Filtered by vendor Linux
Subscriptions
Filtered by product Linux
Subscriptions
Total
60 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-7647 | 2 Linux, Run-llama | 2 Linux, Llama Index | 2025-09-29 | N/A |
| The llama-index-core package, up to version 0.12.44, contains a vulnerability in the `get_cache_dir()` function where a predictable, hardcoded directory path `/tmp/llama_index` is used on Linux systems without proper security controls. This vulnerability allows attackers on multi-user systems to steal proprietary models, poison cached embeddings, or conduct symlink attacks. The issue affects all Linux deployments where multiple users share the same system. The vulnerability is classified under CWE-379, CWE-377, and CWE-367, indicating insecure temporary file creation and potential race conditions. | ||||
| CVE-2022-48664 | 1 Linux | 2 Linux, Linux Kernel | 2025-09-26 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: fix hang during unmount when stopping a space reclaim worker Often when running generic/562 from fstests we can hang during unmount, resulting in a trace like this: Sep 07 11:52:00 debian9 unknown: run fstests generic/562 at 2022-09-07 11:52:00 Sep 07 11:55:32 debian9 kernel: INFO: task umount:49438 blocked for more than 120 seconds. Sep 07 11:55:32 debian9 kernel: Not tainted 6.0.0-rc2-btrfs-next-122 #1 Sep 07 11:55:32 debian9 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. Sep 07 11:55:32 debian9 kernel: task:umount state:D stack: 0 pid:49438 ppid: 25683 flags:0x00004000 Sep 07 11:55:32 debian9 kernel: Call Trace: Sep 07 11:55:32 debian9 kernel: <TASK> Sep 07 11:55:32 debian9 kernel: __schedule+0x3c8/0xec0 Sep 07 11:55:32 debian9 kernel: ? rcu_read_lock_sched_held+0x12/0x70 Sep 07 11:55:32 debian9 kernel: schedule+0x5d/0xf0 Sep 07 11:55:32 debian9 kernel: schedule_timeout+0xf1/0x130 Sep 07 11:55:32 debian9 kernel: ? lock_release+0x224/0x4a0 Sep 07 11:55:32 debian9 kernel: ? lock_acquired+0x1a0/0x420 Sep 07 11:55:32 debian9 kernel: ? trace_hardirqs_on+0x2c/0xd0 Sep 07 11:55:32 debian9 kernel: __wait_for_common+0xac/0x200 Sep 07 11:55:32 debian9 kernel: ? usleep_range_state+0xb0/0xb0 Sep 07 11:55:32 debian9 kernel: __flush_work+0x26d/0x530 Sep 07 11:55:32 debian9 kernel: ? flush_workqueue_prep_pwqs+0x140/0x140 Sep 07 11:55:32 debian9 kernel: ? trace_clock_local+0xc/0x30 Sep 07 11:55:32 debian9 kernel: __cancel_work_timer+0x11f/0x1b0 Sep 07 11:55:32 debian9 kernel: ? close_ctree+0x12b/0x5b3 [btrfs] Sep 07 11:55:32 debian9 kernel: ? __trace_bputs+0x10b/0x170 Sep 07 11:55:32 debian9 kernel: close_ctree+0x152/0x5b3 [btrfs] Sep 07 11:55:32 debian9 kernel: ? evict_inodes+0x166/0x1c0 Sep 07 11:55:32 debian9 kernel: generic_shutdown_super+0x71/0x120 Sep 07 11:55:32 debian9 kernel: kill_anon_super+0x14/0x30 Sep 07 11:55:32 debian9 kernel: btrfs_kill_super+0x12/0x20 [btrfs] Sep 07 11:55:32 debian9 kernel: deactivate_locked_super+0x2e/0xa0 Sep 07 11:55:32 debian9 kernel: cleanup_mnt+0x100/0x160 Sep 07 11:55:32 debian9 kernel: task_work_run+0x59/0xa0 Sep 07 11:55:32 debian9 kernel: exit_to_user_mode_prepare+0x1a6/0x1b0 Sep 07 11:55:32 debian9 kernel: syscall_exit_to_user_mode+0x16/0x40 Sep 07 11:55:32 debian9 kernel: do_syscall_64+0x48/0x90 Sep 07 11:55:32 debian9 kernel: entry_SYSCALL_64_after_hwframe+0x63/0xcd Sep 07 11:55:32 debian9 kernel: RIP: 0033:0x7fcde59a57a7 Sep 07 11:55:32 debian9 kernel: RSP: 