| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
i3c: master: Fix miss free init_dyn_addr at i3c_master_put_i3c_addrs()
if (dev->boardinfo && dev->boardinfo->init_dyn_addr)
^^^ here check "init_dyn_addr"
i3c_bus_set_addr_slot_status(&master->bus, dev->info.dyn_addr, ...)
^^^^
free "dyn_addr"
Fix copy/paste error "dyn_addr" by replacing it with "init_dyn_addr". |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: make sure exp active before svc_export_show
The function `e_show` was called with protection from RCU. This only
ensures that `exp` will not be freed. Therefore, the reference count for
`exp` can drop to zero, which will trigger a refcount use-after-free
warning when `exp_get` is called. To resolve this issue, use
`cache_get_rcu` to ensure that `exp` remains active.
------------[ cut here ]------------
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 3 PID: 819 at lib/refcount.c:25
refcount_warn_saturate+0xb1/0x120
CPU: 3 UID: 0 PID: 819 Comm: cat Not tainted 6.12.0-rc3+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.1-2.fc37 04/01/2014
RIP: 0010:refcount_warn_saturate+0xb1/0x120
...
Call Trace:
<TASK>
e_show+0x20b/0x230 [nfsd]
seq_read_iter+0x589/0x770
seq_read+0x1e5/0x270
vfs_read+0x125/0x530
ksys_read+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ad7923: Fix buffer overflow for tx_buf and ring_xfer
The AD7923 was updated to support devices with 8 channels, but the size
of tx_buf and ring_xfer was not increased accordingly, leading to a
potential buffer overflow in ad7923_update_scan_mode(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix usage slab after free
[ +0.000021] BUG: KASAN: slab-use-after-free in drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000027] Read of size 8 at addr ffff8881b8605f88 by task amd_pci_unplug/2147
[ +0.000023] CPU: 6 PID: 2147 Comm: amd_pci_unplug Not tainted 6.10.0+ #1
[ +0.000016] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020
[ +0.000016] Call Trace:
[ +0.000008] <TASK>
[ +0.000009] dump_stack_lvl+0x76/0xa0
[ +0.000017] print_report+0xce/0x5f0
[ +0.000017] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000019] ? srso_return_thunk+0x5/0x5f
[ +0.000015] ? kasan_complete_mode_report_info+0x72/0x200
[ +0.000016] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000019] kasan_report+0xbe/0x110
[ +0.000015] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000023] __asan_report_load8_noabort+0x14/0x30
[ +0.000014] drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000020] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? __kasan_check_write+0x14/0x30
[ +0.000016] ? __pfx_drm_sched_entity_flush+0x10/0x10 [gpu_sched]
[ +0.000020] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? __kasan_check_write+0x14/0x30
[ +0.000013] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? enable_work+0x124/0x220
[ +0.000015] ? __pfx_enable_work+0x10/0x10
[ +0.000013] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? free_large_kmalloc+0x85/0xf0
[ +0.000016] drm_sched_entity_destroy+0x18/0x30 [gpu_sched]
[ +0.000020] amdgpu_vce_sw_fini+0x55/0x170 [amdgpu]
