| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: mctp: Set SOCK_RCU_FREE
Bind lookup runs under RCU, so ensure that a socket doesn't go away in
the middle of a lookup. |
| IBM DB2 High Performance Unload 6.1.0.3, 5.1.0.1, 6.1.0.2, 6.5, 6.5.0.0 IF1, 6.1.0.1, 6.1, and 5.1 could allow an authenticated user to cause the program to crash due to a buffer being overwritten when it is allocated on the stack. |
| IBM DB2 High Performance Unload 6.1.0.3, 5.1.0.1, 6.1.0.2, 6.5, 6.5.0.0 IF1, 6.1.0.1, 6.1, and 5.1 could allow an authenticated user to cause the program to crash due to the incorrect calculation of the size of the data that is being pointed to. |
| IBM DB2 High Performance Unload 6.1.0.3, 5.1.0.1, 6.1.0.2, 6.5, 6.5.0.0 IF1, 6.1.0.1, 6.1, and 5.1 could allow an authenticated user to cause the program to crash due an out of bounds write. |
| In the Linux kernel, the following vulnerability has been resolved:
backlight: led_bl: Hold led_access lock when calling led_sysfs_disable()
Lockdep detects the following issue on led-backlight removal:
[ 142.315935] ------------[ cut here ]------------
[ 142.315954] WARNING: CPU: 2 PID: 292 at drivers/leds/led-core.c:455 led_sysfs_enable+0x54/0x80
...
[ 142.500725] Call trace:
[ 142.503176] led_sysfs_enable+0x54/0x80 (P)
[ 142.507370] led_bl_remove+0x80/0xa8 [led_bl]
[ 142.511742] platform_remove+0x30/0x58
[ 142.515501] device_remove+0x54/0x90
...
Indeed, led_sysfs_enable() has to be called with the led_access
lock held.
Hold the lock when calling led_sysfs_disable(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: fix nested key length validation in the set() action
It's not safe to access nla_len(ovs_key) if the data is smaller than
the netlink header. Check that the attribute is OK first. |
| In the Linux kernel, the following vulnerability has been resolved:
cxgb4: fix memory leak in cxgb4_init_ethtool_filters() error path
In the for loop used to allocate the loc_array and bmap for each port, a
memory leak is possible when the allocation for loc_array succeeds,
but the allocation for bmap fails. This is because when the control flow
goes to the label free_eth_finfo, only the allocations starting from
(i-1)th iteration are freed.
Fix that by freeing the loc_array in the bmap allocation error path. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Fix error pointers in dpu_plane_virtual_atomic_check
The function dpu_plane_virtual_atomic_check was dereferencing pointers
returned by drm_atomic_get_plane_state without checking for errors. This
could lead to undefined behavior if the function returns an error pointer.
This commit adds checks using IS_ERR to ensure that plane_state is
valid before dereferencing them.
Similar to commit da29abe71e16
("drm/amd/display: Fix error pointers in amdgpu_dm_crtc_mem_type_changed").
Patchwork: https://patchwork.freedesktop.org/patch/643132/ |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: cros-ec-tunnel: defer probe if parent EC is not present
When i2c-cros-ec-tunnel and the EC driver are built-in, the EC parent
device will not be found, leading to NULL pointer dereference.
That can also be reproduced by unbinding the controller driver and then
loading i2c-cros-ec-tunnel module (or binding the device).
