| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Check validity of link->type in bpf_link_show_fdinfo()
If a newly-added link type doesn't invoke BPF_LINK_TYPE(), accessing
bpf_link_type_strs[link->type] may result in an out-of-bounds access.
To spot such missed invocations early in the future, checking the
validity of link->type in bpf_link_show_fdinfo() and emitting a warning
when such invocations are missed. |
| In the Linux kernel, the following vulnerability has been resolved:
igb: Fix potential invalid memory access in igb_init_module()
The pci_register_driver() can fail and when this happened, the dca_notifier
needs to be unregistered, otherwise the dca_notifier can be called when
igb fails to install, resulting to invalid memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: ip_tunnel: Fix suspicious RCU usage warning in ip_tunnel_find()
The per-netns IP tunnel hash table is protected by the RTNL mutex and
ip_tunnel_find() is only called from the control path where the mutex is
taken.
Add a lockdep expression to hlist_for_each_entry_rcu() in
ip_tunnel_find() in order to validate that the mutex is held and to
silence the suspicious RCU usage warning [1].
[1]
WARNING: suspicious RCU usage
6.12.0-rc3-custom-gd95d9a31aceb #139 Not tainted
-----------------------------
net/ipv4/ip_tunnel.c:221 RCU-list traversed in non-reader section!!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by ip/362:
#0: ffffffff86fc7cb0 (rtnl_mutex){+.+.}-{3:3}, at: rtnetlink_rcv_msg+0x377/0xf60
stack backtrace:
CPU: 12 UID: 0 PID: 362 Comm: ip Not tainted 6.12.0-rc3-custom-gd95d9a31aceb #139
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
Call Trace:
<TASK>
dump_stack_lvl+0xba/0x110
lockdep_rcu_suspicious.cold+0x4f/0xd6
ip_tunnel_find+0x435/0x4d0
ip_tunnel_newlink+0x517/0x7a0
ipgre_newlink+0x14c/0x170
__rtnl_newlink+0x1173/0x19c0
rtnl_newlink+0x6c/0xa0
rtnetlink_rcv_msg+0x3cc/0xf60
netlink_rcv_skb+0x171/0x450
netlink_unicast+0x539/0x7f0
netlink_sendmsg+0x8c1/0xd80
____sys_sendmsg+0x8f9/0xc20
___sys_sendmsg+0x197/0x1e0
__sys_sendmsg+0x122/0x1f0
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/sve: Discard stale CPU state when handling SVE traps
The logic for handling SVE traps manipulates saved FPSIMD/SVE state
incorrectly, and a race with preemption can result in a task having
TIF_SVE set and TIF_FOREIGN_FPSTATE clear even though the live CPU state
is stale (e.g. with SVE traps enabled). This has been observed to result
in warnings from do_sve_acc() where SVE traps are not expected while
TIF_SVE is set:
| if (test_and_set_thread_flag(TIF_SVE))
| WARN_ON(1); /* SVE access shouldn't have trapped */
Warnings of this form have been reported intermittently, e.g.
https://lore.kernel.org/linux-arm-kernel/CA+G9fYtEGe_DhY2Ms7+L7NKsLYUomGsgqpdBj+QwDLeSg=JhGg@mail.gmail.com/
https://lore.kernel.org/linux-arm-kernel/[email protected]/
The race can occur when the SVE trap handler is preempted before and
after manipulating the saved FPSIMD/SVE state, starting and ending on
the same CPU, e.g.
| void do_sve_acc(unsigned long esr, struct pt_regs *regs)
| {
| // Trap on CPU 0 with TIF_SVE clear, SVE traps enabled
| // task->fpsimd_cpu is 0.
| // per_cpu_ptr(&fpsimd_last_state, 0) is task.
|
| ...
|
| // Preempted; migrated from CPU 0 to CPU 1.
| // TIF_FOREIGN_FPSTATE is set.
|
| get_cpu_fpsimd_context();
|
| if (test_and_set_thread_flag(TIF_SVE))
| WARN_ON(1); /* SVE access shouldn't have trapped */
|
| sve_init_regs() {
| if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
| ...