[ +0.000735] ? __kasan_check_read+0x11/0x20
[ +0.000016] vce_v4_0_sw_fini+0x80/0x110 [amdgpu]
[ +0.000726] amdgpu_device_fini_sw+0x331/0xfc0 [amdgpu]
[ +0.000679] ? mutex_unlock+0x80/0xe0
[ +0.000017] ? __pfx_amdgpu_device_fini_sw+0x10/0x10 [amdgpu]
[ +0.000662] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? __kasan_check_write+0x14/0x30
[ +0.000013] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? mutex_unlock+0x80/0xe0
[ +0.000016] amdgpu_driver_release_kms+0x16/0x80 [amdgpu]
[ +0.000663] drm_minor_release+0xc9/0x140 [drm]
[ +0.000081] drm_release+0x1fd/0x390 [drm]
[ +0.000082] __fput+0x36c/0xad0
[ +0.000018] __fput_sync+0x3c/0x50
[ +0.000014] __x64_sys_close+0x7d/0xe0
[ +0.000014] x64_sys_call+0x1bc6/0x2680
[ +0.000014] do_syscall_64+0x70/0x130
[ +0.000014] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? irqentry_exit_to_user_mode+0x60/0x190
[ +0.000015] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? irqentry_exit+0x43/0x50
[ +0.000012] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? exc_page_fault+0x7c/0x110
[ +0.000015] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ +0.000014] RIP: 0033:0x7ffff7b14f67
[ +0.000013] Code: ff e8 0d 16 02 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 73 ba f7 ff
[ +0.000026] RSP: 002b:00007fffffffe378 EFLAGS: 00000246 ORIG_RAX: 0000000000000003
[ +0.000019] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ffff7b14f67
[ +0.000014] RDX: 0000000000000000 RSI: 00007ffff7f6f47a RDI: 0000000000000003
[ +0.000014] RBP: 00007fffffffe3a0 R08: 0000555555569890 R09: 0000000000000000
[ +0.000014] R10: 0000000000000000 R11: 0000000000000246 R12: 00007fffffffe5c8
[ +0.000013] R13: 00005555555552a9 R14: 0000555555557d48 R15: 00007ffff7ffd040
[ +0.000020] </TASK>
[ +0.000016] Allocated by task 383 on cpu 7 at 26.880319s:
[ +0.000014] kasan_save_stack+0x28/0x60
[ +0.000008] kasan_save_track+0x18/0x70
[ +0.000007] kasan_save_alloc_info+0x38/0x60
[ +0.000007] __kasan_kmalloc+0xc1/0xd0
[ +0.000007] kmalloc_trace_noprof+0x180/0x380
[ +0.000007] drm_sched_init+0x411/0xec0 [gpu_sched]
[ +0.000012] amdgpu_device_init+0x695f/0xa610 [amdgpu]
[ +0.000658] amdgpu_driver_load_kms+0x1a/0x120 [amdgpu]
[ +0.000662] amdgpu_pci_p
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: don't query the device logical block size multiple times
Devices block sizes may change. One of these cases is a loop device by
using ioctl LOOP_SET_BLOCK_SIZE.
While this may cause other issues like IO being rejected, in the case of
hfsplus, it will allocate a block by using that size and potentially write
out-of-bounds when hfsplus_read_wrapper calls hfsplus_submit_bio and the
latter function reads a different io_size.
Using a new min_io_size initally set to sb_min_blocksize works for the
purposes of the original fix, since it will be set to the max between
HFSPLUS_SECTOR_SIZE and the first seen logical block size. We still use the
max between HFSPLUS_SECTOR_SIZE and min_io_size in case the latter is not
initialized.
Tested by mounting an hfsplus filesystem with loop block sizes 512, 1024
and 4096.
