Search Results (16620 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68795 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ethtool: Avoid overflowing userspace buffer on stats query The ethtool -S command operates across three ioctl calls: ETHTOOL_GSSET_INFO for the size, ETHTOOL_GSTRINGS for the names, and ETHTOOL_GSTATS for the values. If the number of stats changes between these calls (e.g., due to device reconfiguration), userspace's buffer allocation will be incorrect, potentially leading to buffer overflow. Drivers are generally expected to maintain stable stat counts, but some drivers (e.g., mlx5, bnx2x, bna, ksz884x) use dynamic counters, making this scenario possible. Some drivers try to handle this internally: - bnad_get_ethtool_stats() returns early in case stats.n_stats is not equal to the driver's stats count. - micrel/ksz884x also makes sure not to write anything beyond stats.n_stats and overflow the buffer. However, both use stats.n_stats which is already assigned with the value returned from get_sset_count(), hence won't solve the issue described here. Change ethtool_get_strings(), ethtool_get_stats(), ethtool_get_phy_stats() to not return anything in case of a mismatch between userspace's size and get_sset_size(), to prevent buffer overflow. The returned n_stats value will be equal to zero, to reflect that nothing has been returned. This could result in one of two cases when using upstream ethtool, depending on when the size change is detected: 1. When detected in ethtool_get_strings(): # ethtool -S eth2 no stats available 2. When detected in get stats, all stats will be reported as zero. Both cases are presumably transient, and a subsequent ethtool call should succeed. Other than the overflow avoidance, these two cases are very evident (no output/cleared stats), which is arguably better than presenting incorrect/shifted stats. I also considered returning an error instead of a "silent" response, but that seems more destructive towards userspace apps. Notes: - This patch does not claim to fix the inherent race, it only makes sure that we do not overflow the userspace buffer, and makes for a more predictable behavior. - RTNL lock is held during each ioctl, the race window exists between the separate ioctl calls when the lock is released. - Userspace ethtool always fills stats.n_stats, but it is likely that these stats ioctls are implemented in other userspace applications which might not fill it. The added code checks that it's not zero, to prevent any regressions.
CVE-2025-71100 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtlwifi: 8192cu: fix tid out of range in rtl92cu_tx_fill_desc() TID getting from ieee80211_get_tid() might be out of range of array size of sta_entry->tids[], so check TID is less than MAX_TID_COUNT. Othwerwise, UBSAN warn: UBSAN: array-index-out-of-bounds in drivers/net/wireless/realtek/rtlwifi/rtl8192cu/trx.c:514:30 index 10 is out of range for type 'rtl_tid_data [9]'
CVE-2025-71068 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: svcrdma: bound check rq_pages index in inline path svc_rdma_copy_inline_range indexed rqstp->rq_pages[rc_curpage] without verifying rc_curpage stays within the allocated page array. Add guards before the first use and after advancing to a new page.
CVE-2025-68768 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: inet: frags: flush pending skbs in fqdir_pre_exit() We have been seeing occasional deadlocks on pernet_ops_rwsem since September in NIPA. The stuck task was usually modprobe (often loading a driver like ipvlan), trying to take the lock as a Writer. lockdep does not track readers for rwsems so the read wasn't obvious from the reports. On closer inspection the Reader holding the lock was conntrack looping forever in nf_conntrack_cleanup_net_list(). Based on past experience with occasional NIPA crashes I looked thru the tests which run before the crash and noticed that the crash follows ip_defrag.sh. An immediate red flag. Scouring thru (de)fragmentation queues reveals skbs sitting around, holding conntrack references. The problem is that since conntrack depends on nf_defrag_ipv6, nf_defrag_ipv6 will load first. Since nf_defrag_ipv6 loads first its netns exit hooks run _after_ conntrack's netns exit hook. Flush all fragment queue SKBs during fqdir_pre_exit() to release conntrack references before conntrack cleanup runs. Also flush the queues in timer expiry handlers when they discover fqdir->dead is set, in case packet sneaks in while we're running the pre_exit flush. The commit under Fixes is not exactly the culprit, but I think previously the timer firing would eventually unblock the spinning conntrack.