| } else {
| fpsimd_to_sve(current);
| current->thread.fp_type = FP_STATE_SVE;
| }
| }
|
| put_cpu_fpsimd_context();
|
| // Preempted; migrated from CPU 1 to CPU 0.
| // task->fpsimd_cpu is still 0
| // If per_cpu_ptr(&fpsimd_last_state, 0) is still task then:
| // - Stale HW state is reused (with SVE traps enabled)
| // - TIF_FOREIGN_FPSTATE is cleared
| // - A return to userspace skips HW state restore
| }
Fix the case where the state is not live and TIF_FOREIGN_FPSTATE is set
by calling fpsimd_flush_task_state() to detach from the saved CPU
state. This ensures that a subsequent context switch will not reuse the
stale CPU state, and will instead set TIF_FOREIGN_FPSTATE, forcing the
new state to be reloaded from memory prior to a return to userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix crash when config small gso_max_size/gso_ipv4_max_size
Config a small gso_max_size/gso_ipv4_max_size will lead to an underflow
in sk_dst_gso_max_size(), which may trigger a BUG_ON crash,
because sk->sk_gso_max_size would be much bigger than device limits.
Call Trace:
tcp_write_xmit
tso_segs = tcp_init_tso_segs(skb, mss_now);
tcp_set_skb_tso_segs
tcp_skb_pcount_set
// skb->len = 524288, mss_now = 8
// u16 tso_segs = 524288/8 = 65535 -> 0
tso_segs = DIV_ROUND_UP(skb->len, mss_now)
BUG_ON(!tso_segs)
Add check for the minimum value of gso_max_size and gso_ipv4_max_size. |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs3: Add bounds checking to mi_enum_attr()
Added bounds checking to make sure that every attr don't stray beyond
valid memory region. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix overloading of MEM_UNINIT's meaning
Lonial reported an issue in the BPF verifier where check_mem_size_reg()
has the following code:
if (!tnum_is_const(reg->var_off))
/* For unprivileged variable accesses, disable raw
* mode so that the program is required to
* initialize all the memory that the helper could
* just partially fill up.
*/
meta = NULL;
This means that writes are not checked when the register containing the
size of the passed buffer has not a fixed size. Through this bug, a BPF
program can write to a map which is marked as read-only, for example,
.rodata global maps.
The problem is that MEM_UNINIT's initial meaning that "the passed buffer
to the BPF helper does not need to be initialized" which was added back
in commit 435faee1aae9 ("bpf, verifier: add ARG_PTR_TO_RAW_STACK type")
got overloaded over time with "the passed buffer is being written to".
The problem however is that checks such as the above which were added later
via 06c1c049721a ("bpf: allow helpers access to variable memory") set meta
to NULL in order force the user to always initialize the passed buffer to
the helper. Due to the current double meaning of MEM_UNINIT, this bypasses
verifier write checks to the memory (not boundary checks though) and only
assumes the latter memory is read instead.
Fix this by reverting MEM_UNINIT back to its original meaning, and having
MEM_WRITE as an annotation to BPF helpers in order to then trigger the
BPF verifier checks for writing to memory.
Some notes: check_arg_pair_ok() ensures that for ARG_CONST_SIZE{,_OR_ZERO}
we can access fn->arg_type[arg - 1] since it must contain a preceding
ARG_PTR_TO_MEM. For check_mem_reg() the meta argument can be removed
altogether since we do check both BPF_READ and BPF_WRITE. Same for the
equivalent check_kfunc_mem_size_reg(). |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Don't call cleanup on profile rollback failure
When profile rollback fails in mlx5e_netdev_change_profile, the netdev
profile var is left set to NULL. Avoid a crash when unloading the driver
by not calling profile->cleanup in such a case.