[ 271.991245] BUG: kernel NULL pointer dereference, address: 0000000000000058
[ 271.998215] #PF: supervisor read access in kernel mode
[ 272.003351] #PF: error_code(0x0000) - not-present page
[ 272.008485] PGD 0 P4D 0
[ 272.011022] Oops: Oops: 0000 [#1] SMP NOPTI
[ 272.015207] CPU: 0 UID: 0 PID: 3859 Comm: insmod Tainted: G S 6.15.0-rc1-00004-g44722359ed83 #30 PREEMPT(full) 3c7fb39a552e7d949de2ad921a7d6588d3a4fdc5
[ 272.030312] Tainted: [S]=CPU_OUT_OF_SPEC
[ 272.034233] Hardware name: HP Berknip/Berknip, BIOS Google_Berknip.13434.356.0 05/17/2021
[ 272.042400] RIP: 0010:ec_i2c_probe+0x2b/0x1c0 [i2c_cros_ec_tunnel]
[ 272.048577] Code: 1f 44 00 00 41 57 41 56 41 55 41 54 53 48 83 ec 10 65 48 8b 05 06 a0 6c e7 48 89 44 24 08 4c 8d 7f 10 48 8b 47 50 4c 8b 60 78 <49> 83 7c 24 58 00 0f 84 2f 01 00 00 48 89 fb be 30 06 00 00 4c 9
[ 272.067317] RSP: 0018:ffffa32082a03940 EFLAGS: 00010282
[ 272.072541] RAX: ffff969580b6a810 RBX: ffff969580b68c10 RCX: 0000000000000000
[ 272.079672] RDX: 0000000000000000 RSI: 0000000000000282 RDI: ffff969580b68c00
[ 272.086804] RBP: 00000000fffffdfb R08: 0000000000000000 R09: 0000000000000000
[ 272.093936] R10: 0000000000000000 R11: ffffffffc0600000 R12: 0000000000000000
[ 272.101067] R13: ffffffffa666fbb8 R14: ffffffffc05b5528 R15: ffff969580b68c10
[ 272.108198] FS: 00007b930906fc40(0000) GS:ffff969603149000(0000) knlGS:0000000000000000
[ 272.116282] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 272.122024] CR2: 0000000000000058 CR3: 000000012631c000 CR4: 00000000003506f0
[ 272.129155] Call Trace:
[ 272.131606] <TASK>
[ 272.133709] ? acpi_dev_pm_attach+0xdd/0x110
[ 272.137985] platform_probe+0x69/0xa0
[ 272.141652] really_probe+0x152/0x310
[ 272.145318] __driver_probe_device+0x77/0x110
[ 272.149678] driver_probe_device+0x1e/0x190
[ 272.153864] __driver_attach+0x10b/0x1e0
[ 272.157790] ? driver_attach+0x20/0x20
[ 272.161542] bus_for_each_dev+0x107/0x150
[ 272.165553] bus_add_driver+0x15d/0x270
[ 272.169392] driver_register+0x65/0x110
[ 272.173232] ? cleanup_module+0xa80/0xa80 [i2c_cros_ec_tunnel 3a00532f3f4af4a9eade753f86b0f8dd4e4e5698]
[ 272.182617] do_one_initcall+0x110/0x350
[ 272.186543] ? security_kernfs_init_security+0x49/0xd0
[ 272.191682] ? __kernfs_new_node+0x1b9/0x240
[ 272.195954] ? security_kernfs_init_security+0x49/0xd0
[ 272.201093] ? __kernfs_new_node+0x1b9/0x240
[ 272.205365] ? kernfs_link_sibling+0x105/0x130
[ 272.209810] ? kernfs_next_descendant_post+0x1c/0xa0
[ 272.214773] ? kernfs_activate+0x57/0x70
[ 272.218699] ? kernfs_add_one+0x118/0x160
[ 272.222710] ? __kernfs_create_file+0x71/0xa0
[ 272.227069] ? sysfs_add_bin_file_mode_ns+0xd6/0x110
[ 272.232033] ? internal_create_group+0x453/0x4a0
[ 272.236651] ? __vunmap_range_noflush+0x214/0x2d0
[ 272.241355] ? __free_frozen_pages+0x1dc/0x420
[ 272.245799] ? free_vmap_area_noflush+0x10a/0x1c0
[ 272.250505] ? load_module+0x1509/0x16f0
[ 272.254431] do_init_module+0x60/0x230
[ 272.258181] __se_sys_finit_module+0x27a/0x370
[ 272.262627] do_syscall_64+0x6a/0xf0
[ 272.266206] ? do_syscall_64+0x76/0xf0
[ 272.269956] ? irqentry_exit_to_user_mode+0x79/0x90
[ 272.274836] entry_SYSCALL_64_after_hwframe+0x55/0x5d
[ 272.279887] RIP: 0033:0x7b9309168d39
[ 272.283466] Code: 5b 41 5c 5d c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d af 40 0c 00 f7 d8 64 89 01 8
[ 272.302210] RSP: 002b:00007fff50f1a288 EFLAGS: 00000246 ORIG_RAX: 000
---truncated--- |