002b:00007ffe914217c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 Sep 07 11:55:32 debian9 kernel: RAX: 0000000000000000 RBX: 00007fcde5ae8264 RCX: 00007fcde59a57a7 Sep 07 11:55:32 debian9 kernel: RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000055b57556cdd0 Sep 07 11:55:32 debian9 kernel: RBP: 000055b57556cba0 R08: 0000000000000000 R09: 00007ffe91420570 Sep 07 11:55:32 debian9 kernel: R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 Sep 07 11:55:32 debian9 kernel: R13: 000055b57556cdd0 R14: 000055b57556ccb8 R15: 0000000000000000 Sep 07 11:55:32 debian9 kernel: </TASK> What happens is the following: 1) The cleaner kthread tries to start a transaction to delete an unused block group, but the metadata reservation can not be satisfied right away, so a reservation ticket is created and it starts the async metadata reclaim task (fs_info->async_reclaim_work); 2) Writeback for all the filler inodes with an i_size of 2K starts (generic/562 creates a lot of 2K files with the goal of filling metadata space). We try to create an inline extent for them, but we fail when trying to insert the inline extent with -ENOSPC (at cow_file_range_inline()) - since this is not critical, we fallback to non-inline mode (back to cow_file_range()), reserve extents ---truncated--- | ||||
| CVE-2025-23316 | 3 Linux, Microsoft, Nvidia | 4 Linux, Linux Kernel, Windows and 1 more | 2025-09-25 | 9.8 Critical |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability in the Python backend, where an attacker could cause a remote code execution by manipulating the model name parameter in the model control APIs. A successful exploit of this vulnerability might lead to remote code execution, denial of service, information disclosure, and data tampering. | ||||
| CVE-2025-23328 | 3 Linux, Microsoft, Nvidia | 4 Linux, Linux Kernel, Windows and 1 more | 2025-09-25 | 7.5 High |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability where an attacker could cause an out-of-bounds write through a specially crafted input. A successful exploit of this vulnerability might lead to denial of service. | ||||
| CVE-2025-23329 | 3 Linux, Microsoft, Nvidia | 4 Linux, Linux Kernel, Windows and 1 more | 2025-09-25 | 7.5 High |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability where an attacker could cause memory corruption by identifying and accessing the shared memory region used by the Python backend. A successful exploit of this vulnerability might lead to denial of service. | ||||
| CVE-2025-23336 | 3 Linux, Microsoft, Nvidia | 4 Linux, Linux Kernel, Windows and 1 more | 2025-09-25 | 4.4 Medium |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability where an attacker could cause a denial of service by loading a misconfigured model. A successful exploit of this vulnerability might lead to denial of service. | ||||
| CVE-2023-52866 | 1 Linux | 2 Linux, Linux Kernel | 2025-09-24 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: HID: uclogic: Fix user-memory-access bug in uclogic_params_ugee_v2_init_event_hooks() When CONFIG_HID_UCLOGIC=y and CONFIG_KUNIT_ALL_TESTS=y, launch kernel and then the below user-memory-access bug occurs. In hid_test_uclogic_params_cleanup_event_hooks(),it call uclogic_params_ugee_v2_init_event_hooks() with the first arg=NULL, so when it calls uclogic_params_ugee_v2_has_battery(), the hid_get_drvdata() will access hdev->dev with hdev=NULL, which will cause below user-memory-access. So