CVE-2025-68789 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hwmon: (ibmpex) fix use-after-free in high/low store The ibmpex_high_low_store() function retrieves driver data using dev_get_drvdata() and uses it without validation. This creates a race condition where the sysfs callback can be invoked after the data structure is freed, leading to use-after-free. Fix by adding a NULL check after dev_get_drvdata(), and reordering operations in the deletion path to prevent TOCTOU.
CVE-2025-71077 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tpm: Cap the number of PCR banks tpm2_get_pcr_allocation() does not cap any upper limit for the number of banks. Cap the limit to eight banks so that out of bounds values coming from external I/O cause on only limited harm.
CVE-2025-71078 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/64s/slb: Fix SLB multihit issue during SLB preload On systems using the hash MMU, there is a software SLB preload cache that mirrors the entries loaded into the hardware SLB buffer. This preload cache is subject to periodic eviction — typically after every 256 context switches — to remove old entry. To optimize performance, the kernel skips switch_mmu_context() in switch_mm_irqs_off() when the prev and next mm_struct are the same. However, on hash MMU systems, this can lead to inconsistencies between the hardware SLB and the software preload cache. If an SLB entry for a process is evicted from the software cache on one CPU, and the same process later runs on another CPU without executing switch_mmu_context(), the hardware SLB may retain stale entries. If the kernel then attempts to reload that entry, it can trigger an SLB multi-hit error. The following timeline shows how stale SLB entries are created and can cause a multi-hit error when a process moves between CPUs without a MMU context switch. CPU 0 CPU 1 ----- ----- Process P exec swapper/1 load_elf_binary begin_new_exc activate_mm switch_mm_irqs_off switch_mmu_context switch_slb /* * This invalidates all * the entries in the HW * and setup the new HW * SLB entries as per the * preload cache. */ context_switch sched_migrate_task migrates process P to cpu-1 Process swapper/0 context switch (to process P) (uses mm_struct of Process P) switch_mm_irqs_off() switch_slb load_slb++ /* * load_slb becomes 0 here * and we evict an entry from * the preload cache with * preload_age(). We still * keep HW SLB and preload * cache in sync, that is * because all HW SLB entries * anyways gets evicted in * switch_slb during SLBIA. * We then only add those * entries back in HW SLB, * which are currently * present in preload_cache * (after eviction). */ load_elf_binary continues... setup_new_exec() slb_setup_new_exec() sched_switch event sched_migrate_task migrates process P to cpu-0 context_switch from swapper/0 to Process P switch_mm_irqs_off() /* * Since both prev and next mm struct are same we don't call * switch_mmu_context(). This will cause the HW SLB and SW preload * cache to go out of sync in preload_new_slb_context. Because there * was an SLB entry which was evicted from both HW and preload cache * on cpu-1. Now later in preload_new_slb_context(), when we will try * to add the same preload entry again, we will add this to the SW * preload cache and then will add it to the HW SLB. Since on cpu-0 * this entry was never invalidated, hence adding this entry to the HW * SLB will cause a SLB multi-hit error. */ load_elf_binary cont ---truncated---
CVE-2025-68812 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: media: iris: Add sanity check for stop streaming Add sanity check in iris_vb2_stop_streaming. If inst->state is already IRIS_INST_ERROR, we should skip the stream_off operation because it would still send packets to the firmware. In iris_kill_session, inst->state is set to IRIS_INST_ERROR and session_close is executed, which will kfree(inst_hfi_gen2->packet). If stop_streaming is called afterward, it will cause a crash. [bod: remove qcom from patch title]
CVE-2025-71080 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix a BUG in rt6_get_pcpu_route() under PREEMPT_RT On PREEMPT_RT kernels, after rt6_get_pcpu_route() returns NULL, the current task can be preempted. Another task running on the same CPU may then execute rt6_make_pcpu_route() and successfully install a pcpu_rt entry. When the first task resumes execution, its cmpxchg() in rt6_make_pcpu_route() will fail because rt6i_pcpu is no longer NULL, triggering the BUG_ON(prev). It's easy to reproduce it by adding mdelay() after rt6_get_pcpu_route(). Using preempt_disable/enable is not appropriate here because ip6_rt_pcpu_alloc() may sleep. Fix this by handling the cmpxchg() failure gracefully on PREEMPT_RT: free our allocation and return the existing pcpu_rt installed by another task. The BUG_ON is replaced by WARN_ON_ONCE for non-PREEMPT_RT kernels where such races should not occur.
