| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ftruncate: pass a signed offset
The old ftruncate() syscall, using the 32-bit off_t misses a sign
extension when called in compat mode on 64-bit architectures. As a
result, passing a negative length accidentally succeeds in truncating
to file size between 2GiB and 4GiB.
Changing the type of the compat syscall to the signed compat_off_t
changes the behavior so it instead returns -EINVAL.
The native entry point, the truncate() syscall and the corresponding
loff_t based variants are all correct already and do not suffer
from this mistake. |
| In the Linux kernel, the following vulnerability has been resolved:
xdp: Remove WARN() from __xdp_reg_mem_model()
syzkaller reports a warning in __xdp_reg_mem_model().
The warning occurs only if __mem_id_init_hash_table() returns an error. It
returns the error in two cases:
1. memory allocation fails;
2. rhashtable_init() fails when some fields of rhashtable_params
struct are not initialized properly.
The second case cannot happen since there is a static const rhashtable_params
struct with valid fields. So, warning is only triggered when there is a
problem with memory allocation.
Thus, there is no sense in using WARN() to handle this error and it can be
safely removed.
WARNING: CPU: 0 PID: 5065 at net/core/xdp.c:299 __xdp_reg_mem_model+0x2d9/0x650 net/core/xdp.c:299
CPU: 0 PID: 5065 Comm: syz-executor883 Not tainted 6.8.0-syzkaller-05271-gf99c5f563c17 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:__xdp_reg_mem_model+0x2d9/0x650 net/core/xdp.c:299
Call Trace:
xdp_reg_mem_model+0x22/0x40 net/core/xdp.c:344
xdp_test_run_setup net/bpf/test_run.c:188 [inline]
bpf_test_run_xdp_live+0x365/0x1e90 net/bpf/test_run.c:377
bpf_prog_test_run_xdp+0x813/0x11b0 net/bpf/test_run.c:1267
bpf_prog_test_run+0x33a/0x3b0 kernel/bpf/syscall.c:4240
__sys_bpf+0x48d/0x810 kernel/bpf/syscall.c:5649
__do_sys_bpf kernel/bpf/syscall.c:5738 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5736 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5736
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Found by Linux Verification Center (linuxtesting.org) with syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix DIO failure due to insufficient transaction credits
The code in ocfs2_dio_end_io_write() estimates number of necessary
transaction credits using ocfs2_calc_extend_credits(). This however does
not take into account that the IO could be arbitrarily large and can
contain arbitrary number of extents.
Extent tree manipulations do often extend the current transaction but not
in all of the cases. For example if we have only single block extents in
the tree, ocfs2_mark_extent_written() will end up calling
ocfs2_replace_extent_rec() all the time and we will never extend the
current transaction and eventually exhaust all the transaction credits if
the IO contains many single block extents. Once that happens a
WARN_ON(jbd2_handle_buffer_credits(handle) <= 0) is triggered in
jbd2_journal_dirty_metadata() and subsequently OCFS2 aborts in response to
this error. This was actually triggered by one of our customers on a
heavily fragmented OCFS2 filesystem.
To fix the issue make sure the transaction always has enough credits for
one extent insert before each call of ocfs2_mark_extent_written().
Heming Zhao said:
------
PANIC: "Kernel panic - not syncing: OCFS2: (device dm-1): panic forced after error"
PID: xxx TASK: xxxx CPU: 5 COMMAND: "SubmitThread-CA"
#0 machine_kexec at ffffffff8c069932
#1 __crash_kexec at ffffffff8c1338fa
#2 panic at ffffffff8c1d69b9
#3 ocfs2_handle_error at ffffffffc0c86c0c [ocfs2]
#4 __ocfs2_abort at ffffffffc0c88387 [ocfs2]
#5 ocfs2_journal_dirty at ffffffffc0c51e98 [ocfs2]
#6 ocfs2_split_extent at ffffffffc0c27ea3 [ocfs2]
#7 ocfs2_change_extent_flag at ffffffffc0c28053 [ocfs2]
#8 ocfs2_mark_extent_written at ffffffffc0c28347 [ocfs2]
#9 ocfs2_dio_end_io_write at ffffffffc0c2bef9 [ocfs2]
#10 ocfs2_dio_end_io at ffffffffc0c2c0f5 [ocfs2]
#11 dio_complete at ffffffff8c2b9fa7
#12 do_blockdev_direct_IO at ffffffff8c2bc09f
#13 ocfs2_direct_IO at ffffffffc0c2b653 [ocfs2]
#14 generic_file_direct_write at ffffffff8c1dcf14
#15 __generic_file_write_iter at ffffffff8c1dd07b
#16 ocfs2_file_write_iter at ffffffffc0c49f1f [ocfs2]
#17 aio_write at ffffffff8c2cc72e
#18 kmem_cache_alloc at ffffffff8c248dde
#19 do_io_submit at ffffffff8c2ccada
#20 do_syscall_64 at ffffffff8c004984
#21 entry_SYSCALL_64_after_hwframe at ffffffff8c8000ba |
| In the Linux kernel, the following vulnerability has been resolved:
net: can: j1939: Initialize unused data in j1939_send_one()
syzbot reported kernel-infoleak in raw_recvmsg() [1]. j1939_send_one()
creates full frame including unused data, but it doesn't initialize
it. This causes the kernel-infoleak issue. Fix this by initializing
unused data.