add a fake_device with quirks member and call hid_set_drvdata() to assign hdev->dev->driver_data which avoids the null-ptr-def bug for drvdata->quirks in uclogic_params_ugee_v2_has_battery(). After applying this patch, the below user-memory-access bug never occurs. general protection fault, probably for non-canonical address 0xdffffc0000000329: 0000 [#1] PREEMPT SMP KASAN KASAN: probably user-memory-access in range [0x0000000000001948-0x000000000000194f] CPU: 5 PID: 2189 Comm: kunit_try_catch Tainted: G B W N 6.6.0-rc2+ #30 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:uclogic_params_ugee_v2_init_event_hooks+0x87/0x600 Code: f3 f3 65 48 8b 14 25 28 00 00 00 48 89 54 24 60 31 d2 48 89 fa c7 44 24 30 00 00 00 00 48 c7 44 24 28 02 f8 02 01 48 c1 ea 03 <80> 3c 02 00 0f 85 2c 04 00 00 48 8b 9d 48 19 00 00 48 b8 00 00 00 RSP: 0000:ffff88810679fc88 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000000004 RCX: 0000000000000000 RDX: 0000000000000329 RSI: ffff88810679fd88 RDI: 0000000000001948 RBP: 0000000000000000 R08: 0000000000000000 R09: ffffed1020f639f0 R10: ffff888107b1cf87 R11: 0000000000000400 R12: 1ffff11020cf3f92 R13: ffff88810679fd88 R14: ffff888100b97b08 R15: ffff8881030bb080 FS: 0000000000000000(0000) GS:ffff888119e80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000005286001 CR4: 0000000000770ee0 DR0: ffffffff8fdd6cf4 DR1: ffffffff8fdd6cf5 DR2: ffffffff8fdd6cf6 DR3: ffffffff8fdd6cf7 DR6: 00000000fffe0ff0 DR7: 0000000000000600 PKRU: 55555554 Call Trace: <TASK> ? die_addr+0x3d/0xa0 ? exc_general_protection+0x144/0x220 ? asm_exc_general_protection+0x22/0x30 ? uclogic_params_ugee_v2_init_event_hooks+0x87/0x600 ? sched_clock_cpu+0x69/0x550 ? uclogic_parse_ugee_v2_desc_gen_params+0x70/0x70 ? load_balance+0x2950/0x2950 ? rcu_trc_cmpxchg_need_qs+0x67/0xa0 hid_test_uclogic_params_cleanup_event_hooks+0x9e/0x1a0 ? uclogic_params_ugee_v2_init_event_hooks+0x600/0x600 ? __switch_to+0x5cf/0xe60 ? migrate_enable+0x260/0x260 ? __kthread_parkme+0x83/0x150 ? kunit_try_run_case_cleanup+0xe0/0xe0 kunit_generic_run_threadfn_adapter+0x4a/0x90 ? kunit_try_catch_throw+0x80/0x80 kthread+0x2b5/0x380 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x2d/0x70 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork_asm+0x11/0x20 </TASK> Modules linked in: Dumping ftrace buffer: (ftrace buffer empty) ---[ end trace 0000000000000000 ]--- RIP: 0010:uclogic_params_ugee_v2_init_event_hooks+0x87/0x600 Code: f3 f3 65 48 8b 14 25 28 00 00 00 48 89 54 24 60 31 d2 48 89 fa c7 44 24 30 00 00 00 00 48 c7 44 24 28 02 f8 02 01 48 c1 ea 03 <80> 3c 02 00 0f 85 2c 04 00 00 48 8b 9d 48 19 00 00 48 b8 00 00 00 RSP: 0000:ffff88810679fc88 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000000004 RCX: 0000000000000000 RDX: 0000000000000329 RSI: ffff88810679fd88 RDI: 0000000000001948 RBP: 0000000000000000 R08: 0000000000000000 R09: ffffed1020f639f0 R10: ffff888107b1cf87 R11: 0000000000000400 R12: 1ffff11020cf3f92 R13: ffff88810679fd88 R14: ffff888100b97b08 R15: ffff8881030bb080 FS: 0000000000000000(0000) GS:ffff888119e80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000005286001 CR4: 0000000000770ee0 DR0: ffffffff8fdd6cf4 DR1: ---truncated--- | ||||
| CVE-2025-10201 | 2 Google, Linux | 5 Android, Chrome, Chrome Os and 2 more | 2025-09-22 | 8.8 High |
| Inappropriate implementation in Mojo in Google Chrome on Android, Linux, ChromeOS prior to 140.0.7339.127 allowed a remote attacker to bypass site isolation via a crafted HTML page. (Chromium security severity: High) | ||||
