Search Results (16620 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71139 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: kernel/kexec: fix IMA when allocation happens in CMA area *** Bug description *** When I tested kexec with the latest kernel, I ran into the following warning: [ 40.712410] ------------[ cut here ]------------ [ 40.712576] WARNING: CPU: 2 PID: 1562 at kernel/kexec_core.c:1001 kimage_map_segment+0x144/0x198 [...] [ 40.816047] Call trace: [ 40.818498] kimage_map_segment+0x144/0x198 (P) [ 40.823221] ima_kexec_post_load+0x58/0xc0 [ 40.827246] __do_sys_kexec_file_load+0x29c/0x368 [...] [ 40.855423] ---[ end trace 0000000000000000 ]--- *** How to reproduce *** This bug is only triggered when the kexec target address is allocated in the CMA area. If no CMA area is reserved in the kernel, use the "cma=" option in the kernel command line to reserve one. *** Root cause *** The commit 07d24902977e ("kexec: enable CMA based contiguous allocation") allocates the kexec target address directly on the CMA area to avoid copying during the jump. In this case, there is no IND_SOURCE for the kexec segment. But the current implementation of kimage_map_segment() assumes that IND_SOURCE pages exist and map them into a contiguous virtual address by vmap(). *** Solution *** If IMA segment is allocated in the CMA area, use its page_address() directly.
CVE-2025-71113 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: af_alg - zero initialize memory allocated via sock_kmalloc Several crypto user API contexts and requests allocated with sock_kmalloc() were left uninitialized, relying on callers to set fields explicitly. This resulted in the use of uninitialized data in certain error paths or when new fields are added in the future. The ACVP patches also contain two user-space interface files: algif_kpp.c and algif_akcipher.c. These too rely on proper initialization of their context structures. A particular issue has been observed with the newly added 'inflight' variable introduced in af_alg_ctx by commit: 67b164a871af ("crypto: af_alg - Disallow multiple in-flight AIO requests") Because the context is not memset to zero after allocation, the inflight variable has contained garbage values. As a result, af_alg_alloc_areq() has incorrectly returned -EBUSY randomly when the garbage value was interpreted as true: https://github.com/gregkh/linux/blame/master/crypto/af_alg.c#L1209 The check directly tests ctx->inflight without explicitly comparing against true/false. Since inflight is only ever set to true or false later, an uninitialized value has triggered -EBUSY failures. Zero-initializing memory allocated with sock_kmalloc() ensures inflight and other fields start in a known state, removing random issues caused by uninitialized data.
CVE-2025-71104 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Fix VM hard lockup after prolonged inactivity with periodic HV timer When advancing the target expiration for the guest's APIC timer in periodic mode, set the expiration to "now" if the target expiration is in the past (similar to what is done in update_target_expiration()). Blindly adding the period to the previous target expiration can result in KVM generating a practically unbounded number of hrtimer IRQs due to programming an expired timer over and over. In extreme scenarios, e.g. if userspace pauses/suspends a VM for an extended duration, this can even cause hard lockups in the host. Currently, the bug only affects Intel CPUs when using the hypervisor timer (HV timer), a.k.a. the VMX preemption timer. Unlike the software timer, a.k.a. hrtimer, which KVM keeps running even on exits to userspace, the HV timer only runs while the guest is active. As a result, if the vCPU does not run for an extended duration, there will be a huge gap between the target expiration and the current time the vCPU resumes running. Because the target expiration is incremented by only one period on each timer expiration, this leads to a series of timer expirations occurring rapidly after the vCPU/VM resumes. More critically, when the vCPU first triggers a periodic HV timer expiration after resuming, advancing the expiration by only one period will result in a target