This was encountered while testing, with the original trigger that
the wq rescuer thread creation got interrupted (presumably due to
Ctrl+C-ing modprobe), which gets converted to ENOMEM (-12) by
mlx5e_priv_init, the profile rollback also fails for the same reason
(signal still active) so the profile is left as NULL, leading to a crash
later in _mlx5e_remove.
[ 732.473932] mlx5_core 0000:08:00.1: E-Switch: Unload vfs: mode(OFFLOADS), nvfs(2), necvfs(0), active vports(2)
[ 734.525513] workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
[ 734.557372] mlx5_core 0000:08:00.1: mlx5e_netdev_init_profile:6235:(pid 6086): mlx5e_priv_init failed, err=-12
[ 734.559187] mlx5_core 0000:08:00.1 eth3: mlx5e_netdev_change_profile: new profile init failed, -12
[ 734.560153] workqueue: Failed to create a rescuer kthread for wq "mlx5e": -EINTR
[ 734.589378] mlx5_core 0000:08:00.1: mlx5e_netdev_init_profile:6235:(pid 6086): mlx5e_priv_init failed, err=-12
[ 734.591136] mlx5_core 0000:08:00.1 eth3: mlx5e_netdev_change_profile: failed to rollback to orig profile, -12
[ 745.537492] BUG: kernel NULL pointer dereference, address: 0000000000000008
[ 745.538222] #PF: supervisor read access in kernel mode
<snipped>
[ 745.551290] Call Trace:
[ 745.551590] <TASK>
[ 745.551866] ? __die+0x20/0x60
[ 745.552218] ? page_fault_oops+0x150/0x400
[ 745.555307] ? exc_page_fault+0x79/0x240
[ 745.555729] ? asm_exc_page_fault+0x22/0x30
[ 745.556166] ? mlx5e_remove+0x6b/0xb0 [mlx5_core]
[ 745.556698] auxiliary_bus_remove+0x18/0x30
[ 745.557134] device_release_driver_internal+0x1df/0x240
[ 745.557654] bus_remove_device+0xd7/0x140
[ 745.558075] device_del+0x15b/0x3c0
[ 745.558456] mlx5_rescan_drivers_locked.part.0+0xb1/0x2f0 [mlx5_core]
[ 745.559112] mlx5_unregister_device+0x34/0x50 [mlx5_core]
[ 745.559686] mlx5_uninit_one+0x46/0xf0 [mlx5_core]
[ 745.560203] remove_one+0x4e/0xd0 [mlx5_core]
[ 745.560694] pci_device_remove+0x39/0xa0
[ 745.561112] device_release_driver_internal+0x1df/0x240
[ 745.561631] driver_detach+0x47/0x90
[ 745.562022] bus_remove_driver+0x84/0x100
[ 745.562444] pci_unregister_driver+0x3b/0x90
[ 745.562890] mlx5_cleanup+0xc/0x1b [mlx5_core]
[ 745.563415] __x64_sys_delete_module+0x14d/0x2f0
[ 745.563886] ? kmem_cache_free+0x1b0/0x460
[ 745.564313] ? lockdep_hardirqs_on_prepare+0xe2/0x190
[ 745.564825] do_syscall_64+0x6d/0x140
[ 745.565223] entry_SYSCALL_64_after_hwframe+0x4b/0x53
[ 745.565725] RIP: 0033:0x7f1579b1288b |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: cancel nfsd_shrinker_work using sync mode in nfs4_state_shutdown_net
In the normal case, when we excute `echo 0 > /proc/fs/nfsd/threads`, the
function `nfs4_state_destroy_net` in `nfs4_state_shutdown_net` will
release all resources related to the hashed `nfs4_client`. If the
`nfsd_client_shrinker` is running concurrently, the `expire_client`
function will first unhash this client and then destroy it. This can
lead to the following warning. Additionally, numerous use-after-free
errors may occur as well.
nfsd_client_shrinker echo 0 > /proc/fs/nfsd/threads
expire_client nfsd_shutdown_net
unhash_client ...