[1]
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak in copy_to_user_iter lib/iov_iter.c:24 [inline]
BUG: KMSAN: kernel-infoleak in iterate_ubuf include/linux/iov_iter.h:29 [inline]
BUG: KMSAN: kernel-infoleak in iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
BUG: KMSAN: kernel-infoleak in iterate_and_advance include/linux/iov_iter.h:271 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_iter+0x366/0x2520 lib/iov_iter.c:185
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
copy_to_user_iter lib/iov_iter.c:24 [inline]
iterate_ubuf include/linux/iov_iter.h:29 [inline]
iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
iterate_and_advance include/linux/iov_iter.h:271 [inline]
_copy_to_iter+0x366/0x2520 lib/iov_iter.c:185
copy_to_iter include/linux/uio.h:196 [inline]
memcpy_to_msg include/linux/skbuff.h:4113 [inline]
raw_recvmsg+0x2b8/0x9e0 net/can/raw.c:1008
sock_recvmsg_nosec net/socket.c:1046 [inline]
sock_recvmsg+0x2c4/0x340 net/socket.c:1068
____sys_recvmsg+0x18a/0x620 net/socket.c:2803
___sys_recvmsg+0x223/0x840 net/socket.c:2845
do_recvmmsg+0x4fc/0xfd0 net/socket.c:2939
__sys_recvmmsg net/socket.c:3018 [inline]
__do_sys_recvmmsg net/socket.c:3041 [inline]
__se_sys_recvmmsg net/socket.c:3034 [inline]
__x64_sys_recvmmsg+0x397/0x490 net/socket.c:3034
x64_sys_call+0xf6c/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:300
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1313 [inline]
alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504
sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795
sock_alloc_send_skb include/net/sock.h:1842 [inline]
j1939_sk_alloc_skb net/can/j1939/socket.c:878 [inline]
j1939_sk_send_loop net/can/j1939/socket.c:1142 [inline]
j1939_sk_sendmsg+0xc0a/0x2730 net/can/j1939/socket.c:1277
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x30f/0x380 net/socket.c:745
____sys_sendmsg+0x877/0xb60 net/socket.c:2584
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline]
__do_sys_sendmsg net/socket.c:2676 [inline]
__se_sys_sendmsg net/socket.c:2674 [inline]
__x64_sys_sendmsg+0x307/0x4a0 net/socket.c:2674
x64_sys_call+0xc4b/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Bytes 12-15 of 16 are uninitialized
Memory access of size 16 starts at ffff888120969690
Data copied to user address 00000000200017c0
CPU: 1 PID: 5050 Comm: syz-executor198 Not tainted 6.9.0-rc5-syzkaller-00031-g71b1543c83d6 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_buffers: Fix memory corruptions on Spectrum-4 systems
The following two shared buffer operations make use of the Shared Buffer
Status Register (SBSR):
# devlink sb occupancy snapshot pci/0000:01:00.0
# devlink sb occupancy clearmax pci/0000:01:00.0
The register has two masks of 256 bits to denote on which ingress /
egress ports the register should operate on. Spectrum-4 has more than
256 ports, so the register was extended by cited commit with a new
'port_page' field.
However, when filling the register's payload, the driver specifies the
ports as absolute numbers and not relative to the first port of the port
page, resulting in memory corruptions [1].
Fix by specifying the ports relative to the first port of the port page.
