2025-21654 | 1 Linux | 1 Linux Kernel | 2025-09-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ovl: support encoding fid from inode with no alias Dmitry Safonov reported that a WARN_ON() assertion can be trigered by userspace when calling inotify_show_fdinfo() for an overlayfs watched inode, whose dentry aliases were discarded with drop_caches. The WARN_ON() assertion in inotify_show_fdinfo() was removed, because it is possible for encoding file handle to fail for other reason, but the impact of failing to encode an overlayfs file handle goes beyond this assertion. As shown in the LTP test case mentioned in the link below, failure to encode an overlayfs file handle from a non-aliased inode also leads to failure to report an fid with FAN_DELETE_SELF fanotify events. As Dmitry notes in his analyzis of the problem, ovl_encode_fh() fails if it cannot find an alias for the inode, but this failure can be fixed. ovl_encode_fh() seldom uses the alias and in the case of non-decodable file handles, as is often the case with fanotify fid info, ovl_encode_fh() never needs to use the alias to encode a file handle. Defer finding an alias until it is actually needed so ovl_encode_fh() will not fail in the common case of FAN_DELETE_SELF fanotify events. | ||||
| CVE-2024-41043 | 1 Linux | 1 Linux Kernel | 2025-09-25 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: netfilter: nfnetlink_queue: drop bogus WARN_ON Happens when rules get flushed/deleted while packet is out, so remove this WARN_ON. This WARN exists in one form or another since v4.14, no need to backport this to older releases, hence use a more recent fixes tag. | ||||
| CVE-2024-47522 | 1 Oisf | 1 Suricata | 2025-09-25 | 7.5 High |
| Suricata is a network Intrusion Detection System, Intrusion Prevention System and Network Security Monitoring engine. Prior to version 7.0.7, invalid ALPN in TLS/QUIC traffic when JA4 matching/logging is enabled can lead to Suricata aborting with a panic. This issue has been addressed in 7.0.7. One may disable ja4 as a workaround. | ||||
| CVE-2024-57806 | 1 Linux | 1 Linux Kernel | 2025-09-24 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: fix transaction atomicity bug when enabling simple quotas Set squota incompat bit before committing the transaction that enables the feature. With the config CONFIG_BTRFS_ASSERT enabled, an assertion failure occurs regarding the simple quota feature. [5.596534] assertion failed: btrfs_fs_incompat(fs_info, SIMPLE_QUOTA), in fs/btrfs/qgroup.c:365 [5.597098] ------------[ cut here ]------------ [5.597371] kernel BUG at fs/btrfs/qgroup.c:365! [5.597946] CPU: 1 UID: 0 PID: 268 Comm: mount Not tainted 6.13.0-rc2-00031-gf92f4749861b #146 [5.598450] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 [5.599008] RIP: 0010:btrfs_read_qgroup_config+0x74d/0x7a0 [5.604303] <TASK> [5.605230] ? btrfs_read_qgroup_config+0x74d/0x7a0 [5.605538] ? exc_invalid_op+0x56/0x70 [5.605775] ? btrfs_read_qgroup_config+0x74d/0x7a0 [5.606066] ? asm_exc_invalid_op+0x1f/0x30 [5.606441] ? btrfs_read_qgroup_config+0x74d/0x7a0 [5.606741] ? btrfs_read_qgroup_config+0x74d/0x7a0 [5.607038] ? try_to_wake_up+0x317/0x760 [5.607286] open_ctree+0xd9c/0x1710 [5.607509] btrfs_get_tree+0x58a/0x7e0 [5.608002] vfs_get_tree+0x2e/0x100 [5.608224] fc_mount+0x16/0x60 [5.608420] btrfs_get_tree+0x2f8/0x7e0 [5.608897] vfs_get_tree+0x2e/0x100 [5.609121] path_mount+0x4c8/0xbc0 [5.609538] __x64_sys_mount+0x10d/0x150 