CVE-2025-68819 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: dvb-usb: dtv5100: fix out-of-bounds in dtv5100_i2c_msg() rlen value is a user-controlled value, but dtv5100_i2c_msg() does not check the size of the rlen value. Therefore, if it is set to a value larger than sizeof(st->data), an out-of-bounds vuln occurs for st->data. Therefore, we need to add proper range checking to prevent this vuln.
CVE-2025-71076 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Limit num_syncs to prevent oversized allocations The OA open parameters did not validate num_syncs, allowing userspace to pass arbitrarily large values, potentially leading to excessive allocations. Add check to ensure that num_syncs does not exceed DRM_XE_MAX_SYNCS, returning -EINVAL when the limit is violated. v2: use XE_IOCTL_DBG() and drop duplicated check. (Ashutosh) (cherry picked from commit e057b2d2b8d815df3858a87dffafa2af37e5945b)
CVE-2025-71099 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Fix potential UAF in xe_oa_add_config_ioctl() In xe_oa_add_config_ioctl(), we accessed oa_config->id after dropping metrics_lock. Since this lock protects the lifetime of oa_config, an attacker could guess the id and call xe_oa_remove_config_ioctl() with perfect timing, freeing oa_config before we dereference it, leading to a potential use-after-free. Fix this by caching the id in a local variable while holding the lock. v2: (Matt A) - Dropped mutex_unlock(&oa->metrics_lock) ordering change from xe_oa_remove_config_ioctl() (cherry picked from commit 28aeaed130e8e587fd1b73b6d66ca41ccc5a1a31)
CVE-2025-68818 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: Revert "scsi: qla2xxx: Perform lockless command completion in abort path" This reverts commit 0367076b0817d5c75dfb83001ce7ce5c64d803a9. The commit being reverted added code to __qla2x00_abort_all_cmds() to call sp->done() without holding a spinlock. But unlike the older code below it, this new code failed to check sp->cmd_type and just assumed TYPE_SRB, which results in a jump to an invalid pointer in target-mode with TYPE_TGT_CMD: qla2xxx [0000:65:00.0]-d034:8: qla24xx_do_nack_work create sess success 0000000009f7a79b qla2xxx [0000:65:00.0]-5003:8: ISP System Error - mbx1=1ff5h mbx2=10h mbx3=0h mbx4=0h mbx5=191h mbx6=0h mbx7=0h. qla2xxx [0000:65:00.0]-d01e:8: -> fwdump no buffer qla2xxx [0000:65:00.0]-f03a:8: qla_target(0): System error async event 0x8002 occurred qla2xxx [0000:65:00.0]-00af:8: Performing ISP error recovery - ha=0000000058183fda. BUG: kernel NULL pointer dereference, address: 0000000000000000 PF: supervisor instruction fetch in kernel mode PF: error_code(0x0010) - not-present page PGD 0 P4D 0 Oops: 0010 [#1] SMP CPU: 2 PID: 9446 Comm: qla2xxx_8_dpc Tainted: G O 6.1.133 #1 Hardware name: Supermicro Super Server/X11SPL-F, BIOS 4.2 12/15/2023 RIP: 0010:0x0 Code: Unable to access opcode bytes at 0xffffffffffffffd6. RSP: 0018:ffffc90001f93dc8 EFLAGS: 00010206 RAX: 0000000000000282 RBX: 0000000000000355 RCX: ffff88810d16a000 RDX: ffff88810dbadaa8 RSI: 0000000000080000 RDI: ffff888169dc38c0 