[1]
BUG: KASAN: slab-use-after-free in mlxsw_sp_sb_occ_snapshot+0xb6d/0xbc0
Read of size 1 at addr ffff8881068cb00f by task devlink/1566
[...]
Call Trace:
<TASK>
dump_stack_lvl+0xc6/0x120
print_report+0xce/0x670
kasan_report+0xd7/0x110
mlxsw_sp_sb_occ_snapshot+0xb6d/0xbc0
mlxsw_devlink_sb_occ_snapshot+0x75/0xb0
devlink_nl_sb_occ_snapshot_doit+0x1f9/0x2a0
genl_family_rcv_msg_doit+0x20c/0x300
genl_rcv_msg+0x567/0x800
netlink_rcv_skb+0x170/0x450
genl_rcv+0x2d/0x40
netlink_unicast+0x547/0x830
netlink_sendmsg+0x8d4/0xdb0
__sys_sendto+0x49b/0x510
__x64_sys_sendto+0xe5/0x1c0
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[...]
Allocated by task 1:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0x8f/0xa0
copy_verifier_state+0xbc2/0xfb0
do_check_common+0x2c51/0xc7e0
bpf_check+0x5107/0x9960
bpf_prog_load+0xf0e/0x2690
__sys_bpf+0x1a61/0x49d0
__x64_sys_bpf+0x7d/0xc0
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 1:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x60
poison_slab_object+0x109/0x170
__kasan_slab_free+0x14/0x30
kfree+0xca/0x2b0
free_verifier_state+0xce/0x270
do_check_common+0x4828/0xc7e0
bpf_check+0x5107/0x9960
bpf_prog_load+0xf0e/0x2690
__sys_bpf+0x1a61/0x49d0
__x64_sys_bpf+0x7d/0xc0
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fully validate NFT_DATA_VALUE on store to data registers
register store validation for NFT_DATA_VALUE is conditional, however,
the datatype is always either NFT_DATA_VALUE or NFT_DATA_VERDICT. This
only requires a new helper function to infer the register type from the
set datatype so this conditional check can be removed. Otherwise,
pointer to chain object can be leaked through the registers. |
| In the Linux kernel, the following vulnerability has been resolved:
ata: libata-core: Fix null pointer dereference on error
If the ata_port_alloc() call in ata_host_alloc() fails,
ata_host_release() will get called.
However, the code in ata_host_release() tries to free ata_port struct
members unconditionally, which can lead to the following:
BUG: unable to handle page fault for address: 0000000000003990
PGD 0 P4D 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 10 PID: 594 Comm: (udev-worker) Not tainted 6.10.0-rc5 #44
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:ata_host_release.cold+0x2f/0x6e [libata]
Code: e4 4d 63 f4 44 89 e2 48 c7 c6 90 ad 32 c0 48 c7 c7 d0 70 33 c0 49 83 c6 0e 41
RSP: 0018:ffffc90000ebb968 EFLAGS: 00010246
RAX: 0000000000000041 RBX: ffff88810fb52e78 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff88813b3218c0 RDI: ffff88813b3218c0
RBP: ffff88810fb52e40 R08: 0000000000000000 R09: 6c65725f74736f68
R10: ffffc90000ebb738 R11: 73692033203a746e R12: 0000000000000004
R13: 0000000000000000 R14: 0000000000000011 R15: 0000000000000006
FS: 00007f6cc55b9980(0000) GS:ffff88813b300000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000003990 CR3: 00000001122a2000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
? __die_body.cold+0x19/0x27
? page_fault_oops+0x15a/0x2f0
? exc_page_fault+0x7e/0x180
? asm_exc_page_fault+0x26/0x30
? ata_host_release.cold+0x2f/0x6e [libata]
? ata_host_release.cold+0x2f/0x6e [libata]
release_nodes+0x35/0xb0
devres_release_group+0x113/0x140
ata_host_alloc+0xed/0x120 [libata]
ata_host_alloc_pinfo+0x14/0xa0 [libata]
ahci_init_one+0x6c9/0xd20 [ahci]
Do not access ata_port struct members unconditionally. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: atm: cxacru: fix endpoint checking in cxacru_bind()
Syzbot is still reporting quite an old issue [1] that occurs due to
incomplete checking of present usb endpoints. As such, wrong
endpoints types may be used at urb sumbitting stage which in turn
triggers a warning in usb_submit_urb().
Fix the issue by verifying that required endpoint types are present
for both in and out endpoints, taking into account cmd endpoint type.