The issue can be easily reproduced using the following reproducer: root@q:linux# cat repro.sh set -e mkfs.btrfs -q -f /dev/sdb mount /dev/sdb /mnt/btrfs btrfs quota enable -s /mnt/btrfs umount /mnt/btrfs mount /dev/sdb /mnt/btrfs The issue is that when enabling quotas, at btrfs_quota_enable(), we set BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE at fs_info->qgroup_flags and persist it in the quota root in the item with the key BTRFS_QGROUP_STATUS_KEY, but we only set the incompat bit BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA after we commit the transaction used to enable simple quotas. This means that if after that transaction commit we unmount the filesystem without starting and committing any other transaction, or we have a power failure, the next time we mount the filesystem we will find the flag BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE set in the item with the key BTRFS_QGROUP_STATUS_KEY but we will not find the incompat bit BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA set in the superblock, triggering an assertion failure at: btrfs_read_qgroup_config() -> qgroup_read_enable_gen() To fix this issue, set the BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA flag immediately after setting the BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE. This ensures that both flags are flushed to disk within the same transaction. | ||||
| CVE-2023-52831 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-09-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cpu/hotplug: Don't offline the last non-isolated CPU If a system has isolated CPUs via the "isolcpus=" command line parameter, then an attempt to offline the last housekeeping CPU will result in a WARN_ON() when rebuilding the scheduler domains and a subsequent panic due to and unhandled empty CPU mas in partition_sched_domains_locked(). cpuset_hotplug_workfn() rebuild_sched_domains_locked() ndoms = generate_sched_domains(&doms, &attr); cpumask_and(doms[0], top_cpuset.effective_cpus, housekeeping_cpumask(HK_FLAG_DOMAIN)); Thus results in an empty CPU mask which triggers the warning and then the subsequent crash: WARNING: CPU: 4 PID: 80 at kernel/sched/topology.c:2366 build_sched_domains+0x120c/0x1408 Call trace: build_sched_domains+0x120c/0x1408 partition_sched_domains_locked+0x234/0x880 rebuild_sched_domains_locked+0x37c/0x798 rebuild_sched_domains+0x30/0x58 cpuset_hotplug_workfn+0x2a8/0x930 Unable to handle kernel paging request at virtual address fffe80027ab37080 partition_sched_domains_locked+0x318/0x880 rebuild_sched_domains_locked+0x37c/0x798 Aside of the resulting crash, it does not make any sense to offline the last last housekeeping CPU. Prevent this by masking out the non-housekeeping CPUs when selecting a target CPU for initiating the CPU unplug operation via the work queue. | ||||
| CVE-2024-36000 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-09-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm/hugetlb: fix missing hugetlb_lock for resv uncharge There is a recent report on UFFDIO_COPY over hugetlb: https://lore.kernel.org/all/[email protected]/ 350: lockdep_assert_held(&hugetlb_lock); Should be an issue in hugetlb but triggered in an userfault context, where it goes into the unlikely path where two threads modifying the resv map together. Mike has a fix in that path for resv uncharge but it looks like the locking criteria was overlooked: hugetlb_cgroup_uncharge_folio_rsvd() will update the cgroup pointer, so it requires to be called with the lock held. | ||||