The produced KASAN report before the fix looks like this:
[ 419.944641] ==================================================================
[ 419.945655] BUG: KASAN: slab-use-after-free in hfsplus_read_wrapper+0x659/0xa0a
[ 419.946703] Read of size 2 at addr ffff88800721fc00 by task repro/10678
[ 419.947612]
[ 419.947846] CPU: 0 UID: 0 PID: 10678 Comm: repro Not tainted 6.12.0-rc5-00008-gdf56e0f2f3ca #84
[ 419.949007] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
[ 419.950035] Call Trace:
[ 419.950384] <TASK>
[ 419.950676] dump_stack_lvl+0x57/0x78
[ 419.951212] ? hfsplus_read_wrapper+0x659/0xa0a
[ 419.951830] print_report+0x14c/0x49e
[ 419.952361] ? __virt_addr_valid+0x267/0x278
[ 419.952979] ? kmem_cache_debug_flags+0xc/0x1d
[ 419.953561] ? hfsplus_read_wrapper+0x659/0xa0a
[ 419.954231] kasan_report+0x89/0xb0
[ 419.954748] ? hfsplus_read_wrapper+0x659/0xa0a
[ 419.955367] hfsplus_read_wrapper+0x659/0xa0a
[ 419.955948] ? __pfx_hfsplus_read_wrapper+0x10/0x10
[ 419.956618] ? do_raw_spin_unlock+0x59/0x1a9
[ 419.957214] ? _raw_spin_unlock+0x1a/0x2e
[ 419.957772] hfsplus_fill_super+0x348/0x1590
[ 419.958355] ? hlock_class+0x4c/0x109
[ 419.958867] ? __pfx_hfsplus_fill_super+0x10/0x10
[ 419.959499] ? __pfx_string+0x10/0x10
[ 419.960006] ? lock_acquire+0x3e2/0x454
[ 419.960532] ? bdev_name.constprop.0+0xce/0x243
[ 419.961129] ? __pfx_bdev_name.constprop.0+0x10/0x10
[ 419.961799] ? pointer+0x3f0/0x62f
[ 419.962277] ? __pfx_pointer+0x10/0x10
[ 419.962761] ? vsnprintf+0x6c4/0xfba
[ 419.963178] ? __pfx_vsnprintf+0x10/0x10
[ 419.963621] ? setup_bdev_super+0x376/0x3b3
[ 419.964029] ? snprintf+0x9d/0xd2
[ 419.964344] ? __pfx_snprintf+0x10/0x10
[ 419.964675] ? lock_acquired+0x45c/0x5e9
[ 419.965016] ? set_blocksize+0x139/0x1c1
[ 419.965381] ? sb_set_blocksize+0x6d/0xae
[ 419.965742] ? __pfx_hfsplus_fill_super+0x10/0x10
[ 419.966179] mount_bdev+0x12f/0x1bf
[ 419.966512] ? __pfx_mount_bdev+0x10/0x10
[ 419.966886] ? vfs_parse_fs_string+0xce/0x111
[ 419.967293] ? __pfx_vfs_parse_fs_string+0x10/0x10
[ 419.967702] ? __pfx_hfsplus_mount+0x10/0x10
[ 419.968073] legacy_get_tree+0x104/0x178
[ 419.968414] vfs_get_tree+0x86/0x296
[ 419.968751] path_mount+0xba3/0xd0b
[ 419.969157] ? __pfx_path_mount+0x10/0x10
[ 419.969594] ? kmem_cache_free+0x1e2/0x260
[ 419.970311] do_mount+0x99/0xe0
[ 419.970630] ? __pfx_do_mount+0x10/0x10
[ 419.971008] __do_sys_mount+0x199/0x1c9
[ 419.971397] do_syscall_64+0xd0/0x135
[ 419.971761] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 419.972233] RIP: 0033:0x7c3cb812972e
[ 419.972564] Code: 48 8b 0d f5 46 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d c2 46 0d 00 f7 d8 64 89 01 48
[ 419.974371] RSP: 002b:00007ffe30632548 EFLAGS: 00000286 ORIG_RAX: 00000000000000a5
[ 419.975048] RAX: ffffffffffffffda RBX: 00007ffe306328d8 RCX: 00007c3cb812972e
[ 419.975701] RDX: 0000000020000000 RSI: 0000000020000c80 RDI:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: soc: xilinx: add the missing kfree in xlnx_add_cb_for_suspend()
If we fail to allocate memory for cb_data by kmalloc, the memory
allocation for eve_data is never freed, add the missing kfree()
in the error handling path. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: Fix memcpy() field-spanning write warning in mwifiex_config_scan()
Replace one-element array with a flexible-array member in `struct
mwifiex_ie_types_wildcard_ssid_params` to fix the following warning
on a MT8173 Chromebook (mt8173-elm-hana):
[ 356.775250] ------------[ cut here ]------------
[ 356.784543] memcpy: detected field-spanning write (size 6) of single field "wildcard_ssid_tlv->ssid" at drivers/net/wireless/marvell/mwifiex/scan.c:904 (size 1)
[ 356.813403] WARNING: CPU: 3 PID: 742 at drivers/net/wireless/marvell/mwifiex/scan.c:904 mwifiex_scan_networks+0x4fc/0xf28 [mwifiex]
The "(size 6)" above is exactly the length of the SSID of the network
this device was connected to. The source of the warning looks like:
ssid_len = user_scan_in->ssid_list[i].ssid_len;
[...]