Unfortunately, this patch has not been tested on real hardware.
[1] Syzbot report:
usb 1-1: BOGUS urb xfer, pipe 1 != type 3
WARNING: CPU: 0 PID: 8667 at drivers/usb/core/urb.c:502 usb_submit_urb+0xed2/0x18a0 drivers/usb/core/urb.c:502
Modules linked in:
CPU: 0 PID: 8667 Comm: kworker/0:4 Not tainted 5.14.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: usb_hub_wq hub_event
RIP: 0010:usb_submit_urb+0xed2/0x18a0 drivers/usb/core/urb.c:502
...
Call Trace:
cxacru_cm+0x3c0/0x8e0 drivers/usb/atm/cxacru.c:649
cxacru_card_status+0x22/0xd0 drivers/usb/atm/cxacru.c:760
cxacru_bind+0x7ac/0x11a0 drivers/usb/atm/cxacru.c:1209
usbatm_usb_probe+0x321/0x1ae0 drivers/usb/atm/usbatm.c:1055
cxacru_usb_probe+0xdf/0x1e0 drivers/usb/atm/cxacru.c:1363
usb_probe_interface+0x315/0x7f0 drivers/usb/core/driver.c:396
call_driver_probe drivers/base/dd.c:517 [inline]
really_probe+0x23c/0xcd0 drivers/base/dd.c:595
__driver_probe_device+0x338/0x4d0 drivers/base/dd.c:747
driver_probe_device+0x4c/0x1a0 drivers/base/dd.c:777
__device_attach_driver+0x20b/0x2f0 drivers/base/dd.c:894
bus_for_each_drv+0x15f/0x1e0 drivers/base/bus.c:427
__device_attach+0x228/0x4a0 drivers/base/dd.c:965
bus_probe_device+0x1e4/0x290 drivers/base/bus.c:487
device_add+0xc2f/0x2180 drivers/base/core.c:3354
usb_set_configuration+0x113a/0x1910 drivers/usb/core/message.c:2170
usb_generic_driver_probe+0xba/0x100 drivers/usb/core/generic.c:238
usb_probe_device+0xd9/0x2c0 drivers/usb/core/driver.c:293 |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/MSI: Fix UAF in msi_capability_init
KFENCE reports the following UAF:
BUG: KFENCE: use-after-free read in __pci_enable_msi_range+0x2c0/0x488
Use-after-free read at 0x0000000024629571 (in kfence-#12):
__pci_enable_msi_range+0x2c0/0x488
pci_alloc_irq_vectors_affinity+0xec/0x14c
pci_alloc_irq_vectors+0x18/0x28
kfence-#12: 0x0000000008614900-0x00000000e06c228d, size=104, cache=kmalloc-128
allocated by task 81 on cpu 7 at 10.808142s:
__kmem_cache_alloc_node+0x1f0/0x2bc
kmalloc_trace+0x44/0x138
msi_alloc_desc+0x3c/0x9c
msi_domain_insert_msi_desc+0x30/0x78
msi_setup_msi_desc+0x13c/0x184
__pci_enable_msi_range+0x258/0x488
pci_alloc_irq_vectors_affinity+0xec/0x14c
pci_alloc_irq_vectors+0x18/0x28
freed by task 81 on cpu 7 at 10.811436s:
msi_domain_free_descs+0xd4/0x10c
msi_domain_free_locked.part.0+0xc0/0x1d8
msi_domain_alloc_irqs_all_locked+0xb4/0xbc
pci_msi_setup_msi_irqs+0x30/0x4c
__pci_enable_msi_range+0x2a8/0x488
pci_alloc_irq_vectors_affinity+0xec/0x14c
pci_alloc_irq_vectors+0x18/0x28
Descriptor allocation done in:
__pci_enable_msi_range
msi_capability_init
msi_setup_msi_desc
msi_insert_msi_desc
msi_domain_insert_msi_desc
msi_alloc_desc
...
Freed in case of failure in __msi_domain_alloc_locked()
__pci_enable_msi_range
msi_capability_init
pci_msi_setup_msi_irqs
msi_domain_alloc_irqs_all_locked
msi_domain_alloc_locked
__msi_domain_alloc_locked => fails
msi_domain_free_locked
...
That failure propagates back to pci_msi_setup_msi_irqs() in
msi_capability_init() which accesses the descriptor for unmasking in the
error exit path.