| CVE-2024-35957 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-09-23 | 5.9 Medium |
| In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Fix WARN_ON in iommu probe path Commit 1a75cc710b95 ("iommu/vt-d: Use rbtree to track iommu probed devices") adds all devices probed by the iommu driver in a rbtree indexed by the source ID of each device. It assumes that each device has a unique source ID. This assumption is incorrect and the VT-d spec doesn't state this requirement either. The reason for using a rbtree to track devices is to look up the device with PCI bus and devfunc in the paths of handling ATS invalidation time out error and the PRI I/O page faults. Both are PCI ATS feature related. Only track the devices that have PCI ATS capabilities in the rbtree to avoid unnecessary WARN_ON in the iommu probe path. Otherwise, on some platforms below kernel splat will be displayed and the iommu probe results in failure. WARNING: CPU: 3 PID: 166 at drivers/iommu/intel/iommu.c:158 intel_iommu_probe_device+0x319/0xd90 Call Trace: <TASK> ? __warn+0x7e/0x180 ? intel_iommu_probe_device+0x319/0xd90 ? report_bug+0x1f8/0x200 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x18/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? intel_iommu_probe_device+0x319/0xd90 ? debug_mutex_init+0x37/0x50 __iommu_probe_device+0xf2/0x4f0 iommu_probe_device+0x22/0x70 iommu_bus_notifier+0x1e/0x40 notifier_call_chain+0x46/0x150 blocking_notifier_call_chain+0x42/0x60 bus_notify+0x2f/0x50 device_add+0x5ed/0x7e0 platform_device_add+0xf5/0x240 mfd_add_devices+0x3f9/0x500 ? preempt_count_add+0x4c/0xa0 ? up_write+0xa2/0x1b0 ? __debugfs_create_file+0xe3/0x150 intel_lpss_probe+0x49f/0x5b0 ? pci_conf1_write+0xa3/0xf0 intel_lpss_pci_probe+0xcf/0x110 [intel_lpss_pci] pci_device_probe+0x95/0x120 really_probe+0xd9/0x370 ? __pfx___driver_attach+0x10/0x10 __driver_probe_device+0x73/0x150 driver_probe_device+0x19/0xa0 __driver_attach+0xb6/0x180 ? __pfx___driver_attach+0x10/0x10 bus_for_each_dev+0x77/0xd0 bus_add_driver+0x114/0x210 driver_register+0x5b/0x110 ? __pfx_intel_lpss_pci_driver_init+0x10/0x10 [intel_lpss_pci] do_one_initcall+0x57/0x2b0 ? kmalloc_trace+0x21e/0x280 ? do_init_module+0x1e/0x210 do_init_module+0x5f/0x210 load_module+0x1d37/0x1fc0 ? init_module_from_file+0x86/0xd0 init_module_from_file+0x86/0xd0 idempotent_init_module+0x17c/0x230 __x64_sys_finit_module+0x56/0xb0 do_syscall_64+0x6e/0x140 entry_SYSCALL_64_after_hwframe+0x71/0x79 | ||||
| CVE-2022-49158 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-09-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix warning message due to adisc being flushed Fix warning message due to adisc being flushed. Linux kernel triggered a warning message where a different error code type is not matching up with the expected type. Add additional translation of one error code type to another. WARNING: CPU: 2 PID: 1131623 at drivers/scsi/qla2xxx/qla_init.c:498 qla2x00_async_adisc_sp_done+0x294/0x2b0 [qla2xxx] CPU: 2 PID: 1131623 Comm: drmgr Not tainted 5.13.0-rc1-autotest #1 .. GPR28: c000000aaa9c8890 c0080000079ab678 c00000140a104800 c00000002bd19000 NIP [c00800000790857c] qla2x00_async_adisc_sp_done+0x294/0x2b0 [qla2xxx] LR [c008000007908578] qla2x00_async_adisc_sp_done+0x290/0x2b0 [qla2xxx] Call Trace: [c00000001cdc3620] [c008000007908578] qla2x00_async_adisc_sp_done+0x290/0x2b0 [qla2xxx] (unreliable) [c00000001cdc3710] [c0080000078f3080] __qla2x00_abort_all_cmds+0x1b8/0x580 [qla2xxx] [c00000001cdc3840] [c0080000078f589c] qla2x00_abort_all_cmds+0x34/0xd0 [qla2xxx] [c00000001cdc3880] [c0080000079153d8] qla2x00_abort_isp_cleanup+0x3f0/0x570 [qla2xxx] [c00000001cdc3920] [c0080000078fb7e8] qla2x00_remove_one+0x3d0/0x480 [qla2xxx] [c00000001cdc39b0] [c00000000071c274] pci_device_remove+0x64/0x120 [c00000001cdc39f0] [c0000000007fb818] device_release_driver_internal+0x168/0x2a0 [c00000001cdc3a30] [c00000000070e304] pci_stop_bus_device+0xb4/0x100 [c00000001cdc3a70] [c00000000070e4f0] pci_stop_and_remove_bus_device+0x20/0x40 [c00000001cdc3aa0] [c000000000073940] pci_hp_remove_devices+0x90/0x130 [c00000001cdc3b30] [c0080000070704d0] disable_slot+0x38/0x90 [rpaphp] [ c00000001cdc3b60] [c00000000073eb4c] power_write_file+0xcc/0x180 [c00000001cdc3be0] [c0000000007354bc] pci_slot_attr_store+0x3c/0x60 [c00000001cdc3c00] [c00000000055f820] sysfs_kf_write+0x60/0x80 [c00000001cdc3c20] [c00000000055df10] kernfs_fop_write_iter+0x1a0/0x290 [c00000001cdc3c70] [c000000000447c4c] new_sync_write+0x14c/0x1d0 [c00000001cdc3d10] [c00000000044b134] vfs_write+0x224/0x330 [c00000001cdc3d60] [c00000000044b3f4] ksys_write+0x74/0x130 [c00000001cdc3db0] [c00000000002df70] system_call_exception+0x150/0x2d0 [c00000001cdc3e10] [c00000000000d45c] system_call_common+0xec/0x278 | ||||
| CVE-2022-49154 | 1 Linux | 1 Linux Kernel | 2025-09-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: KVM: SVM: fix panic on out-of-bounds guest IRQ As guest_irq is coming from KVM_IRQFD API call, it may trigger crash in svm_update_pi_irte() due to out-of-bounds: crash> bt PID: 22218 TASK: ffff951a6ad74980 CPU: 73 COMMAND: "vcpu8" #0 [ffffb1ba6707fa40] machine_kexec at ffffffff8565b397 #1 [ffffb1ba6707fa90] __crash_kexec at ffffffff85788a6d #2 [ffffb1ba6707fb58] crash_kexec at ffffffff8578995d #3 [ffffb1ba6707fb70] oops_end at ffffffff85623c0d #4 [ffffb1ba6707fb90] no_context at ffffffff856692c9 #5 [ffffb1ba6707fbf8] exc_page_fault at ffffffff85f95b51 #6 [ffffb1ba6707fc50] asm_exc_page_fault at ffffffff86000ace [exception RIP: svm_update_pi_irte+227] RIP: ffffffffc0761b53 RSP: ffffb1ba6707fd08 RFLAGS: 00010086 RAX: ffffb1ba6707fd78 RBX: ffffb1ba66d91000 RCX: 0000000000000001 RDX: 00003c803f63f1c0 RSI: 000000000000019a RDI: ffffb1ba66db2ab8 RBP: 000000000000019a R8: 0000000000000040 R9: ffff94ca41b82200 R10: ffffffffffffffcf R11: 0000000000000001 R12: 0000000000000001 R13: 0000000000000001 R14: ffffffffffffffcf R15: 000000000000005f ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffffb1ba6707fdb8] kvm_irq_routing_update at ffffffffc09f19a1 [kvm] #8 [ffffb1ba6707fde0] kvm_set_irq_routing at ffffffffc09f2133 [kvm] #9 [ffffb1ba6707fe18] kvm_vm_ioctl at ffffffffc09ef544 [kvm] RIP: 00007f143c36488b RSP: 00007f143a4e04b8 RFLAGS: 00000246 RAX: ffffffffffffffda RBX: 00007f05780041d0 RCX: 00007f143c36488b RDX: 00007f05780041d0 RSI: 000000004008ae6a RDI: 0000000000000020 RBP: 00000000000004e8 R8: 0000000000000008 R9: 00007f05780041e0 R10: 00007f0578004560 R11: 0000000000000246 R12: 00000000000004e0 R13: 000000000000001a R14: 00007f1424001c60 R15: 00007f0578003bc0 ORIG_RAX: 0000000000000010 CS: 0033 SS: 002b Vmx have been fix this in commit 3a8b0677fc61 (KVM: VMX: Do not BUG() on out-of-bounds guest IRQ), so we can just copy source from that to fix this. | ||||