nfs4_state_shutdown_net
/* won't wait shrinker exit */
/* cancel_work(&nn->nfsd_shrinker_work)
* nfsd_file for this /* won't destroy unhashed client1 */
* client1 still alive nfs4_state_destroy_net
*/
nfsd_file_cache_shutdown
/* trigger warning */
kmem_cache_destroy(nfsd_file_slab)
kmem_cache_destroy(nfsd_file_mark_slab)
/* release nfsd_file and mark */
__destroy_client
====================================================================
BUG nfsd_file (Not tainted): Objects remaining in nfsd_file on
__kmem_cache_shutdown()
--------------------------------------------------------------------
CPU: 4 UID: 0 PID: 764 Comm: sh Not tainted 6.12.0-rc3+ #1
dump_stack_lvl+0x53/0x70
slab_err+0xb0/0xf0
__kmem_cache_shutdown+0x15c/0x310
kmem_cache_destroy+0x66/0x160
nfsd_file_cache_shutdown+0xac/0x210 [nfsd]
nfsd_destroy_serv+0x251/0x2a0 [nfsd]
nfsd_svc+0x125/0x1e0 [nfsd]
write_threads+0x16a/0x2a0 [nfsd]
nfsctl_transaction_write+0x74/0xa0 [nfsd]
vfs_write+0x1a5/0x6d0
ksys_write+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
====================================================================
BUG nfsd_file_mark (Tainted: G B W ): Objects remaining
nfsd_file_mark on __kmem_cache_shutdown()
--------------------------------------------------------------------
dump_stack_lvl+0x53/0x70
slab_err+0xb0/0xf0
__kmem_cache_shutdown+0x15c/0x310
kmem_cache_destroy+0x66/0x160
nfsd_file_cache_shutdown+0xc8/0x210 [nfsd]
nfsd_destroy_serv+0x251/0x2a0 [nfsd]
nfsd_svc+0x125/0x1e0 [nfsd]
write_threads+0x16a/0x2a0 [nfsd]
nfsctl_transaction_write+0x74/0xa0 [nfsd]
vfs_write+0x1a5/0x6d0
ksys_write+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
To resolve this issue, cancel `nfsd_shrinker_work` using synchronous
mode in nfs4_state_shutdown_net. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: mpc52xx: Add cancel_work_sync before module remove
If we remove the module which will call mpc52xx_spi_remove
it will free 'ms' through spi_unregister_controller.
while the work ms->work will be used. The sequence of operations
that may lead to a UAF bug.
Fix it by ensuring that the work is canceled before proceeding with
the cleanup in mpc52xx_spi_remove. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix buffer overflow when parsing NFS reparse points
ReparseDataLength is sum of the InodeType size and DataBuffer size.
So to get DataBuffer size it is needed to subtract InodeType's size from
ReparseDataLength.
Function cifs_strndup_from_utf16() is currentlly accessing buf->DataBuffer
at position after the end of the buffer because it does not subtract
InodeType size from the length. Fix this problem and correctly subtract
variable len.
Member InodeType is present only when reparse buffer is large enough. Check
for ReparseDataLength before accessing InodeType to prevent another invalid
memory access.
Major and minor rdev values are present also only when reparse buffer is
large enough. Check for reparse buffer size before calling reparse_mkdev(). |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix integer overflow in BLKSECDISCARD
I independently rediscovered
commit 22d24a544b0d49bbcbd61c8c0eaf77d3c9297155
block: fix overflow in blk_ioctl_discard()
but for secure erase.