Cure it by copying the descriptor and using the copy for the error exit path
unmask operation.
[ tglx: Massaged change log ] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: avoid using null object of framebuffer
Instead of using state->fb->obj[0] directly, get object from framebuffer
by calling drm_gem_fb_get_obj() and return error code when object is
null to avoid using null object of framebuffer. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gt: Fix potential UAF by revoke of fence registers
CI has been sporadically reporting the following issue triggered by
igt@i915_selftest@live@hangcheck on ADL-P and similar machines:
<6> [414.049203] i915: Running intel_hangcheck_live_selftests/igt_reset_evict_fence
...
<6> [414.068804] i915 0000:00:02.0: [drm] GT0: GUC: submission enabled
<6> [414.068812] i915 0000:00:02.0: [drm] GT0: GUC: SLPC enabled
<3> [414.070354] Unable to pin Y-tiled fence; err:-4
<3> [414.071282] i915_vma_revoke_fence:301 GEM_BUG_ON(!i915_active_is_idle(&fence->active))
...
<4>[ 609.603992] ------------[ cut here ]------------
<2>[ 609.603995] kernel BUG at drivers/gpu/drm/i915/gt/intel_ggtt_fencing.c:301!
<4>[ 609.604003] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
<4>[ 609.604006] CPU: 0 PID: 268 Comm: kworker/u64:3 Tainted: G U W 6.9.0-CI_DRM_14785-g1ba62f8cea9c+ #1
<4>[ 609.604008] Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR4 RVP, BIOS RPLPFWI1.R00.4035.A00.2301200723 01/20/2023
<4>[ 609.604010] Workqueue: i915 __i915_gem_free_work [i915]
<4>[ 609.604149] RIP: 0010:i915_vma_revoke_fence+0x187/0x1f0 [i915]
...
<4>[ 609.604271] Call Trace:
<4>[ 609.604273] <TASK>
...
<4>[ 609.604716] __i915_vma_evict+0x2e9/0x550 [i915]
<4>[ 609.604852] __i915_vma_unbind+0x7c/0x160 [i915]
<4>[ 609.604977] force_unbind+0x24/0xa0 [i915]
<4>[ 609.605098] i915_vma_destroy+0x2f/0xa0 [i915]
<4>[ 609.605210] __i915_gem_object_pages_fini+0x51/0x2f0 [i915]
<4>[ 609.605330] __i915_gem_free_objects.isra.0+0x6a/0xc0 [i915]
<4>[ 609.605440] process_scheduled_works+0x351/0x690
...
In the past, there were similar failures reported by CI from other IGT
tests, observed on other platforms.
Before commit 63baf4f3d587 ("drm/i915/gt: Only wait for GPU activity
before unbinding a GGTT fence"), i915_vma_revoke_fence() was waiting for
idleness of vma->active via fence_update(). That commit introduced
vma->fence->active in order for the fence_update() to be able to wait
selectively on that one instead of vma->active since only idleness of
fence registers was needed. But then, another commit 0d86ee35097a
("drm/i915/gt: Make fence revocation unequivocal") replaced the call to
fence_update() in i915_vma_revoke_fence() with only fence_write(), and
also added that GEM_BUG_ON(!i915_active_is_idle(&fence->active)) in front.
No justification was provided on why we might then expect idleness of
vma->fence->active without first waiting on it.
The issue can be potentially caused by a race among revocation of fence
registers on one side and sequential execution of signal callbacks invoked
on completion of a request that was using them on the other, still
processed in parallel to revocation of those fence registers. Fix it by
waiting for idleness of vma->fence->active in i915_vma_revoke_fence().
(cherry picked from commit 24bb052d3dd499c5956abad5f7d8e4fd07da7fb1) |
| In the Linux kernel, the following vulnerability has been resolved:
tun: add missing verification for short frame
The cited commit missed to check against the validity of the frame length
in the tun_xdp_one() path, which could cause a corrupted skb to be sent
downstack. Even before the skb is transmitted, the
tun_xdp_one-->eth_type_trans() may access the Ethernet header although it
can be less than ETH_HLEN. Once transmitted, this could either cause
out-of-bound access beyond the actual length, or confuse the underlayer
with incorrect or inconsistent header length in the skb metadata.
In the alternative path, tun_get_user() already prohibits short frame which
has the length less than Ethernet header size from being transmitted for
IFF_TAP.
This is to drop any frame shorter than the Ethernet header size just like
how tun_get_user() does.