| In the Linux kernel before 5.1.17, ptrace_link in kernel/ptrace.c mishandles the recording of the credentials of a process that wants to create a ptrace relationship, which allows local users to obtain root access by leveraging certain scenarios with a parent-child process relationship, where a parent drops privileges and calls execve (potentially allowing control by an attacker). One contributing factor is an object lifetime issue (which can also cause a panic). Another contributing factor is incorrect marking of a ptrace relationship as privileged, which is exploitable through (for example) Polkit's pkexec helper with PTRACE_TRACEME. NOTE: SELinux deny_ptrace might be a usable workaround in some environments. |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: do not start chip while suspended
Checking TPM_CHIP_FLAG_SUSPENDED after the call to tpm_find_get_ops() can
lead to a spurious tpm_chip_start() call:
[35985.503771] i2c i2c-1: Transfer while suspended
[35985.503796] WARNING: CPU: 0 PID: 74 at drivers/i2c/i2c-core.h:56 __i2c_transfer+0xbe/0x810
[35985.503802] Modules linked in:
[35985.503808] CPU: 0 UID: 0 PID: 74 Comm: hwrng Tainted: G W 6.13.0-next-20250203-00005-gfa0cb5642941 #19 9c3d7f78192f2d38e32010ac9c90fdc71109ef6f
[35985.503814] Tainted: [W]=WARN
[35985.503817] Hardware name: Google Morphius/Morphius, BIOS Google_Morphius.13434.858.0 10/26/2023
[35985.503819] RIP: 0010:__i2c_transfer+0xbe/0x810
[35985.503825] Code: 30 01 00 00 4c 89 f7 e8 40 fe d8 ff 48 8b 93 80 01 00 00 48 85 d2 75 03 49 8b 16 48 c7 c7 0a fb 7c a7 48 89 c6 e8 32 ad b0 fe <0f> 0b b8 94 ff ff ff e9 33 04 00 00 be 02 00 00 00 83 fd 02 0f 5
[35985.503828] RSP: 0018:ffffa106c0333d30 EFLAGS: 00010246
[35985.503833] RAX: 074ba64aa20f7000 RBX: ffff8aa4c1167120 RCX: 0000000000000000
[35985.503836] RDX: 0000000000000000 RSI: ffffffffa77ab0e4 RDI: 0000000000000001
[35985.503838] RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000
[35985.503841] R10: 0000000000000004 R11: 00000001000313d5 R12: ffff8aa4c10f1820
[35985.503843] R13: ffff8aa4c0e243c0 R14: ffff8aa4c1167250 R15: ffff8aa4c1167120
[35985.503846] FS: 0000000000000000(0000) GS:ffff8aa4eae00000(0000) knlGS:0000000000000000
[35985.503849] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[35985.503852] CR2: 00007fab0aaf1000 CR3: 0000000105328000 CR4: 00000000003506f0
[35985.503855] Call Trace:
[35985.503859] <TASK>
[35985.503863] ? __warn+0xd4/0x260
[35985.503868] ? __i2c_transfer+0xbe/0x810
[35985.503874] ? report_bug+0xf3/0x210
[35985.503882] ? handle_bug+0x63/0xb0
[35985.503887] ? exc_invalid_op+0x16/0x50
[35985.503892] ? asm_exc_invalid_op+0x16/0x20
[35985.503904] ? __i2c_transfer+0xbe/0x810
[35985.503913] tpm_cr50_i2c_transfer_message+0x24/0xf0
[35985.503920] tpm_cr50_i2c_read+0x8e/0x120
[35985.503928] tpm_cr50_request_locality+0x75/0x170
[35985.503935] tpm_chip_start+0x116/0x160
[35985.503942] tpm_try_get_ops+0x57/0x90
[35985.503948] tpm_find_get_ops+0x26/0xd0
[35985.503955] tpm_get_random+0x2d/0x80
Don't move forward with tpm_chip_start() inside tpm_try_get_ops(), unless
TPM_CHIP_FLAG_SUSPENDED is not set. tpm_find_get_ops() will return NULL in
such a failure case. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/crc-t10dif: fix use of out-of-scope array in crc_t10dif_arch()
Fix a silly bug where an array was used outside of its scope. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: dp: drm_err => dev_err in HPD path to avoid NULL ptr
The function mtk_dp_wait_hpd_asserted() may be called before the
`mtk_dp->drm_dev` pointer is assigned in mtk_dp_bridge_attach().
Specifically it can be called via this callpath:
- mtk_edp_wait_hpd_asserted
- [panel probe]
- dp_aux_ep_probe
Using "drm" level prints anywhere in this callpath causes a NULL
pointer dereference. Change the error message directly in
mtk_dp_wait_hpd_asserted() to dev_err() to avoid this. Also change the
error messages in mtk_dp_parse_capabilities(), which is called by
mtk_dp_wait_hpd_asserted().