expiration in the past. As a result, the delta may be calculated as a negative value. When the delta is converted into an absolute value (tscdeadline is an unsigned u64), the resulting value can overflow what the HV timer is capable of programming. I.e. the large value will exceed the VMX Preemption Timer's maximum bit width of cpu_preemption_timer_multi + 32, and thus cause KVM to switch from the HV timer to the software timer (hrtimers). After switching to the software timer, periodic timer expiration callbacks may be executed consecutively within a single clock interrupt handler, because hrtimers honors KVM's request for an expiration in the past and immediately re-invokes KVM's callback after reprogramming. And because the interrupt handler runs with IRQs disabled, restarting KVM's hrtimer over and over until the target expiration is advanced to "now" can result in a hard lockup. E.g. the following hard lockup was triggered in the host when running a Windows VM (only relevant because it used the APIC timer in periodic mode) after resuming the VM from a long suspend (in the host). NMI watchdog: Watchdog detected hard LOCKUP on cpu 45 ... RIP: 0010:advance_periodic_target_expiration+0x4d/0x80 [kvm] ... RSP: 0018:ff4f88f5d98d8ef0 EFLAGS: 00000046 RAX: fff0103f91be678e RBX: fff0103f91be678e RCX: 00843a7d9e127bcc RDX: 0000000000000002 RSI: 0052ca4003697505 RDI: ff440d5bfbdbd500 RBP: ff440d5956f99200 R08: ff2ff2a42deb6a84 R09: 000000000002a6c0 R10: 0122d794016332b3 R11: 0000000000000000 R12: ff440db1af39cfc0 R13: ff440db1af39cfc0 R14: ffffffffc0d4a560 R15: ff440db1af39d0f8 FS: 00007f04a6ffd700(0000) GS:ff440db1af380000(0000) knlGS:000000e38a3b8000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000d5651feff8 CR3: 000000684e038002 CR4: 0000000000773ee0 PKRU: 55555554 Call Trace: <IRQ> apic_timer_fn+0x31/0x50 [kvm] __hrtimer_run_queues+0x100/0x280 hrtimer_interrupt+0x100/0x210 ? ttwu_do_wakeup+0x19/0x160 smp_apic_timer_interrupt+0x6a/0x130 apic_timer_interrupt+0xf/0x20 </IRQ> Moreover, if the suspend duration of the virtual machine is not long enough to trigger a hard lockup in this scenario, since commit 98c25ead5eda ("KVM: VMX: Move preemption timer <=> hrtimer dance to common x86"), KVM will continue using the software timer until the guest reprograms the APIC timer in some way. Since the periodic timer does not require frequent APIC timer register programming, the guest may continue to use the software timer in ---truncated---
CVE-2025-71130 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/i915/gem: Zero-initialize the eb.vma array in i915_gem_do_execbuffer Initialize the eb.vma array with values of 0 when the eb structure is first set up. In particular, this sets the eb->vma[i].vma pointers to NULL, simplifying cleanup and getting rid of the bug described below. During the execution of eb_lookup_vmas(), the eb->vma array is successively filled up with struct eb_vma objects. This process includes calling eb_add_vma(), which might fail; however, even in the event of failure, eb->vma[i].vma is set for the currently processed buffer. If eb_add_vma() fails, eb_lookup_vmas() returns with an error, which prompts a call to eb_release_vmas() to clean up the mess. Since eb_lookup_vmas() might fail during processing any (possibly not first) buffer, eb_release_vmas() checks whether a buffer's vma is NULL to know at what point did the lookup function fail. In eb_lookup_vmas(), eb->vma[i].vma is set to NULL if either the helper function eb_lookup_vma() or eb_validate_vma() fails. eb->vma[i+1].vma is set to NULL in case i915_gem_object_userptr_submit_init() fails; the current one needs to be cleaned up by eb_release_vmas() at this point, so the next one is set. If eb_add_vma() fails, neither the current nor the next vma is set to NULL, which is a source of a NULL deref bug described in the issue linked in the Closes tag. When entering eb_lookup_vmas(), the vma pointers are set to the slab poison value, instead of NULL. This doesn't matter for the actual lookup, since it gets overwritten anyway, however the eb_release_vmas() function only recognizes NULL as the stopping value, hence the pointers are being set to NULL as they go in case of intermediate failure. This patch changes the approach to filling them all with NULL at the start instead, rather than handling that manually during failure. (cherry picked from commit 08889b706d4f0b8d2352b7ca29c2d8df4d0787cd)