Same problem:
uint64_t r[2] = {512, 18446744073709551104ULL};
ioctl(fd, BLKSECDISCARD, r);
will enter near infinite loop inside blkdev_issue_secure_erase():
a.out: attempt to access beyond end of device
loop0: rw=5, sector=3399043073, nr_sectors = 1024 limit=2048
bio_check_eod: 3286214 callbacks suppressed |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix possible crash on mgmt_index_removed
If mgmt_index_removed is called while there are commands queued on
cmd_sync it could lead to crashes like the bellow trace:
0x0000053D: __list_del_entry_valid_or_report+0x98/0xdc
0x0000053D: mgmt_pending_remove+0x18/0x58 [bluetooth]
0x0000053E: mgmt_remove_adv_monitor_complete+0x80/0x108 [bluetooth]
0x0000053E: hci_cmd_sync_work+0xbc/0x164 [bluetooth]
So while handling mgmt_index_removed this attempts to dequeue
commands passed as user_data to cmd_sync. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: avoid to add interface to list twice when SER
If SER L2 occurs during the WoWLAN resume flow, the add interface flow
is triggered by ieee80211_reconfig(). However, due to
rtw89_wow_resume() return failure, it will cause the add interface flow
to be executed again, resulting in a double add list and causing a kernel
panic. Therefore, we have added a check to prevent double adding of the
list.
list_add double add: new=ffff99d6992e2010, prev=ffff99d6992e2010, next=ffff99d695302628.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:37!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W O 6.6.30-02659-gc18865c4dfbd #1 770df2933251a0e3c888ba69d1053a817a6376a7
Hardware name: HP Grunt/Grunt, BIOS Google_Grunt.11031.169.0 06/24/2021
Workqueue: events_freezable ieee80211_restart_work [mac80211]
RIP: 0010:__list_add_valid_or_report+0x5e/0xb0
Code: c7 74 18 48 39 ce 74 13 b0 01 59 5a 5e 5f 41 58 41 59 41 5a 5d e9 e2 d6 03 00 cc 48 c7 c7 8d 4f 17 83 48 89 c2 e8 02 c0 00 00 <0f> 0b 48 c7 c7 aa 8c 1c 83 e8 f4 bf 00 00 0f 0b 48 c7 c7 c8 bc 12
RSP: 0018:ffffa91b8007bc50 EFLAGS: 00010246
RAX: 0000000000000058 RBX: ffff99d6992e0900 RCX: a014d76c70ef3900
RDX: ffffa91b8007bae8 RSI: 00000000ffffdfff RDI: 0000000000000001
RBP: ffffa91b8007bc88 R08: 0000000000000000 R09: ffffa91b8007bae0
R10: 00000000ffffdfff R11: ffffffff83a79800 R12: ffff99d695302060
R13: ffff99d695300900 R14: ffff99d6992e1be0 R15: ffff99d6992e2010
FS: 0000000000000000(0000) GS:ffff99d6aac00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000078fbdba43480 CR3: 000000010e464000 CR4: 00000000001506f0
Call Trace:
<TASK>
? __die_body+0x1f/0x70
? die+0x3d/0x60
? do_trap+0xa4/0x110
? __list_add_valid_or_report+0x5e/0xb0
? do_error_trap+0x6d/0x90
? __list_add_valid_or_report+0x5e/0xb0
? handle_invalid_op+0x30/0x40
? __list_add_valid_or_report+0x5e/0xb0
? exc_invalid_op+0x3c/0x50
? asm_exc_invalid_op+0x16/0x20
? __list_add_valid_or_report+0x5e/0xb0
rtw89_ops_add_interface+0x309/0x310 [rtw89_core 7c32b1ee6854761c0321027c8a58c5160e41f48f]
drv_add_interface+0x5c/0x130 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc]
ieee80211_reconfig+0x241/0x13d0 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc]
? finish_wait+0x3e/0x90
? synchronize_rcu_expedited+0x174/0x260
? sync_rcu_exp_done_unlocked+0x50/0x50
? wake_bit_function+0x40/0x40
ieee80211_restart_work+0xf0/0x140 [mac80211 83e989e6e616bd5b4b8a2b0a9f9352a2c385a3bc]
process_scheduled_works+0x1e5/0x480
worker_thread+0xea/0x1e0
kthread+0xdb/0x110
? move_linked_works+0x90/0x90
? kthread_associate_blkcg+0xa0/0xa0
ret_from_fork+0x3b/0x50
? kthread_associate_blkcg+0xa0/0xa0
ret_from_fork_asm+0x11/0x20
</TASK>