While touching these prints, also add the error code to them to make
future debugging easier. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-edma: free irq correctly in remove path
Add fsl_edma->txirq/errirq check to avoid below warning because no
errirq at i.MX9 platform. Otherwise there will be kernel dump:
WARNING: CPU: 0 PID: 11 at kernel/irq/devres.c:144 devm_free_irq+0x74/0x80
Modules linked in:
CPU: 0 UID: 0 PID: 11 Comm: kworker/u8:0 Not tainted 6.12.0-rc7#18
Hardware name: NXP i.MX93 11X11 EVK board (DT)
Workqueue: events_unbound deferred_probe_work_func
pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : devm_free_irq+0x74/0x80
lr : devm_free_irq+0x48/0x80
Call trace:
devm_free_irq+0x74/0x80 (P)
devm_free_irq+0x48/0x80 (L)
fsl_edma_remove+0xc4/0xc8
platform_remove+0x28/0x44
device_remove+0x4c/0x80 |
| A flaw was found in the way the "flags" member of the new pipe buffer structure was lacking proper initialization in copy_page_to_iter_pipe and push_pipe functions in the Linux kernel and could thus contain stale values. An unprivileged local user could use this flaw to write to pages in the page cache backed by read only files and as such escalate their privileges on the system. |
| A heap-based buffer overflow flaw was found in the way the legacy_parse_param function in the Filesystem Context functionality of the Linux kernel verified the supplied parameters length. An unprivileged (in case of unprivileged user namespaces enabled, otherwise needs namespaced CAP_SYS_ADMIN privilege) local user able to open a filesystem that does not support the Filesystem Context API (and thus fallbacks to legacy handling) could use this flaw to escalate their privileges on the system. |
| VMware Aria Operations and VMware Tools contain a local privilege escalation vulnerability. A malicious local actor with non-administrative privileges having access to a VM with VMware Tools installed and managed by Aria Operations with SDMP enabled may exploit this vulnerability to escalate privileges to root on the same VM. |
| In the Linux kernel, the following vulnerability has been resolved:
net: Fix null-ptr-deref by sock_lock_init_class_and_name() and rmmod.
When I ran the repro [0] and waited a few seconds, I observed two
LOCKDEP splats: a warning immediately followed by a null-ptr-deref. [1]
Reproduction Steps:
1) Mount CIFS
2) Add an iptables rule to drop incoming FIN packets for CIFS
3) Unmount CIFS
4) Unload the CIFS module
5) Remove the iptables rule
At step 3), the CIFS module calls sock_release() for the underlying
TCP socket, and it returns quickly. However, the socket remains in
FIN_WAIT_1 because incoming FIN packets are dropped.
At this point, the module's refcnt is 0 while the socket is still
alive, so the following rmmod command succeeds.
# ss -tan
State Recv-Q Send-Q Local Address:Port Peer Address:Port
FIN-WAIT-1 0 477 10.0.2.15:51062 10.0.0.137:445
# lsmod | grep cifs
cifs 1159168 0
This highlights a discrepancy between the lifetime of the CIFS module
and the underlying TCP socket. Even after CIFS calls sock_release()
and it returns, the TCP socket does not die immediately in order to
close the connection gracefully.
While this is generally fine, it causes an issue with LOCKDEP because
CIFS assigns a different lock class to the TCP socket's sk->sk_lock
using sock_lock_init_class_and_name().
Once an incoming packet is processed for the socket or a timer fires,
sk->sk_lock is acquired.
Then, LOCKDEP checks the lock context in check_wait_context(), where
hlock_class() is called to retrieve the lock class. However, since
the module has already been unloaded, hlock_class() logs a warning
and returns NULL, triggering the null-ptr-deref.
If LOCKDEP is enabled, we must ensure that a module calling
sock_lock_init_class_and_name() (CIFS, NFS, etc) cannot be unloaded
while such a socket is still alive to prevent this issue.
Let's hold the module reference in sock_lock_init_class_and_name()
and release it when the socket is freed in sk_prot_free().
Note that sock_lock_init() clears sk->sk_owner for svc_create_socket()
that calls sock_lock_init_class_and_name() for a listening socket,
which clones a socket by sk_clone_lock() without GFP_ZERO.