| CVE-2025-59692 | 2 Linux, Purevpn | 2 Linux, Purevpn | 2025-09-19 | 3.7 Low |
| PureVPN client applications on Linux through September 2025 mishandle firewalling. They flush the system's existing iptables rules and apply default ACCEPT policies when connecting to a VPN server. This removes firewall rules that may have been configured manually or by other software (e.g., UFW, container engines, or system security policies). Upon VPN disconnect, the original firewall state is not restored. As a result, the system may become unintentionally exposed to network traffic that was previously blocked. This affects CLI 2.0.1 and GUI 2.10.0. | ||||
| CVE-2025-59691 | 2 Linux, Purevpn | 2 Linux, Purevpn | 2025-09-19 | 3.7 Low |
| PureVPN client applications on Linux through September 2025 allow IPv6 traffic to leak outside the VPN tunnel upon network events such as Wi-Fi reconnect or system resume. In the CLI client, the VPN auto-reconnects and claims to be connected, but IPv6 traffic is no longer routed or blocked. In the GUI client, the IPv6 connection remains functional after disconnection until the user clicks Reconnect. In both cases, the real IPv6 address is exposed to external services, violating user privacy and defeating the advertised IPv6 leak protection. This affects CLI 2.0.1 and GUI 2.10.0. | ||||
| CVE-2024-26936 | 1 Linux | 2 Linux, Linux Kernel | 2025-09-18 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: validate request buffer size in smb2_allocate_rsp_buf() The response buffer should be allocated in smb2_allocate_rsp_buf before validating request. But the fields in payload as well as smb2 header is used in smb2_allocate_rsp_buf(). This patch add simple buffer size validation to avoid potencial out-of-bounds in request buffer. | ||||
| CVE-2025-8066 | 2 Bunkerity, Linux | 2 Bunker Web, Linux | 2025-08-25 | N/A |
| URL Redirection to Untrusted Site ('Open Redirect') vulnerability in Bunkerity Bunker Web on Linux allows Phishing.This issue affects Bunker Web: 1.6.2. | ||||
| CVE-2024-39954 | 4 Apache, Apple, Linux and 1 more | 4 Eventmesh, Macos, Linux and 1 more | 2025-08-21 | 6.3 Medium |
| CWE-918 Server-Side Request Forgery (SSRF) in eventmesh-runtime module in WebhookUtil.java on windows\linux\mac os e.g. allows the attacker can abuse functionality on the server to read or update internal resources. Users are recommended to upgrade to version 1.12.0 or use the master branch , which fixes this issue. | ||||
| CVE-2025-38397 | 1 Linux | 1 Linux | 2025-07-28 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nvme-multipath: fix suspicious RCU usage warning When I run the NVME over TCP test in virtme-ng, I get the following "suspicious RCU usage" warning in nvme_mpath_add_sysfs_link(): ''' [ 5.024557][ T44] nvmet: Created nvm controller 1 for subsystem nqn.2025-06.org.nvmexpress.mptcp for NQN nqn.2014-08.org.nvmexpress:uuid:f7f6b5e0-ff97-4894-98ac-c85309e0bc77. [ 5.027401][ T183] nvme nvme0: creating 2 I/O queues. [ 5.029017][ T183] nvme nvme0: mapped 2/0/0 default/read/poll queues. [ 5.032587][ T183] nvme nvme0: new ctrl: NQN "nqn.2025-06.org.nvmexpress.mptcp", addr 127.0.0.1:4420, hostnqn: nqn.2014-08.org.nvmexpress:uuid:f7f6b5e0-ff97-4894-98ac-c85309e0bc77 [ 5.042214][ T25] [ 5.042440][ T25] ============================= [ 5.042579][ T25] WARNING: suspicious RCU usage [ 5.042705][ T25] 6.16.0-rc3+ #23 Not tainted [ 5.042812][ T25] ----------------------------- [ 5.042934][ T25] drivers/nvme/host/multipath.c:1203 RCU-list traversed in non-reader section!! [ 5.043111][ T25] [ 5.043111][ T25] other info that might help us debug this: [ 5.043111][ T25] [ 5.043341][ T25] [ 5.043341][ T25] rcu_scheduler_active = 2, debug_locks = 1 [ 5.043502][ T25] 3 locks held by kworker/u9:0/25: [ 5.043615][ T25] #0: ffff888008730948 ((wq_completion)async){+.