memcpy(wildcard_ssid_tlv->ssid,
user_scan_in->ssid_list[i].ssid, ssid_len);
There is a #define WILDCARD_SSID_TLV_MAX_SIZE that uses sizeof() on this
struct, but it already didn't account for the size of the one-element
array, so it doesn't need to be changed. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usx2y: Use snd_card_free_when_closed() at disconnection
The USB disconnect callback is supposed to be short and not too-long
waiting. OTOH, the current code uses snd_card_free() at
disconnection, but this waits for the close of all used fds, hence it
can take long. It eventually blocks the upper layer USB ioctls, which
may trigger a soft lockup.
An easy workaround is to replace snd_card_free() with
snd_card_free_when_closed(). This variant returns immediately while
the release of resources is done asynchronously by the card device
release at the last close. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: us122l: Use snd_card_free_when_closed() at disconnection
The USB disconnect callback is supposed to be short and not too-long
waiting. OTOH, the current code uses snd_card_free() at
disconnection, but this waits for the close of all used fds, hence it
can take long. It eventually blocks the upper layer USB ioctls, which
may trigger a soft lockup.
An easy workaround is to replace snd_card_free() with
snd_card_free_when_closed(). This variant returns immediately while
the release of resources is done asynchronously by the card device
release at the last close.
The loop of us122l->mmap_count check is dropped as well. The check is
useless for the asynchronous operation with *_when_closed(). |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: caiaq: Use snd_card_free_when_closed() at disconnection
The USB disconnect callback is supposed to be short and not too-long
waiting. OTOH, the current code uses snd_card_free() at
disconnection, but this waits for the close of all used fds, hence it
can take long. It eventually blocks the upper layer USB ioctls, which
may trigger a soft lockup.
An easy workaround is to replace snd_card_free() with
snd_card_free_when_closed(). This variant returns immediately while
the release of resources is done asynchronously by the card device
release at the last close.
This patch also splits the code to the disconnect and the free phases;
the former is called immediately at the USB disconnect callback while
the latter is called from the card destructor. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/modes: Avoid divide by zero harder in drm_mode_vrefresh()
drm_mode_vrefresh() is trying to avoid divide by zero
by checking whether htotal or vtotal are zero. But we may
still end up with a div-by-zero of vtotal*htotal*... |
| In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: util: Avoid accessing a ringbuffer not initialized yet
If the KVP (or VSS) daemon starts before the VMBus channel's ringbuffer is
fully initialized, we can hit the panic below:
hv_utils: Registering HyperV Utility Driver
hv_vmbus: registering driver hv_utils
...