CVE-2025-71125 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: Do not register unsupported perf events Synthetic events currently do not have a function to register perf events. This leads to calling the tracepoint register functions with a NULL function pointer which triggers: ------------[ cut here ]------------ WARNING: kernel/tracepoint.c:175 at tracepoint_add_func+0x357/0x370, CPU#2: perf/2272 Modules linked in: kvm_intel kvm irqbypass CPU: 2 UID: 0 PID: 2272 Comm: perf Not tainted 6.18.0-ftest-11964-ge022764176fc-dirty #323 PREEMPTLAZY Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-debian-1.17.0-1 04/01/2014 RIP: 0010:tracepoint_add_func+0x357/0x370 Code: 28 9c e8 4c 0b f5 ff eb 0f 4c 89 f7 48 c7 c6 80 4d 28 9c e8 ab 89 f4 ff 31 c0 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc cc <0f> 0b 49 c7 c6 ea ff ff ff e9 ee fe ff ff 0f 0b e9 f9 fe ff ff 0f RSP: 0018:ffffabc0c44d3c40 EFLAGS: 00010246 RAX: 0000000000000001 RBX: ffff9380aa9e4060 RCX: 0000000000000000 RDX: 000000000000000a RSI: ffffffff9e1d4a98 RDI: ffff937fcf5fd6c8 RBP: 0000000000000001 R08: 0000000000000007 R09: ffff937fcf5fc780 R10: 0000000000000003 R11: ffffffff9c193910 R12: 000000000000000a R13: ffffffff9e1e5888 R14: 0000000000000000 R15: ffffabc0c44d3c78 FS: 00007f6202f5f340(0000) GS:ffff93819f00f000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055d3162281a8 CR3: 0000000106a56003 CR4: 0000000000172ef0 Call Trace: <TASK> tracepoint_probe_register+0x5d/0x90 synth_event_reg+0x3c/0x60 perf_trace_event_init+0x204/0x340 perf_trace_init+0x85/0xd0 perf_tp_event_init+0x2e/0x50 perf_try_init_event+0x6f/0x230 ? perf_event_alloc+0x4bb/0xdc0 perf_event_alloc+0x65a/0xdc0 __se_sys_perf_event_open+0x290/0x9f0 do_syscall_64+0x93/0x7b0 ? entry_SYSCALL_64_after_hwframe+0x76/0x7e ? trace_hardirqs_off+0x53/0xc0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Instead, have the code return -ENODEV, which doesn't warn and has perf error out with: # perf record -e synthetic:futex_wait Error: The sys_perf_event_open() syscall returned with 19 (No such device) for event (synthetic:futex_wait). "dmesg | grep -i perf" may provide additional information. Ideally perf should support synthetic events, but for now just fix the warning. The support can come later.
CVE-2025-71108 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: Handle incorrect num_connectors capability The UCSI spec states that the num_connectors field is 7 bits, and the 8th bit is reserved and should be set to zero. Some buggy FW has been known to set this bit, and it can lead to a system not booting. Flag that the FW is not behaving correctly, and auto-fix the value so that the system boots correctly. Found on Lenovo P1 G8 during Linux enablement program. The FW will be fixed, but seemed worth addressing in case it hit platforms that aren't officially Linux supported.
CVE-2025-71107 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: ensure node page reads complete before f2fs_put_super() finishes Xfstests generic/335, generic/336 sometimes crash with the following message: F2FS-fs (dm-0): detect filesystem reference count leak during umount, type: 9, count: 1 ------------[ cut here ]------------ kernel BUG at fs/f2fs/super.c:1939! Oops: invalid opcode: 0000 [#1] SMP NOPTI CPU: 1 UID: 0 PID: 609351 Comm: umount Tainted: G W 6.17.0-rc5-xfstests-g9dd1835ecda5 #1 PREEMPT(none) Tainted: [W]=WARN Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:f2fs_put_super+0x3b3/0x3c0 Call Trace: <TASK> generic_shutdown_super+0x7e/0x190 kill_block_super+0x1a/0x40 kill_f2fs_super+0x9d/0x190 deactivate_locked_super+0x30/0xb0 cleanup_mnt+0xba/0x150 task_work_run+0x5c/0xa0 exit_to_user_mode_loop+0xb7/0xc0 do_syscall_64+0x1ae/0x1c0 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> ---[ end trace 0000000000000000 ]--- It appears that sometimes it is possible that f2fs_put_super() is called before all node page reads are completed. Adding a call to f2fs_wait_on_all_pages() for F2FS_RD_NODE fixes the problem.