Modules linked in: dm_integrity async_xor xor async_tx lz4 lz4_compress zstd zstd_compress zram zsmalloc rfcomm cmac uinput algif_hash algif_skcipher af_alg btusb btrtl iio_trig_hrtimer industrialio_sw_trigger btmtk industrialio_configfs btbcm btintel uvcvideo videobuf2_vmalloc iio_trig_sysfs videobuf2_memops videobuf2_v4l2 videobuf2_common uvc snd_hda_codec_hdmi veth snd_hda_intel snd_intel_dspcfg acpi_als snd_hda_codec industrialio_triggered_buffer kfifo_buf snd_hwdep industrialio i2c_piix4 snd_hda_core designware_i2s ip6table_nat snd_soc_max98357a xt_MASQUERADE xt_cgroup snd_soc_acp_rt5682_mach fuse rtw89_8922ae(O) rtw89_8922a(O) rtw89_pci(O) rtw89_core(O) 8021q mac80211(O) bluetooth ecdh_generic ecc cfg80211 r8152 mii joydev
gsmi: Log Shutdown Reason 0x03
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: avoid NULL pointer dereference
iwl_mvm_tx_skb_sta() and iwl_mvm_tx_mpdu() verify that the mvmvsta
pointer is not NULL.
It retrieves this pointer using iwl_mvm_sta_from_mac80211, which is
dereferencing the ieee80211_sta pointer.
If sta is NULL, iwl_mvm_sta_from_mac80211 will dereference a NULL
pointer.
Fix this by checking the sta pointer before retrieving the mvmsta
from it. If sta is not NULL, then mvmsta isn't either. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: efifb: Register sysfs groups through driver core
The driver core can register and cleanup sysfs groups already.
Make use of that functionality to simplify the error handling and
cleanup.
Also avoid a UAF race during unregistering where the sysctl attributes
were usable after the info struct was freed. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Add NULL check for clk_mgr and clk_mgr->funcs in dcn30_init_hw
This commit addresses a potential null pointer dereference issue in the
`dcn30_init_hw` function. The issue could occur when `dc->clk_mgr` or
`dc->clk_mgr->funcs` is null.
The fix adds a check to ensure `dc->clk_mgr` and `dc->clk_mgr->funcs` is
not null before accessing its functions. This prevents a potential null
pointer dereference.
Reported by smatch:
drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn30/dcn30_hwseq.c:789 dcn30_init_hw() error: we previously assumed 'dc->clk_mgr' could be null (see line 628) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Add NULL check for clk_mgr in dcn32_init_hw
This commit addresses a potential null pointer dereference issue in the
`dcn32_init_hw` function. The issue could occur when `dc->clk_mgr` is
null.
The fix adds a check to ensure `dc->clk_mgr` is not null before
accessing its functions. This prevents a potential null pointer
dereference.
Reported by smatch:
drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn32/dcn32_hwseq.c:961 dcn32_init_hw() error: we previously assumed 'dc->clk_mgr' could be null (see line 782) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Add NULL check for function pointer in dcn20_set_output_transfer_func
This commit adds a null check for the set_output_gamma function pointer
in the dcn20_set_output_transfer_func function. Previously,
set_output_gamma was being checked for null at line 1030, but then it
was being dereferenced without any null check at line 1048. This could
potentially lead to a null pointer dereference error if set_output_gamma
is null.
To fix this, we now ensure that set_output_gamma is not null before
dereferencing it. We do this by adding a null check for set_output_gamma
before the call to set_output_gamma at line 1048. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Add NULL check for function pointer in dcn32_set_output_transfer_func
This commit adds a null check for the set_output_gamma function pointer
in the dcn32_set_output_transfer_func function. Previously,
set_output_gamma was being checked for null, but then it was being
dereferenced without any null check. This could lead to a null pointer
dereference if set_output_gamma is null.
To fix this, we now ensure that set_output_gamma is not null before
dereferencing it. We do this by adding a null check for set_output_gamma
before the call to set_output_gamma. |