RBP: ffff888169dc38c0 R08: 0000000000000001 R09: 0000000000000045 R10: ffffffffa034bdf0 R11: 0000000000000000 R12: ffff88810800bb40 R13: 0000000000001aa8 R14: ffff888100136610 R15: ffff8881070f7400 FS: 0000000000000000(0000) GS:ffff88bf80080000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffffffffd6 CR3: 000000010c8ff006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __die+0x4d/0x8b ? page_fault_oops+0x91/0x180 ? trace_buffer_unlock_commit_regs+0x38/0x1a0 ? exc_page_fault+0x391/0x5e0 ? asm_exc_page_fault+0x22/0x30 __qla2x00_abort_all_cmds+0xcb/0x3e0 [qla2xxx_scst] qla2x00_abort_all_cmds+0x50/0x70 [qla2xxx_scst] qla2x00_abort_isp_cleanup+0x3b7/0x4b0 [qla2xxx_scst] qla2x00_abort_isp+0xfd/0x860 [qla2xxx_scst] qla2x00_do_dpc+0x581/0xa40 [qla2xxx_scst] kthread+0xa8/0xd0 </TASK> Then commit 4475afa2646d ("scsi: qla2xxx: Complete command early within lock") added the spinlock back, because not having the lock caused a race and a crash. But qla2x00_abort_srb() in the switch below already checks for qla2x00_chip_is_down() and handles it the same way, so the code above the switch is now redundant and still buggy in target-mode. Remove it.
CVE-2025-71072 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: shmem: fix recovery on rename failures maple_tree insertions can fail if we are seriously short on memory; simple_offset_rename() does not recover well if it runs into that. The same goes for simple_offset_rename_exchange(). Moreover, shmem_whiteout() expects that if it succeeds, the caller will progress to d_move(), i.e. that shmem_rename2() won't fail past the successful call of shmem_whiteout(). Not hard to fix, fortunately - mtree_store() can't fail if the index we are trying to store into is already present in the tree as a singleton. For simple_offset_rename_exchange() that's enough - we just need to be careful about the order of operations. For simple_offset_rename() solution is to preinsert the target into the tree for new_dir; the rest can be done without any potentially failing operations. That preinsertion has to be done in shmem_rename2() rather than in simple_offset_rename() itself - otherwise we'd need to deal with the possibility of failure after successful shmem_whiteout().
CVE-2025-68779 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Avoid unregistering PSP twice PSP is unregistered twice in: _mlx5e_remove -> mlx5e_psp_unregister mlx5e_nic_cleanup -> mlx5e_psp_unregister This leads to a refcount underflow in some conditions: ------------[ cut here ]------------ refcount_t: underflow; use-after-free. WARNING: CPU: 2 PID: 1694 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0 [...] mlx5e_psp_unregister+0x26/0x50 [mlx5_core] mlx5e_nic_cleanup+0x26/0x90 [mlx5_core] mlx5e_remove+0xe6/0x1f0 [mlx5_core] auxiliary_bus_remove+0x18/0x30 device_release_driver_internal+0x194/0x1f0 bus_remove_device+0xc6/0x130 device_del+0x159/0x3c0 mlx5_rescan_drivers_locked+0xbc/0x2a0 [mlx5_core] [...] Do not directly remove psp from the _mlx5e_remove path, the PSP cleanup happens as part of profile cleanup.