CVE-2025-71106 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: PM: Fix reverse check in filesystems_freeze_callback() The freeze_all_ptr check in filesystems_freeze_callback() introduced by commit a3f8f8662771 ("power: always freeze efivarfs") is reverse which quite confusingly causes all file systems to be frozen when filesystem_freeze_enabled is false. On my systems it causes the WARN_ON_ONCE() in __set_task_frozen() to trigger, most likely due to an attempt to freeze a file system that is not ready for that. Add a logical negation to the check in question to reverse it as appropriate.
CVE-2025-71120 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: svcauth_gss: avoid NULL deref on zero length gss_token in gss_read_proxy_verf A zero length gss_token results in pages == 0 and in_token->pages[0] is NULL. The code unconditionally evaluates page_address(in_token->pages[0]) for the initial memcpy, which can dereference NULL even when the copy length is 0. Guard the first memcpy so it only runs when length > 0.
CVE-2025-71141 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/tilcdc: Fix removal actions in case of failed probe The drm_kms_helper_poll_fini() and drm_atomic_helper_shutdown() helpers should only be called when the device has been successfully registered. Currently, these functions are called unconditionally in tilcdc_fini(), which causes warnings during probe deferral scenarios. [ 7.972317] WARNING: CPU: 0 PID: 23 at drivers/gpu/drm/drm_atomic_state_helper.c:175 drm_atomic_helper_crtc_duplicate_state+0x60/0x68 ... [ 8.005820] drm_atomic_helper_crtc_duplicate_state from drm_atomic_get_crtc_state+0x68/0x108 [ 8.005858] drm_atomic_get_crtc_state from drm_atomic_helper_disable_all+0x90/0x1c8 [ 8.005885] drm_atomic_helper_disable_all from drm_atomic_helper_shutdown+0x90/0x144 [ 8.005911] drm_atomic_helper_shutdown from tilcdc_fini+0x68/0xf8 [tilcdc] [ 8.005957] tilcdc_fini [tilcdc] from tilcdc_pdev_probe+0xb0/0x6d4 [tilcdc] Fix this by rewriting the failed probe cleanup path using the standard goto error handling pattern, which ensures that cleanup functions are only called on successfully initialized resources. Additionally, remove the now-unnecessary is_registered flag.
CVE-2025-71103 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm: adreno: fix deferencing ifpc_reglist when not declared On plaforms with an a7xx GPU not supporting IFPC, the ifpc_reglist if still deferenced in a7xx_patch_pwrup_reglist() which causes a kernel crash: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 ... pc : a6xx_hw_init+0x155c/0x1e4c [msm] lr : a6xx_hw_init+0x9a8/0x1e4c [msm] ... Call trace: a6xx_hw_init+0x155c/0x1e4c [msm] (P) msm_gpu_hw_init+0x58/0x88 [msm] adreno_load_gpu+0x94/0x1fc [msm] msm_open+0xe4/0xf4 [msm] drm_file_alloc+0x1a0/0x2e4 [drm] drm_client_init+0x7c/0x104 [drm] drm_fbdev_client_setup+0x94/0xcf0 [drm_client_lib] drm_client_setup+0xb4/0xd8 [drm_client_lib] msm_drm_kms_post_init+0x2c/0x3c [msm] msm_drm_init+0x1a4/0x228 [msm] msm_drm_bind+0x30/0x3c [msm] ... Check the validity of ifpc_reglist before deferencing the table to setup the register values. Patchwork: https://patchwork.freedesktop.org/patch/688944/