BUG: kernel NULL pointer dereference, address: 0000000000000000
CPU: 44 UID: 0 PID: 2552 Comm: hv_kvp_daemon Tainted: G E 6.11.0-rc3+ #1
RIP: 0010:hv_pkt_iter_first+0x12/0xd0
Call Trace:
...
vmbus_recvpacket
hv_kvp_onchannelcallback
vmbus_on_event
tasklet_action_common
tasklet_action
handle_softirqs
irq_exit_rcu
sysvec_hyperv_stimer0
</IRQ>
<TASK>
asm_sysvec_hyperv_stimer0
...
kvp_register_done
hvt_op_read
vfs_read
ksys_read
__x64_sys_read
This can happen because the KVP/VSS channel callback can be invoked
even before the channel is fully opened:
1) as soon as hv_kvp_init() -> hvutil_transport_init() creates
/dev/vmbus/hv_kvp, the kvp daemon can open the device file immediately and
register itself to the driver by writing a message KVP_OP_REGISTER1 to the
file (which is handled by kvp_on_msg() ->kvp_handle_handshake()) and
reading the file for the driver's response, which is handled by
hvt_op_read(), which calls hvt->on_read(), i.e. kvp_register_done().
2) the problem with kvp_register_done() is that it can cause the
channel callback to be called even before the channel is fully opened,
and when the channel callback is starting to run, util_probe()->
vmbus_open() may have not initialized the ringbuffer yet, so the
callback can hit the panic of NULL pointer dereference.
To reproduce the panic consistently, we can add a "ssleep(10)" for KVP in
__vmbus_open(), just before the first hv_ringbuffer_init(), and then we
unload and reload the driver hv_utils, and run the daemon manually within
the 10 seconds.
Fix the panic by reordering the steps in util_probe() so the char dev
entry used by the KVP or VSS daemon is not created until after
vmbus_open() has completed. This reordering prevents the race condition
from happening. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Play nice with protected guests in complete_hypercall_exit()
Use is_64_bit_hypercall() instead of is_64_bit_mode() to detect a 64-bit
hypercall when completing said hypercall. For guests with protected state,
e.g. SEV-ES and SEV-SNP, KVM must assume the hypercall was made in 64-bit
mode as the vCPU state needed to detect 64-bit mode is unavailable.
Hacking the sev_smoke_test selftest to generate a KVM_HC_MAP_GPA_RANGE
hypercall via VMGEXIT trips the WARN:
------------[ cut here ]------------
WARNING: CPU: 273 PID: 326626 at arch/x86/kvm/x86.h:180 complete_hypercall_exit+0x44/0xe0 [kvm]
Modules linked in: kvm_amd kvm ... [last unloaded: kvm]
CPU: 273 UID: 0 PID: 326626 Comm: sev_smoke_test Not tainted 6.12.0-smp--392e932fa0f3-feat #470
Hardware name: Google Astoria/astoria, BIOS 0.20240617.0-0 06/17/2024
RIP: 0010:complete_hypercall_exit+0x44/0xe0 [kvm]
Call Trace:
<TASK>
kvm_arch_vcpu_ioctl_run+0x2400/0x2720 [kvm]
kvm_vcpu_ioctl+0x54f/0x630 [kvm]
__se_sys_ioctl+0x6b/0xc0
do_syscall_64+0x83/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_hash: unaligned atomic read on struct nft_set_ext
Access to genmask field in struct nft_set_ext results in unaligned
atomic read:
[ 72.130109] Unable to handle kernel paging request at virtual address ffff0000c2bb708c
[ 72.131036] Mem abort info:
[ 72.131213] ESR = 0x0000000096000021
[ 72.131446] EC = 0x25: DABT (current EL), IL = 32 bits
[ 72.132209] SET = 0, FnV = 0
[ 72.133216] EA = 0, S1PTW = 0
[ 72.134080] FSC = 0x21: alignment fault
[ 72.135593] Data abort info:
[ 72.137194] ISV = 0, ISS = 0x00000021, ISS2 = 0x00000000
[ 72.142351] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 72.145989] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 72.150115] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000237d27000
[ 72.154893] [ffff0000c2bb708c] pgd=0000000000000000, p4d=180000023ffff403, pud=180000023f84b403, pmd=180000023f835403,
+pte=0068000102bb7707
[ 72.163021] Internal error: Oops: 0000000096000021 [#1] SMP
[...]