CVE-2025-71085 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: BUG() in pskb_expand_head() as part of calipso_skbuff_setattr() There exists a kernel oops caused by a BUG_ON(nhead < 0) at net/core/skbuff.c:2232 in pskb_expand_head(). This bug is triggered as part of the calipso_skbuff_setattr() routine when skb_cow() is passed headroom > INT_MAX (i.e. (int)(skb_headroom(skb) + len_delta) < 0). The root cause of the bug is due to an implicit integer cast in __skb_cow(). The check (headroom > skb_headroom(skb)) is meant to ensure that delta = headroom - skb_headroom(skb) is never negative, otherwise we will trigger a BUG_ON in pskb_expand_head(). However, if headroom > INT_MAX and delta <= -NET_SKB_PAD, the check passes, delta becomes negative, and pskb_expand_head() is passed a negative value for nhead. Fix the trigger condition in calipso_skbuff_setattr(). Avoid passing "negative" headroom sizes to skb_cow() within calipso_skbuff_setattr() by only using skb_cow() to grow headroom. PoC: Using `netlabelctl` tool: netlabelctl map del default netlabelctl calipso add pass doi:7 netlabelctl map add default address:0::1/128 protocol:calipso,7 Then run the following PoC: int fd = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP); // setup msghdr int cmsg_size = 2; int cmsg_len = 0x60; struct msghdr msg; struct sockaddr_in6 dest_addr; struct cmsghdr * cmsg = (struct cmsghdr *) calloc(1, sizeof(struct cmsghdr) + cmsg_len); msg.msg_name = &dest_addr; msg.msg_namelen = sizeof(dest_addr); msg.msg_iov = NULL; msg.msg_iovlen = 0; msg.msg_control = cmsg; msg.msg_controllen = cmsg_len; msg.msg_flags = 0; // setup sockaddr dest_addr.sin6_family = AF_INET6; dest_addr.sin6_port = htons(31337); dest_addr.sin6_flowinfo = htonl(31337); dest_addr.sin6_addr = in6addr_loopback; dest_addr.sin6_scope_id = 31337; // setup cmsghdr cmsg->cmsg_len = cmsg_len; cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_HOPOPTS; char * hop_hdr = (char *)cmsg + sizeof(struct cmsghdr); hop_hdr[1] = 0x9; //set hop size - (0x9 + 1) * 8 = 80 sendmsg(fd, &msg, 0);
CVE-2025-68782 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: target: Reset t_task_cdb pointer in error case If allocation of cmd->t_task_cdb fails, it remains NULL but is later dereferenced in the 'err' path. In case of error, reset NULL t_task_cdb value to point at the default fixed-size buffer. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2025-71091 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: team: fix check for port enabled in team_queue_override_port_prio_changed() There has been a syzkaller bug reported recently with the following trace: list_del corruption, ffff888058bea080->prev is LIST_POISON2 (dead000000000122) ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:59! Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI CPU: 3 UID: 0 PID: 21246 Comm: syz.0.2928 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:__list_del_entry_valid_or_report+0x13e/0x200 lib/list_debug.c:59 Code: 48 c7 c7 e0 71 f0 8b e8 30 08 ef fc 90 0f 0b 48 89 ef e8 a5 02 55 fd 48 89 ea 48 89 de 48 c7 c7 40 72 f0 8b e8 13 08 ef fc 90 <0f> 0b 48 89 ef e8 88 02 55 fd 48 89 ea 48 b8 00 00 00 00 00 fc ff RSP: 0018:ffffc9000d49f370 EFLAGS: 00010286 RAX: 000000000000004e RBX: ffff888058bea080 RCX: ffffc9002817d000 RDX: 0000000000000000 RSI: ffffffff819becc6 RDI: 0000000000000005 RBP: dead000000000122 R08: 0000000000000005 R09: 0000000000000000 R10: 0000000080000000 R11: 0000000000000001 R12: ffff888039e9c230 R13: ffff888058bea088 R14: ffff888058bea080 R15: ffff888055461480 FS: 00007fbbcfe6f6c0(0000) GS:ffff8880d6d0a000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000110c3afcb0 CR3: 00000000382c7000 CR4: 0000000000352ef0 Call Trace: <TASK> __list_del_entry_valid include/linux/list.h:132 [inline] __list_del_entry include/linux/list.h:223 [inline] list_del_rcu include/linux/rculist.h:178 [inline] __team_queue_override_port_del drivers/net/team/team_core.c:826 [inline] __team_queue_override_port_del drivers/net/team/team_core.c:821 [inline] team_queue_override_port_prio_changed drivers/net/team/team_core.c:883 [inline] team_priority_option_set+0x171/0x2f0 drivers/net/team/team_core.c:1534 team_option_set drivers/net/team/team_core.c:376 [inline] team_nl_options_set_doit+0x8ae/0xe60 drivers/net/team/team_core.c:2653 genl_family_rcv_msg_doit+0x209/0x2f0 net/netlink/genetlink.c:1115 genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0x55c/0x800 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x158/0x420 net/netlink/af_netlink.c:2552 genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline] netlink_unicast+0x5aa/0x870 net/netlink/af_netlink.c:1346 netlink_sendmsg+0x8c8/0xdd0 net/netlink/af_netlink.c:1896 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg net/socket.c:742 [inline] ____sys_sendmsg+0xa98/0xc70 net/socket.c:2630 ___sys_sendmsg+0x134/0x1d0 net/socket.c:2684 __sys_sendmsg+0x16d/0x220 net/socket.c:2716 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f The problem is in this flow: 1) Port is enabled, queue_id != 0, in qom_list 2) Port gets disabled -> team_port_disable() -> team_queue_override_port_del() -> del (removed from list) 3) Port is disabled, queue_id != 0, not in any list 4) Priority changes -> team_queue_override_port_prio_changed() -> checks: port disabled && queue_id != 0 -> calls del - hits the BUG as it is removed already To fix this, change the check in team_queue_override_port_prio_changed() so it returns early if port is not enabled.