+.}-{0:0}, at: process_one_work+0x7ed/0x1350 [ 5.043830][ T25] #1: ffffc900001afd40 ((work_completion)(&entry->work)){+.+.}-{0:0}, at: process_one_work+0xcf3/0x1350 [ 5.044084][ T25] #2: ffff888013ee0020 (&head->srcu){.+.+}-{0:0}, at: nvme_mpath_add_sysfs_link.part.0+0xb4/0x3a0 [ 5.044300][ T25] [ 5.044300][ T25] stack backtrace: [ 5.044439][ T25] CPU: 0 UID: 0 PID: 25 Comm: kworker/u9:0 Not tainted 6.16.0-rc3+ #23 PREEMPT(full) [ 5.044441][ T25] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 5.044442][ T25] Workqueue: async async_run_entry_fn [ 5.044445][ T25] Call Trace: [ 5.044446][ T25] <TASK> [ 5.044449][ T25] dump_stack_lvl+0x6f/0xb0 [ 5.044453][ T25] lockdep_rcu_suspicious.cold+0x4f/0xb1 [ 5.044457][ T25] nvme_mpath_add_sysfs_link.part.0+0x2fb/0x3a0 [ 5.044459][ T25] ? queue_work_on+0x90/0xf0 [ 5.044461][ T25] ? lockdep_hardirqs_on+0x78/0x110 [ 5.044466][ T25] nvme_mpath_set_live+0x1e9/0x4f0 [ 5.044470][ T25] nvme_mpath_add_disk+0x240/0x2f0 [ 5.044472][ T25] ? __pfx_nvme_mpath_add_disk+0x10/0x10 [ 5.044475][ T25] ? add_disk_fwnode+0x361/0x580 [ 5.044480][ T25] nvme_alloc_ns+0x81c/0x17c0 [ 5.044483][ T25] ? kasan_quarantine_put+0x104/0x240 [ 5.044487][ T25] ? __pfx_nvme_alloc_ns+0x10/0x10 [ 5.044495][ T25] ? __pfx_nvme_find_get_ns+0x10/0x10 [ 5.044496][ T25] ? rcu_read_lock_any_held+0x45/0xa0 [ 5.044498][ T25] ? validate_chain+0x232/0x4f0 [ 5.044503][ T25] nvme_scan_ns+0x4c8/0x810 [ 5.044506][ T25] ? __pfx_nvme_scan_ns+0x10/0x10 [ 5.044508][ T25] ? find_held_lock+0x2b/0x80 [ 5.044512][ T25] ? ktime_get+0x16d/0x220 [ 5.044517][ T25] ? kvm_clock_get_cycles+0x18/0x30 [ 5.044520][ T25] ? __pfx_nvme_scan_ns_async+0x10/0x10 [ 5.044522][ T25] async_run_entry_fn+0x97/0x560 [ 5.044523][ T25] ? rcu_is_watching+0x12/0xc0 [ 5.044526][ T25] process_one_work+0xd3c/0x1350 [ 5.044532][ T25] ? __pfx_process_one_work+0x10/0x10 [ 5.044536][ T25] ? assign_work+0x16c/0x240 [ 5.044539][ T25] worker_thread+0x4da/0xd50 [ 5.044545][ T25] ? __pfx_worker_thread+0x10/0x10 [ 5.044546][ T25] kthread+0x356/0x5c0 [ 5.044548][ T25] ? __pfx_kthread+0x10/0x10 [ 5.044549][ T25] ? ret_from_fork+0x1b/0x2e0 [ 5.044552][ T25] ? __lock_release.isra.0+0x5d/0x180 [ 5.044553][ T25] ? ret_from_fork+0x1b/0x2e0 [ 5.044555][ T25] ? rcu_is_watching+0x12/0xc0 [ 5.044557][ T25] ? __pfx_kthread+0x10/0x10 [ 5.04 ---truncated--- | ||||
| CVE-2025-38357 | 1 Linux | 1 Linux | 2025-07-28 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: fuse: fix runtime warning on truncate_folio_batch_exceptionals() The WARN_ON_ONCE is introduced on truncate_folio_batch_exceptionals() to capture whether the filesystem has removed all DAX entries or not. And the fix has been applied on the filesystem xfs and ext4 by the commit 0e2f80afcfa6 ("fs/dax: ensure all pages are idle prior to filesystem unmount"). Apply the missed fix on filesystem fuse to fix the runtime warning: [ 2.011450] ------------[ cut here ]------------ [ 2.011873] WARNING: CPU: 0 PID: 145 at mm/truncate.c:89 truncate_folio_batch_exceptionals+0x272/0x2b0 [ 2.012468] Modules linked in: [ 2.012718] CPU: 0 UID: 1000 PID: 145 Comm: weston Not tainted 6.16.0-rc2-WSL2-STABLE #2 PREEMPT(undef) [ 2.013292] RIP: 0010:truncate_folio_batch_exceptionals+0x272/0x2b0 [ 2.013704] Code: 48 63 d0 41 29 c5 48 8d 1c d5 00 00 00 00 4e 8d 6c 2a 01 49 c1 e5 03 eb 09 48 83 c3 08 49 39 dd 74 83 41 f6 44 1c 08 01 74 ef <0f> 0b 49 8b 34 1e 48 89 ef e8 10 a2 17 00 eb df 48 8b 7d 00 e8 35 [ 2.014845] RSP: 0018:ffffa47ec33f3b10 EFLAGS: 00010202 [ 2.015279] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 [ 2.015884] RDX: 0000000000000000 RSI: ffffa47ec33f3ca0 RDI: ffff98aa44f3fa80 [ 2.016377] RBP: ffff98aa44f3fbf0 R08: ffffa47ec33f3ba8 R09: 0000000000000000 [ 2.016942] R10: 0000000000000001 R11: 0000000000000000 R12: ffffa47ec33f3ca0 [ 2.017437] R13: 0000000000000008 R14: ffffa47ec33f3ba8 R15: 0000000000000000 [ 2.017972] FS: 000079ce006afa40(0000) GS:ffff98aade441000(0000) knlGS:0000000000000000 [ 2.018510] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 2.018987] CR2: 000079ce03e74000 CR3: 000000010784f006 CR4: 0000000000372eb0 [ 2.019518] Call Trace: [ 2.019729] <TASK> [ 2.019901] truncate_inode_pages_range+0xd8/0x400 [ 2.020280] ? timerqueue_add+0x66/0xb0 [ 2.020574] ? get_nohz_timer_target+0x2a/0x140 [ 2.020904] ? timerqueue_add+0x66/0xb0 [ 2.021231] ? timerqueue_del+0x2e/0x50 [ 2.021646] ? __remove_hrtimer+0x39/0x90 [ 2.022017] ? srso_alias_untrain_ret+0x1/0x10 [ 2.022497] ? psi_group_change+0x136/0x350 [ 2.023046] ? _raw_spin_unlock+0xe/0x30 [ 2.023514] ? finish_task_switch.isra.0+0x8d/0x280 [ 2.024068] ? __schedule+0x532/0xbd0 [ 2.024551] fuse_evict_inode+0x29/0x190 [ 2.025131] evict+0x100/0x270 [ 2.025641] ? _atomic_dec_and_lock+0x39/0x50 [ 2.026316] ? __pfx_generic_delete_inode+0x10/0x10 [ 2.026843] __dentry_kill+0x71/0x180 [ 2.027335] dput+0xeb/0x1b0 [ 2.027725] __fput+0x136/0x2b0 [ 2.028054] __x64_sys_close+0x3d/0x80 [ 2.028469] do_syscall_64+0x6d/0x1b0 [ 2.028832] ? clear_bhb_loop+0x30/0x80 [ 2.029182] ? clear_bhb_loop+0x30/0x80 [ 2.029533] ? clear_bhb_loop+0x30/0x80 [ 2.029902] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 2.030423] RIP: 0033:0x79ce03d0d067 [ 2.030820] Code: b8 ff ff ff ff e9 3e ff ff ff 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 c3 a7 f8 ff [ 2.032354] RSP: 002b:00007ffef0498948 EFLAGS: 00000246 ORIG_RAX: 0000000000000003 [ 2.032939] RAX: ffffffffffffffda RBX: 00007ffef0498960 RCX: 000079ce03d0d067 [ 2.033612] RDX: 0000000000000003 RSI: 0000000000001000 RDI: 000000000000000d [ 2.034289] RBP: 00007ffef0498a30 R08: 000000000000000d R09: 0000000000000000 [ 2.034944] R10: 00007ffef0498978 R11: 0000000000000246 R12: 0000000000000001 [ 2.035610] R13: 00007ffef0498960 R14: 000079ce03e09ce0 R15: 0000000000000003 [ 2.036301] </TASK> [ 2.036532] ---[ end trace 0000000000000000 ]--- | ||||
| CVE-2024-22004 | 2 Google, Linux | 7 Nest Wifi Point, Nest Wifi Point Firmware, Nest Wifi Pro and 4 more | 2025-07-24 | 10 Critical |
| Due to length check, an attacker with privilege access on a Linux Nonsecure operating system can trigger a vulnerability and leak the secure memory from the Trusted Application | ||||