[ 72.170041] CPU: 7 UID: 0 PID: 54 Comm: kworker/7:0 Tainted: G E 6.13.0-rc3+ #2
[ 72.170509] Tainted: [E]=UNSIGNED_MODULE
[ 72.170720] Hardware name: QEMU QEMU Virtual Machine, BIOS edk2-stable202302-for-qemu 03/01/2023
[ 72.171192] Workqueue: events_power_efficient nft_rhash_gc [nf_tables]
[ 72.171552] pstate: 21400005 (nzCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 72.171915] pc : nft_rhash_gc+0x200/0x2d8 [nf_tables]
[ 72.172166] lr : nft_rhash_gc+0x128/0x2d8 [nf_tables]
[ 72.172546] sp : ffff800081f2bce0
[ 72.172724] x29: ffff800081f2bd40 x28: ffff0000c2bb708c x27: 0000000000000038
[ 72.173078] x26: ffff0000c6780ef0 x25: ffff0000c643df00 x24: ffff0000c6778f78
[ 72.173431] x23: 000000000000001a x22: ffff0000c4b1f000 x21: ffff0000c6780f78
[ 72.173782] x20: ffff0000c2bb70dc x19: ffff0000c2bb7080 x18: 0000000000000000
[ 72.174135] x17: ffff0000c0a4e1c0 x16: 0000000000003000 x15: 0000ac26d173b978
[ 72.174485] x14: ffffffffffffffff x13: 0000000000000030 x12: ffff0000c6780ef0
[ 72.174841] x11: 0000000000000000 x10: ffff800081f2bcf8 x9 : ffff0000c3000000
[ 72.175193] x8 : 00000000000004be x7 : 0000000000000000 x6 : 0000000000000000
[ 72.175544] x5 : 0000000000000040 x4 : ffff0000c3000010 x3 : 0000000000000000
[ 72.175871] x2 : 0000000000003a98 x1 : ffff0000c2bb708c x0 : 0000000000000004
[ 72.176207] Call trace:
[ 72.176316] nft_rhash_gc+0x200/0x2d8 [nf_tables] (P)
[ 72.176653] process_one_work+0x178/0x3d0
[ 72.176831] worker_thread+0x200/0x3f0
[ 72.176995] kthread+0xe8/0xf8
[ 72.177130] ret_from_fork+0x10/0x20
[ 72.177289] Code: 54fff984 d503201f d2800080 91003261 (f820303f)
[ 72.177557] ---[ end trace 0000000000000000 ]---
Align struct nft_set_ext to word size to address this and
documentation it.
pahole reports that this increases the size of elements for rhash and
pipapo in 8 bytes on x86_64. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: prevent use of deleted inode
syzbot reported a WARNING in nilfs_rmdir. [1]
Because the inode bitmap is corrupted, an inode with an inode number that
should exist as a ".nilfs" file was reassigned by nilfs_mkdir for "file0",
causing an inode duplication during execution. And this causes an
underflow of i_nlink in rmdir operations.
The inode is used twice by the same task to unmount and remove directories
".nilfs" and "file0", it trigger warning in nilfs_rmdir.
Avoid to this issue, check i_nlink in nilfs_iget(), if it is 0, it means
that this inode has been deleted, and iput is executed to reclaim it.
[1]
WARNING: CPU: 1 PID: 5824 at fs/inode.c:407 drop_nlink+0xc4/0x110 fs/inode.c:407
...
Call Trace:
<TASK>
nilfs_rmdir+0x1b0/0x250 fs/nilfs2/namei.c:342
vfs_rmdir+0x3a3/0x510 fs/namei.c:4394
do_rmdir+0x3b5/0x580 fs/namei.c:4453
__do_sys_rmdir fs/namei.c:4472 [inline]
__se_sys_rmdir fs/namei.c:4470 [inline]
__x64_sys_rmdir+0x47/0x50 fs/namei.c:4470
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: give up on paths longer than PATH_MAX
If the full path to be built by ceph_mdsc_build_path() happens to be
longer than PATH_MAX, then this function will enter an endless (retry)
loop, effectively blocking the whole task. Most of the machine
becomes unusable, making this a very simple and effective DoS
vulnerability.