CVE: CVE-2024-41091 |
| In the Linux kernel, the following vulnerability has been resolved:
tap: add missing verification for short frame
The cited commit missed to check against the validity of the frame length
in the tap_get_user_xdp() path, which could cause a corrupted skb to be
sent downstack. Even before the skb is transmitted, the
tap_get_user_xdp()-->skb_set_network_header() may assume the size is more
than ETH_HLEN. Once transmitted, this could either cause out-of-bound
access beyond the actual length, or confuse the underlayer with incorrect
or inconsistent header length in the skb metadata.
In the alternative path, tap_get_user() already prohibits short frame which
has the length less than Ethernet header size from being transmitted.
This is to drop any frame shorter than the Ethernet header size just like
how tap_get_user() does.
CVE: CVE-2024-41090 |
| In the Linux kernel, the following vulnerability has been resolved:
can: mcp251xfd: fix infinite loop when xmit fails
When the mcp251xfd_start_xmit() function fails, the driver stops
processing messages, and the interrupt routine does not return,
running indefinitely even after killing the running application.
Error messages:
[ 441.298819] mcp251xfd spi2.0 can0: ERROR in mcp251xfd_start_xmit: -16
[ 441.306498] mcp251xfd spi2.0 can0: Transmit Event FIFO buffer not empty. (seq=0x000017c7, tef_tail=0x000017cf, tef_head=0x000017d0, tx_head=0x000017d3).
... and repeat forever.
The issue can be triggered when multiple devices share the same SPI
interface. And there is concurrent access to the bus.
The problem occurs because tx_ring->head increments even if
mcp251xfd_start_xmit() fails. Consequently, the driver skips one TX
package while still expecting a response in
mcp251xfd_handle_tefif_one().
Resolve the issue by starting a workqueue to write the tx obj
synchronously if err = -EBUSY. In case of another error, decrement
tx_ring->head, remove skb from the echo stack, and drop the message.
[mkl: use more imperative wording in patch description] |
| In the Linux kernel, the following vulnerability has been resolved:
ata: libata-core: Fix double free on error
If e.g. the ata_port_alloc() call in ata_host_alloc() fails, we will jump
to the err_out label, which will call devres_release_group().
devres_release_group() will trigger a call to ata_host_release().
ata_host_release() calls kfree(host), so executing the kfree(host) in
ata_host_alloc() will lead to a double free:
kernel BUG at mm/slub.c:553!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 11 PID: 599 Comm: (udev-worker) Not tainted 6.10.0-rc5 #47
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:kfree+0x2cf/0x2f0
Code: 5d 41 5e 41 5f 5d e9 80 d6 ff ff 4d 89 f1 41 b8 01 00 00 00 48 89 d9 48 89 da
RSP: 0018:ffffc90000f377f0 EFLAGS: 00010246
RAX: ffff888112b1f2c0 RBX: ffff888112b1f2c0 RCX: ffff888112b1f320
RDX: 000000000000400b RSI: ffffffffc02c9de5 RDI: ffff888112b1f2c0
RBP: ffffc90000f37830 R08: 0000000000000000 R09: 0000000000000000
R10: ffffc90000f37610 R11: 617461203a736b6e R12: ffffea00044ac780
R13: ffff888100046400 R14: ffffffffc02c9de5 R15: 0000000000000006
FS: 00007f2f1cabe980(0000) GS:ffff88813b380000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f2f1c3acf75 CR3: 0000000111724000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
? __die_body.cold+0x19/0x27
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x6a/0x90
? kfree+0x2cf/0x2f0
? exc_invalid_op+0x50/0x70
? kfree+0x2cf/0x2f0
? asm_exc_invalid_op+0x1a/0x20
? ata_host_alloc+0xf5/0x120 [libata]
? ata_host_alloc+0xf5/0x120 [libata]
? kfree+0x2cf/0x2f0
ata_host_alloc+0xf5/0x120 [libata]
ata_host_alloc_pinfo+0x14/0xa0 [libata]
ahci_init_one+0x6c9/0xd20 [ahci]
Ensure that we will not call kfree(host) twice, by performing the kfree()
only if the devres_open_group() call failed. |
| In the Linux kernel, the following vulnerability has been resolved:
ila: block BH in ila_output()
As explained in commit 1378817486d6 ("tipc: block BH
before using dst_cache"), net/core/dst_cache.c
helpers need to be called with BH disabled.
ila_output() is called from lwtunnel_output()
possibly from process context, and under rcu_read_lock().