| CVE-2023-53053 | 1 Linux | 1 Linux | 2025-07-13 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: erspan: do not use skb_mac_header() in ndo_start_xmit() Drivers should not assume skb_mac_header(skb) == skb->data in their ndo_start_xmit(). Use skb_network_offset() and skb_transport_offset() which better describe what is needed in erspan_fb_xmit() and ip6erspan_tunnel_xmit() syzbot reported: WARNING: CPU: 0 PID: 5083 at include/linux/skbuff.h:2873 skb_mac_header include/linux/skbuff.h:2873 [inline] WARNING: CPU: 0 PID: 5083 at include/linux/skbuff.h:2873 ip6erspan_tunnel_xmit+0x1d9c/0x2d90 net/ipv6/ip6_gre.c:962 Modules linked in: CPU: 0 PID: 5083 Comm: syz-executor406 Not tainted 6.3.0-rc2-syzkaller-00866-gd4671cb96fa3 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023 RIP: 0010:skb_mac_header include/linux/skbuff.h:2873 [inline] RIP: 0010:ip6erspan_tunnel_xmit+0x1d9c/0x2d90 net/ipv6/ip6_gre.c:962 Code: 04 02 41 01 de 84 c0 74 08 3c 03 0f 8e 1c 0a 00 00 45 89 b4 24 c8 00 00 00 c6 85 77 fe ff ff 01 e9 33 e7 ff ff e8 b4 27 a1 f8 <0f> 0b e9 b6 e7 ff ff e8 a8 27 a1 f8 49 8d bf f0 0c 00 00 48 b8 00 RSP: 0018:ffffc90003b2f830 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 000000000000ffff RCX: 0000000000000000 RDX: ffff888021273a80 RSI: ffffffff88e1bd4c RDI: 0000000000000003 RBP: ffffc90003b2f9d8 R08: 0000000000000003 R09: 000000000000ffff R10: 000000000000ffff R11: 0000000000000000 R12: ffff88802b28da00 R13: 00000000000000d0 R14: ffff88807e25b6d0 R15: ffff888023408000 FS: 0000555556a61300(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055e5b11eb6e8 CR3: 0000000027c1b000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __netdev_start_xmit include/linux/netdevice.h:4900 [inline] netdev_start_xmit include/linux/netdevice.h:4914 [inline] __dev_direct_xmit+0x504/0x730 net/core/dev.c:4300 dev_direct_xmit include/linux/netdevice.h:3088 [inline] packet_xmit+0x20a/0x390 net/packet/af_packet.c:285 packet_snd net/packet/af_packet.c:3075 [inline] packet_sendmsg+0x31a0/0x5150 net/packet/af_packet.c:3107 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg+0xde/0x190 net/socket.c:747 __sys_sendto+0x23a/0x340 net/socket.c:2142 __do_sys_sendto net/socket.c:2154 [inline] __se_sys_sendto net/socket.c:2150 [inline] __x64_sys_sendto+0xe1/0x1b0 net/socket.c:2150 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f123aaa1039 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 b1 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffc15d12058 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f123aaa1039 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000020000040 R09: 0000000000000014 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f123aa648c0 R13: 431bde82d7b634db R14: 0000000000000000 R15: 0000000000000000 | ||||
| CVE-2023-53135 | 1 Linux | 1 Linux | 2025-07-13 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: riscv: Use READ_ONCE_NOCHECK in imprecise unwinding stack mode When CONFIG_FRAME_POINTER is unset, the stack unwinding function walk_stackframe randomly reads the stack and then, when KASAN is enabled, it can lead to the following backtrace: [ 0.000000] ================================================================== [ 0.000000] BUG: KASAN: stack-out-of-bounds in walk_stackframe+0xa6/0x11a [ 0.000000] Read of size 8 at addr ffffffff81807c40 by task swapper/0 [ 0.000000] [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.2.0-12919-g24203e6db61f #43 [ 0.000000] Hardware name: riscv-virtio,qemu (DT) [ 0.000000] Call Trace: [ 0.000000] [<ffffffff80007ba8>] walk_stackframe+0x0/0x11a [ 