CVE-2025-71070 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ublk: clean up user copy references on ublk server exit If a ublk server process releases a ublk char device file, any requests dispatched to the ublk server but not yet completed will retain a ref value of UBLK_REFCOUNT_INIT. Before commit e63d2228ef83 ("ublk: simplify aborting ublk request"), __ublk_fail_req() would decrement the reference count before completing the failed request. However, that commit optimized __ublk_fail_req() to call __ublk_complete_rq() directly without decrementing the request reference count. The leaked reference count incorrectly allows user copy and zero copy operations on the completed ublk request. It also triggers the WARN_ON_ONCE(refcount_read(&io->ref)) warnings in ublk_queue_reinit() and ublk_deinit_queue(). Commit c5c5eb24ed61 ("ublk: avoid ublk_io_release() called after ublk char dev is closed") already fixed the issue for ublk devices using UBLK_F_SUPPORT_ZERO_COPY or UBLK_F_AUTO_BUF_REG. However, the reference count leak also affects UBLK_F_USER_COPY, the other reference-counted data copy mode. Fix the condition in ublk_check_and_reset_active_ref() to include all reference-counted data copy modes. This ensures that any ublk requests still owned by the ublk server when it exits have their reference counts reset to 0.
CVE-2025-71098 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ip6_gre: make ip6gre_header() robust Over the years, syzbot found many ways to crash the kernel in ip6gre_header() [1]. This involves team or bonding drivers ability to dynamically change their dev->needed_headroom and/or dev->hard_header_len In this particular crash mld_newpack() allocated an skb with a too small reserve/headroom, and by the time mld_sendpack() was called, syzbot managed to attach an ip6gre device. [1] skbuff: skb_under_panic: text:ffffffff8a1d69a8 len:136 put:40 head:ffff888059bc7000 data:ffff888059bc6fe8 tail:0x70 end:0x6c0 dev:team0 ------------[ cut here ]------------ kernel BUG at net/core/skbuff.c:213 ! <TASK> skb_under_panic net/core/skbuff.c:223 [inline] skb_push+0xc3/0xe0 net/core/skbuff.c:2641 ip6gre_header+0xc8/0x790 net/ipv6/ip6_gre.c:1371 dev_hard_header include/linux/netdevice.h:3436 [inline] neigh_connected_output+0x286/0x460 net/core/neighbour.c:1618 neigh_output include/net/neighbour.h:556 [inline] ip6_finish_output2+0xfb3/0x1480 net/ipv6/ip6_output.c:136 __ip6_finish_output net/ipv6/ip6_output.c:-1 [inline] ip6_finish_output+0x234/0x7d0 net/ipv6/ip6_output.c:220 NF_HOOK_COND include/linux/netfilter.h:307 [inline] ip6_output+0x340/0x550 net/ipv6/ip6_output.c:247 NF_HOOK+0x9e/0x380 include/linux/netfilter.h:318 mld_sendpack+0x8d4/0xe60 net/ipv6/mcast.c:1855 mld_send_cr net/ipv6/mcast.c:2154 [inline] mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693