CVE-2025-71134 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/page_alloc: change all pageblocks migrate type on coalescing When a page is freed it coalesces with a buddy into a higher order page while possible. When the buddy page migrate type differs, it is expected to be updated to match the one of the page being freed. However, only the first pageblock of the buddy page is updated, while the rest of the pageblocks are left unchanged. That causes warnings in later expand() and other code paths (like below), since an inconsistency between migration type of the list containing the page and the page-owned pageblocks migration types is introduced. [ 308.986589] ------------[ cut here ]------------ [ 308.987227] page type is 0, passed migratetype is 1 (nr=256) [ 308.987275] WARNING: CPU: 1 PID: 5224 at mm/page_alloc.c:812 expand+0x23c/0x270 [ 308.987293] Modules linked in: algif_hash(E) af_alg(E) nft_fib_inet(E) nft_fib_ipv4(E) nft_fib_ipv6(E) nft_fib(E) nft_reject_inet(E) nf_reject_ipv4(E) nf_reject_ipv6(E) nft_reject(E) nft_ct(E) nft_chain_nat(E) nf_nat(E) nf_conntrack(E) nf_defrag_ipv6(E) nf_defrag_ipv4(E) nf_tables(E) s390_trng(E) vfio_ccw(E) mdev(E) vfio_iommu_type1(E) vfio(E) sch_fq_codel(E) drm(E) i2c_core(E) drm_panel_orientation_quirks(E) loop(E) nfnetlink(E) vsock_loopback(E) vmw_vsock_virtio_transport_common(E) vsock(E) ctcm(E) fsm(E) diag288_wdt(E) watchdog(E) zfcp(E) scsi_transport_fc(E) ghash_s390(E) prng(E) aes_s390(E) des_generic(E) des_s390(E) libdes(E) sha3_512_s390(E) sha3_256_s390(E) sha_common(E) paes_s390(E) crypto_engine(E) pkey_cca(E) pkey_ep11(E) zcrypt(E) rng_core(E) pkey_pckmo(E) pkey(E) autofs4(E) [ 308.987439] Unloaded tainted modules: hmac_s390(E):2 [ 308.987650] CPU: 1 UID: 0 PID: 5224 Comm: mempig_verify Kdump: loaded Tainted: G E 6.18.0-gcc-bpf-debug #431 PREEMPT [ 308.987657] Tainted: [E]=UNSIGNED_MODULE [ 308.987661] Hardware name: IBM 3906 M04 704 (z/VM 7.3.0) [ 308.987666] Krnl PSW : 0404f00180000000 00000349976fa600 (expand+0x240/0x270) [ 308.987676] R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:3 PM:0 RI:0 EA:3 [ 308.987682] Krnl GPRS: 0000034980000004 0000000000000005 0000000000000030 000003499a0e6d88 [ 308.987688] 0000000000000005 0000034980000005 000002be803ac000 0000023efe6c8300 [ 308.987692] 0000000000000008 0000034998d57290 000002be00000100 0000023e00000008 [ 308.987696] 0000000000000000 0000000000000000 00000349976fa5fc 000002c99b1eb6f0 [ 308.987708] Krnl Code: 00000349976fa5f0: c020008a02f2 larl %r2,000003499883abd4 00000349976fa5f6: c0e5ffe3f4b5 brasl %r14,0000034997378f60 #00000349976fa5fc: af000000 mc 0,0 >00000349976fa600: a7f4ff4c brc 15,00000349976fa498 00000349976fa604: b9040026 lgr %r2,%r6 00000349976fa608: c0300088317f larl %r3,0000034998800906 00000349976fa60e: c0e5fffdb6e1 brasl %r14,00000349976b13d0 00000349976fa614: af000000 mc 0,0 [ 308.987734] Call Trace: [ 308.987738] [<00000349976fa600>] expand+0x240/0x270 [ 308.987744] ([<00000349976fa5fc>] expand+0x23c/0x270) [ 308.987749] [<00000349976ff95e>] rmqueue_bulk+0x71e/0x940 [ 308.987754] [<00000349976ffd7e>] __rmqueue_pcplist+0x1fe/0x2a0 [ 308.987759] [<0000034997700966>] rmqueue.isra.0+0xb46/0xf40 [ 308.987763] [<0000034997703ec8>] get_page_from_freelist+0x198/0x8d0 [ 308.987768] [<0000034997706fa8>] __alloc_frozen_pages_noprof+0x198/0x400 [ 308.987774] [<00000349977536f8>] alloc_pages_mpol+0xb8/0x220 [ 308.987781] [<0000034997753bf6>] folio_alloc_mpol_noprof+0x26/0xc0 [ 308.987786] [<0000034997753e4c>] vma_alloc_folio_noprof+0x6c/0xa0 [ 308.987791] [<0000034997775b22>] vma_alloc_anon_folio_pmd+0x42/0x240 [ 308.987799] [<000003499777bfea>] __do_huge_pmd_anonymous_page+0x3a/0x210 [ 308.987804] [<00000349976cb0 ---truncated---
CVE-2024-41073 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: nvme: avoid double free special payload If a discard request needs to be retried, and that retry may fail before a new special payload is added, a double free will result. Clear the RQF_SPECIAL_LOAD when the request is cleaned.