0.000000] [<ffffffff80099ecc>] init_param_lock+0x26/0x2a [ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a [ 0.000000] [<ffffffff80c49c80>] dump_stack_lvl+0x22/0x36 [ 0.000000] [<ffffffff80c3783e>] print_report+0x198/0x4a8 [ 0.000000] [<ffffffff80099ecc>] init_param_lock+0x26/0x2a [ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a [ 0.000000] [<ffffffff8015f68a>] kasan_report+0x9a/0xc8 [ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a [ 0.000000] [<ffffffff80007c4a>] walk_stackframe+0xa2/0x11a [ 0.000000] [<ffffffff8006e99c>] desc_make_final+0x80/0x84 [ 0.000000] [<ffffffff8009a04e>] stack_trace_save+0x88/0xa6 [ 0.000000] [<ffffffff80099fc2>] filter_irq_stacks+0x72/0x76 [ 0.000000] [<ffffffff8006b95e>] devkmsg_read+0x32a/0x32e [ 0.000000] [<ffffffff8015ec16>] kasan_save_stack+0x28/0x52 [ 0.000000] [<ffffffff8006e998>] desc_make_final+0x7c/0x84 [ 0.000000] [<ffffffff8009a04a>] stack_trace_save+0x84/0xa6 [ 0.000000] [<ffffffff8015ec52>] kasan_set_track+0x12/0x20 [ 0.000000] [<ffffffff8015f22e>] __kasan_slab_alloc+0x58/0x5e [ 0.000000] [<ffffffff8015e7ea>] __kmem_cache_create+0x21e/0x39a [ 0.000000] [<ffffffff80e133ac>] create_boot_cache+0x70/0x9c [ 0.000000] [<ffffffff80e17ab2>] kmem_cache_init+0x6c/0x11e [ 0.000000] [<ffffffff80e00fd6>] mm_init+0xd8/0xfe [ 0.000000] [<ffffffff80e011d8>] start_kernel+0x190/0x3ca [ 0.000000] [ 0.000000] The buggy address belongs to stack of task swapper/0 [ 0.000000] and is located at offset 0 in frame: [ 0.000000] stack_trace_save+0x0/0xa6 [ 0.000000] [ 0.000000] This frame has 1 object: [ 0.000000] [32, 56) 'c' [ 0.000000] [ 0.000000] The buggy address belongs to the physical page: [ 0.000000] page:(____ptrval____) refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x81a07 [ 0.000000] flags: 0x1000(reserved|zone=0) [ 0.000000] raw: 0000000000001000 ff600003f1e3d150 ff600003f1e3d150 0000000000000000 [ 0.000000] raw: 0000000000000000 0000000000000000 00000001ffffffff [ 0.000000] page dumped because: kasan: bad access detected [ 0.000000] [ 0.000000] Memory state around the buggy address: [ 0.000000] ffffffff81807b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0.000000] ffffffff81807b80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0.000000] >ffffffff81807c00: 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00 00 00 f3 [ 0.000000] ^ [ 0.000000] ffffffff81807c80: f3 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 [ 0.000000] ffffffff81807d00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0.000000] ================================================================== Fix that by using READ_ONCE_NOCHECK when reading the stack in imprecise mode. | ||||
| CVE-2022-50169 | 1 Linux | 2 Linux, Linux Kernel | 2025-06-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: wil6210: debugfs: fix info leak in wil_write_file_wmi() The simple_write_to_buffer() function will succeed if even a single byte is initialized. However, we need to initialize the whole buffer to prevent information leaks. Just use memdup_user(). | ||||
| CVE-2009-2847 | 2 Linux, Redhat | 6 Kernel, Linux, Linux Kernel and 3 more | 2025-04-09 | N/A |
| The do_sigaltstack function in kernel/signal.c in Linux kernel 2.4 through 2.4.37 and 2.6 before 2.6.31-rc5, when running on 64-bit systems, does not clear certain padding bytes from a structure, which allows local users to obtain sensitive information from the kernel stack via the sigaltstack function. | ||||