[0]:
CIFS_SERVER="10.0.0.137"
CIFS_PATH="//${CIFS_SERVER}/Users/Administrator/Desktop/CIFS_TEST"
DEV="enp0s3"
CRED="/root/WindowsCredential.txt"
MNT=$(mktemp -d /tmp/XXXXXX)
mount -t cifs ${CIFS_PATH} ${MNT} -o vers=3.0,credentials=${CRED},cache=none,echo_interval=1
iptables -A INPUT -s ${CIFS_SERVER} -j DROP
for i in $(seq 10);
do
umount ${MNT}
rmmod cifs
sleep 1
done
rm -r ${MNT}
iptables -D INPUT -s ${CIFS_SERVER} -j DROP
[1]:
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 10 PID: 0 at kernel/locking/lockdep.c:234 hlock_class (kernel/locking/lockdep.c:234 kernel/locking/lockdep.c:223)
Modules linked in: cifs_arc4 nls_ucs2_utils cifs_md4 [last unloaded: cifs]
CPU: 10 UID: 0 PID: 0 Comm: swapper/10 Not tainted 6.14.0 #36
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:hlock_class (kernel/locking/lockdep.c:234 kernel/locking/lockdep.c:223)
...
Call Trace:
<IRQ>
__lock_acquire (kernel/locking/lockdep.c:4853 kernel/locking/lockdep.c:5178)
lock_acquire (kernel/locking/lockdep.c:469 kernel/locking/lockdep.c:5853 kernel/locking/lockdep.c:5816)
_raw_spin_lock_nested (kernel/locking/spinlock.c:379)
tcp_v4_rcv (./include/linux/skbuff.h:1678 ./include/net/tcp.h:2547 net/ipv4/tcp_ipv4.c:2350)
...
BUG: kernel NULL pointer dereference, address: 00000000000000c4
PF: supervisor read access in kernel mode
PF: error_code(0x0000) - not-present page
PGD 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 10 UID: 0 PID: 0 Comm: swapper/10 Tainted: G W 6.14.0 #36
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:__lock_acquire (kernel/
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: detect and prevent references to a freed transport in sendmsg
sctp_sendmsg() re-uses associations and transports when possible by
doing a lookup based on the socket endpoint and the message destination
address, and then sctp_sendmsg_to_asoc() sets the selected transport in
all the message chunks to be sent.
There's a possible race condition if another thread triggers the removal
of that selected transport, for instance, by explicitly unbinding an
address with setsockopt(SCTP_SOCKOPT_BINDX_REM), after the chunks have
been set up and before the message is sent. This can happen if the send
buffer is full, during the period when the sender thread temporarily
releases the socket lock in sctp_wait_for_sndbuf().
This causes the access to the transport data in
sctp_outq_select_transport(), when the association outqueue is flushed,
to result in a use-after-free read.
This change avoids this scenario by having sctp_transport_free() signal
the freeing of the transport, tagging it as "dead". In order to do this,
the patch restores the "dead" bit in struct sctp_transport, which was
removed in
commit 47faa1e4c50e ("sctp: remove the dead field of sctp_transport").
Then, in the scenario where the sender thread has released the socket
lock in sctp_wait_for_sndbuf(), the bit is checked again after
re-acquiring the socket lock to detect the deletion. This is done while
holding a reference to the transport to prevent it from being freed in
the process.
If the transport was deleted while the socket lock was relinquished,
sctp_sendmsg_to_asoc() will return -EAGAIN to let userspace retry the
send.
The bug was found by a private syzbot instance (see the error report [1]
and the C reproducer that triggers it [2]). |
| In the Linux kernel, the following vulnerability has been resolved:
misc: pci_endpoint_test: Avoid issue of interrupts remaining after request_irq error
After devm_request_irq() fails with error in pci_endpoint_test_request_irq(),
the pci_endpoint_test_free_irq_vectors() is called assuming that all IRQs
have been released.
However, some requested IRQs remain unreleased, so there are still
/proc/irq/* entries remaining, and this results in WARN() with the
following message:
remove_proc_entry: removing non-empty directory 'irq/30', leaking at least 'pci-endpoint-test.0'
WARNING: CPU: 0 PID: 202 at fs/proc/generic.c:719 remove_proc_entry +0x190/0x19c
To solve this issue, set the number of remaining IRQs to test->num_irqs,
and release IRQs in advance by calling pci_endpoint_test_release_irq().
[kwilczynski: commit log] |