CVE-2024-41000 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: block/ioctl: prefer different overflow check Running syzkaller with the newly reintroduced signed integer overflow sanitizer shows this report: [ 62.982337] ------------[ cut here ]------------ [ 62.985692] cgroup: Invalid name [ 62.986211] UBSAN: signed-integer-overflow in ../block/ioctl.c:36:46 [ 62.989370] 9pnet_fd: p9_fd_create_tcp (7343): problem connecting socket to 127.0.0.1 [ 62.992992] 9223372036854775807 + 4095 cannot be represented in type 'long long' [ 62.997827] 9pnet_fd: p9_fd_create_tcp (7345): problem connecting socket to 127.0.0.1 [ 62.999369] random: crng reseeded on system resumption [ 63.000634] GUP no longer grows the stack in syz-executor.2 (7353): 20002000-20003000 (20001000) [ 63.000668] CPU: 0 PID: 7353 Comm: syz-executor.2 Not tainted 6.8.0-rc2-00035-gb3ef86b5a957 #1 [ 63.000677] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 63.000682] Call Trace: [ 63.000686] <TASK> [ 63.000731] dump_stack_lvl+0x93/0xd0 [ 63.000919] __get_user_pages+0x903/0xd30 [ 63.001030] __gup_longterm_locked+0x153e/0x1ba0 [ 63.001041] ? _raw_read_unlock_irqrestore+0x17/0x50 [ 63.001072] ? try_get_folio+0x29c/0x2d0 [ 63.001083] internal_get_user_pages_fast+0x1119/0x1530 [ 63.001109] iov_iter_extract_pages+0x23b/0x580 [ 63.001206] bio_iov_iter_get_pages+0x4de/0x1220 [ 63.001235] iomap_dio_bio_iter+0x9b6/0x1410 [ 63.001297] __iomap_dio_rw+0xab4/0x1810 [ 63.001316] iomap_dio_rw+0x45/0xa0 [ 63.001328] ext4_file_write_iter+0xdde/0x1390 [ 63.001372] vfs_write+0x599/0xbd0 [ 63.001394] ksys_write+0xc8/0x190 [ 63.001403] do_syscall_64+0xd4/0x1b0 [ 63.001421] ? arch_exit_to_user_mode_prepare+0x3a/0x60 [ 63.001479] entry_SYSCALL_64_after_hwframe+0x6f/0x77 [ 63.001535] RIP: 0033:0x7f7fd3ebf539 [ 63.001551] Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 f1 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 [ 63.001562] RSP: 002b:00007f7fd32570c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 63.001584] RAX: ffffffffffffffda RBX: 00007f7fd3ff3f80 RCX: 00007f7fd3ebf539 [ 63.001590] RDX: 4db6d1e4f7e43360 RSI: 0000000020000000 RDI: 0000000000000004 [ 63.001595] RBP: 00007f7fd3f1e496 R08: 0000000000000000 R09: 0000000000000000 [ 63.001599] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 [ 63.001604] R13: 0000000000000006 R14: 00007f7fd3ff3f80 R15: 00007ffd415ad2b8 ... [ 63.018142] ---[ end trace ]--- Historically, the signed integer overflow sanitizer did not work in the kernel due to its interaction with `-fwrapv` but this has since been changed [1] in the newest version of Clang; It was re-enabled in the kernel with Commit 557f8c582a9ba8ab ("ubsan: Reintroduce signed overflow sanitizer"). Let's rework this overflow checking logic to not actually perform an overflow during the check itself, thus avoiding the UBSAN splat. [1]: https://github.com/llvm/llvm-project/pull/82432
CVE-2025-4598 5 Debian, Linux, Oracle and 2 more 10 Debian Linux, Linux Kernel, Linux and 7 more 2026-01-13 4.7 Medium