We might be interrupted by a softirq, re-enter ila_output()
and corrupt dst_cache data structures.
Fix the race by using local_bh_disable(). |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix possible deadlock in io_register_iowq_max_workers()
The io_register_iowq_max_workers() function calls io_put_sq_data(),
which acquires the sqd->lock without releasing the uring_lock.
Similar to the commit 009ad9f0c6ee ("io_uring: drop ctx->uring_lock
before acquiring sqd->lock"), this can lead to a potential deadlock
situation.
To resolve this issue, the uring_lock is released before calling
io_put_sq_data(), and then it is re-acquired after the function call.
This change ensures that the locks are acquired in the correct
order, preventing the possibility of a deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: add consistency check for copen/cread
This prevents malicious processes from completing random copen/cread
requests and crashing the system. Added checks are listed below:
* Generic, copen can only complete open requests, and cread can only
complete read requests.
* For copen, ondemand_id must not be 0, because this indicates that the
request has not been read by the daemon.
* For cread, the object corresponding to fd and req should be the same. |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: Set object to close if ondemand_id < 0 in copen
If copen is maliciously called in the user mode, it may delete the request
corresponding to the random id. And the request may have not been read yet.
Note that when the object is set to reopen, the open request will be done
with the still reopen state in above case. As a result, the request
corresponding to this object is always skipped in select_req function, so
the read request is never completed and blocks other process.
Fix this issue by simply set object to close if its id < 0 in copen. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: PPC: Book3S HV: Prevent UAF in kvm_spapr_tce_attach_iommu_group()
Al reported a possible use-after-free (UAF) in kvm_spapr_tce_attach_iommu_group().
It looks up `stt` from tablefd, but then continues to use it after doing
fdput() on the returned fd. After the fdput() the tablefd is free to be
closed by another thread. The close calls kvm_spapr_tce_release() and
then release_spapr_tce_table() (via call_rcu()) which frees `stt`.
Although there are calls to rcu_read_lock() in
kvm_spapr_tce_attach_iommu_group() they are not sufficient to prevent
the UAF, because `stt` is used outside the locked regions.
With an artifcial delay after the fdput() and a userspace program which
triggers the race, KASAN detects the UAF:
BUG: KASAN: slab-use-after-free in kvm_spapr_tce_attach_iommu_group+0x298/0x720 [kvm]
Read of size 4 at addr c000200027552c30 by task kvm-vfio/2505
CPU: 54 PID: 2505 Comm: kvm-vfio Not tainted 6.10.0-rc3-next-20240612-dirty #1
Hardware name: 8335-GTH POWER9 0x4e1202 opal:skiboot-v6.5.3-35-g1851b2a06 PowerNV
Call Trace:
dump_stack_lvl+0xb4/0x108 (unreliable)
print_report+0x2b4/0x6ec
kasan_report+0x118/0x2b0
__asan_load4+0xb8/0xd0
kvm_spapr_tce_attach_iommu_group+0x298/0x720 [kvm]
kvm_vfio_set_attr+0x524/0xac0 [kvm]
kvm_device_ioctl+0x144/0x240 [kvm]
sys_ioctl+0x62c/0x1810
system_call_exception+0x190/0x440
system_call_vectored_common+0x15c/0x2ec
...
Freed by task 0:
...
kfree+0xec/0x3e0
release_spapr_tce_table+0xd4/0x11c [kvm]
rcu_core+0x568/0x16a0
handle_softirqs+0x23c/0x920
do_softirq_own_stack+0x6c/0x90
do_softirq_own_stack+0x58/0x90
__irq_exit_rcu+0x218/0x2d0
irq_exit+0x30/0x80
arch_local_irq_restore+0x128/0x230
arch_local_irq_enable+0x1c/0x30
cpuidle_enter_state+0x134/0x5cc
cpuidle_enter+0x6c/0xb0
call_cpuidle+0x7c/0x100
do_idle+0x394/0x410
cpu_startup_entry+0x60/0x70
start_secondary+0x3fc/0x410
start_secondary_prolog+0x10/0x14
Fix it by delaying the fdput() until `stt` is no longer in use, which
is effectively the entire function. To keep the patch minimal add a call
to fdput() at each of the existing return paths. Future work can convert
the function to goto or __cleanup style cleanup.
With the fix in place the test case no longer triggers the UAF. |