I cannot imagine why this retry was ever implemented, but it seems
rather useless and harmful to me. Let's remove it and fail with
ENAMETOOLONG instead. |
| In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix UB due to uninitialized stack access in ip_vs_protocol_init()
Under certain kernel configurations when building with Clang/LLVM, the
compiler does not generate a return or jump as the terminator
instruction for ip_vs_protocol_init(), triggering the following objtool
warning during build time:
vmlinux.o: warning: objtool: ip_vs_protocol_init() falls through to next function __initstub__kmod_ip_vs_rr__935_123_ip_vs_rr_init6()
At runtime, this either causes an oops when trying to load the ipvs
module or a boot-time panic if ipvs is built-in. This same issue has
been reported by the Intel kernel test robot previously.
Digging deeper into both LLVM and the kernel code reveals this to be a
undefined behavior problem. ip_vs_protocol_init() uses a on-stack buffer
of 64 chars to store the registered protocol names and leaves it
uninitialized after definition. The function calls strnlen() when
concatenating protocol names into the buffer. With CONFIG_FORTIFY_SOURCE
strnlen() performs an extra step to check whether the last byte of the
input char buffer is a null character (commit 3009f891bb9f ("fortify:
Allow strlen() and strnlen() to pass compile-time known lengths")).
This, together with possibly other configurations, cause the following
IR to be generated:
define hidden i32 @ip_vs_protocol_init() local_unnamed_addr #5 section ".init.text" align 16 !kcfi_type !29 {
%1 = alloca [64 x i8], align 16
...
14: ; preds = %11
%15 = getelementptr inbounds i8, ptr %1, i64 63
%16 = load i8, ptr %15, align 1
%17 = tail call i1 @llvm.is.constant.i8(i8 %16)
%18 = icmp eq i8 %16, 0
%19 = select i1 %17, i1 %18, i1 false
br i1 %19, label %20, label %23
20: ; preds = %14
%21 = call i64 @strlen(ptr noundef nonnull dereferenceable(1) %1) #23
...
23: ; preds = %14, %11, %20
%24 = call i64 @strnlen(ptr noundef nonnull dereferenceable(1) %1, i64 noundef 64) #24
...
}
The above code calculates the address of the last char in the buffer
(value %15) and then loads from it (value %16). Because the buffer is
never initialized, the LLVM GVN pass marks value %16 as undefined:
%13 = getelementptr inbounds i8, ptr %1, i64 63
br i1 undef, label %14, label %17
This gives later passes (SCCP, in particular) more DCE opportunities by
propagating the undef value further, and eventually removes everything
after the load on the uninitialized stack location:
define hidden i32 @ip_vs_protocol_init() local_unnamed_addr #0 section ".init.text" align 16 !kcfi_type !11 {
%1 = alloca [64 x i8], align 16
...
12: ; preds = %11
%13 = getelementptr inbounds i8, ptr %1, i64 63
unreachable
}
In this way, the generated native code will just fall through to the
next function, as LLVM does not generate any code for the unreachable IR
instruction and leaves the function without a terminator.
Zero the on-stack buffer to avoid this possible UB. |
| In the Linux kernel, the following vulnerability has been resolved:
xen/netfront: fix crash when removing device
When removing a netfront device directly after a suspend/resume cycle
it might happen that the queues have not been setup again, causing a
crash during the attempt to stop the queues another time.
Fix that by checking the queues are existing before trying to stop
them.
This is XSA-465 / CVE-2024-53240. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: 6fire: Release resources at card release
The current 6fire code tries to release the resources right after the
call of usb6fire_chip_abort(). But at this moment, the card object
might be still in use (as we're calling snd_card_free_when_closed()).