A vulnerability was found in systemd-coredump. This flaw allows an attacker to force a SUID process to crash and replace it with a non-SUID binary to access the original's privileged process coredump, allowing the attacker to read sensitive data, such as /etc/shadow content, loaded by the original process. A SUID binary or process has a special type of permission, which allows the process to run with the file owner's permissions, regardless of the user executing the binary. This allows the process to access more restricted data than unprivileged users or processes would be able to. An attacker can leverage this flaw by forcing a SUID process to crash and force the Linux kernel to recycle the process PID before systemd-coredump can analyze the /proc/pid/auxv file. If the attacker wins the race condition, they gain access to the original's SUID process coredump file. They can read sensitive content loaded into memory by the original binary, affecting data confidentiality.
CVE-2013-0648 7 Adobe, Apple, Linux and 4 more 12 Flash Player, Mac Os X, Linux Kernel and 9 more 2026-01-12 8.8 High
Unspecified vulnerability in the ExternalInterface ActionScript functionality in Adobe Flash Player before 10.3.183.67 and 11.x before 11.6.602.171 on Windows and Mac OS X, and before 10.3.183.67 and 11.x before 11.2.202.273 on Linux, allows remote attackers to execute arbitrary code via crafted SWF content, as exploited in the wild in February 2013.
CVE-2025-39710 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-12 7.1 High
In the Linux kernel, the following vulnerability has been resolved: media: venus: Add a check for packet size after reading from shared memory Add a check to ensure that the packet size does not exceed the number of available words after reading the packet header from shared memory. This ensures that the size provided by the firmware is safe to process and prevent potential out-of-bounds memory access.
CVE-2025-39714 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: usbtv: Lock resolution while streaming When an program is streaming (ffplay) and another program (qv4l2) changes the TV standard from NTSC to PAL, the kernel crashes due to trying to copy to unmapped memory. Changing from NTSC to PAL increases the resolution in the usbtv struct, but the video plane buffer isn't adjusted, so it overflows. [hverkuil: call vb2_is_busy instead of vb2_is_streaming]
CVE-2025-39724 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: serial: 8250: fix panic due to PSLVERR When the PSLVERR_RESP_EN parameter is set to 1, the device generates an error response if an attempt is made to read an empty RBR (Receive Buffer Register) while the FIFO is enabled. In serial8250_do_startup(), calling serial_port_out(port, UART_LCR, UART_LCR_WLEN8) triggers dw8250_check_lcr(), which invokes dw8250_force_idle() and serial8250_clear_and_reinit_fifos(). The latter function enables the FIFO via serial_out(p, UART_FCR, p->fcr). Execution proceeds to the serial_port_in(port, UART_RX). This satisfies the PSLVERR trigger condition. When another CPU (e.g., using printk()) is accessing the UART (UART is busy), the current CPU fails the check (value & ~UART_LCR_SPAR) == (lcr & ~UART_LCR_SPAR) in dw8250_check_lcr(), causing it to enter dw8250_force_idle(). Put serial_port_out(port, UART_LCR, UART_LCR_WLEN8) under the port->lock to fix this issue. Panic backtrace: [ 0.442336] Oops - unknown exception [#1] [ 0.442343] epc : dw8250_serial_in32+0x1e/0x4a [ 0.442351] ra : serial8250_do_startup+0x2c8/0x88e ... [ 0.442416] console_on_rootfs+0x26/0x70
CVE-2025-39730 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-12 7.8 High
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix filehandle bounds checking in nfs_fh_to_dentry() The function needs to check the minimal filehandle length before it can access the embedded filehandle.