For avoid potential UAFs, move the release of resources to the card's
private_free instead of the manual call of usb6fire_chip_destroy() at
the USB disconnect callback. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: fix use-after-free in device_for_each_child()
Syzbot has reported the following KASAN splat:
BUG: KASAN: slab-use-after-free in device_for_each_child+0x18f/0x1a0
Read of size 8 at addr ffff88801f605308 by task kbnepd bnep0/4980
CPU: 0 UID: 0 PID: 4980 Comm: kbnepd bnep0 Not tainted 6.12.0-rc4-00161-gae90f6a6170d #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x100/0x190
? device_for_each_child+0x18f/0x1a0
print_report+0x13a/0x4cb
? __virt_addr_valid+0x5e/0x590
? __phys_addr+0xc6/0x150
? device_for_each_child+0x18f/0x1a0
kasan_report+0xda/0x110
? device_for_each_child+0x18f/0x1a0
? __pfx_dev_memalloc_noio+0x10/0x10
device_for_each_child+0x18f/0x1a0
? __pfx_device_for_each_child+0x10/0x10
pm_runtime_set_memalloc_noio+0xf2/0x180
netdev_unregister_kobject+0x1ed/0x270
unregister_netdevice_many_notify+0x123c/0x1d80
? __mutex_trylock_common+0xde/0x250
? __pfx_unregister_netdevice_many_notify+0x10/0x10
? trace_contention_end+0xe6/0x140
? __mutex_lock+0x4e7/0x8f0
? __pfx_lock_acquire.part.0+0x10/0x10
? rcu_is_watching+0x12/0xc0
? unregister_netdev+0x12/0x30
unregister_netdevice_queue+0x30d/0x3f0
? __pfx_unregister_netdevice_queue+0x10/0x10
? __pfx_down_write+0x10/0x10
unregister_netdev+0x1c/0x30
bnep_session+0x1fb3/0x2ab0
? __pfx_bnep_session+0x10/0x10
? __pfx_lock_release+0x10/0x10
? __pfx_woken_wake_function+0x10/0x10
? __kthread_parkme+0x132/0x200
? __pfx_bnep_session+0x10/0x10
? kthread+0x13a/0x370
? __pfx_bnep_session+0x10/0x10
kthread+0x2b7/0x370
? __pfx_kthread+0x10/0x10
ret_from_fork+0x48/0x80
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 4974:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0xaa/0xb0
__kmalloc_noprof+0x1d1/0x440
hci_alloc_dev_priv+0x1d/0x2820
__vhci_create_device+0xef/0x7d0
vhci_write+0x2c7/0x480
vfs_write+0x6a0/0xfc0
ksys_write+0x12f/0x260
do_syscall_64+0xc7/0x250
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 4979:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x4f/0x70
kfree+0x141/0x490
hci_release_dev+0x4d9/0x600
bt_host_release+0x6a/0xb0
device_release+0xa4/0x240
kobject_put+0x1ec/0x5a0
put_device+0x1f/0x30
vhci_release+0x81/0xf0
__fput+0x3f6/0xb30
task_work_run+0x151/0x250
do_exit+0xa79/0x2c30
do_group_exit+0xd5/0x2a0
get_signal+0x1fcd/0x2210
arch_do_signal_or_restart+0x93/0x780
syscall_exit_to_user_mode+0x140/0x290
do_syscall_64+0xd4/0x250
entry_SYSCALL_64_after_hwframe+0x77/0x7f
In 'hci_conn_del_sysfs()', 'device_unregister()' may be called when
an underlying (kobject) reference counter is greater than 1. This
means that reparenting (happened when the device is actually freed)
is delayed and, during that delay, parent controller device (hciX)
may be deleted. Since the latter may create a dangling pointer to
freed parent, avoid that scenario by reparenting to NULL explicitly. |