Search Results (16622 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-49777 1 Linux 1 Linux Kernel 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Input: i8042 - fix leaking of platform device on module removal Avoid resetting the module-wide i8042_platform_device pointer in i8042_probe() or i8042_remove(), so that the device can be properly destroyed by i8042_exit() on module unload.
CVE-2022-49776 1 Linux 1 Linux Kernel 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: macvlan: enforce a consistent minimal mtu macvlan should enforce a minimal mtu of 68, even at link creation. This patch avoids the current behavior (which could lead to crashes in ipv6 stack if the link is brought up) $ ip link add macvlan1 link eno1 mtu 8 type macvlan # This should fail ! $ ip link sh dev macvlan1 5: macvlan1@eno1: <BROADCAST,MULTICAST> mtu 8 qdisc noop state DOWN mode DEFAULT group default qlen 1000 link/ether 02:47:6c:24:74:82 brd ff:ff:ff:ff:ff:ff $ ip link set macvlan1 mtu 67 Error: mtu less than device minimum. $ ip link set macvlan1 mtu 68 $ ip link set macvlan1 mtu 8 Error: mtu less than device minimum.
CVE-2022-49775 1 Linux 2 Linux, Linux Kernel 2025-11-07 7.8 High
In the Linux kernel, the following vulnerability has been resolved: tcp: cdg: allow tcp_cdg_release() to be called multiple times Apparently, mptcp is able to call tcp_disconnect() on an already disconnected flow. This is generally fine, unless current congestion control is CDG, because it might trigger a double-free [1] Instead of fixing MPTCP, and future bugs, we can make tcp_disconnect() more resilient. [1] BUG: KASAN: double-free in slab_free mm/slub.c:3539 [inline] BUG: KASAN: double-free in kfree+0xe2/0x580 mm/slub.c:4567 CPU: 0 PID: 3645 Comm: kworker/0:7 Not tainted 6.0.0-syzkaller-02734-g0326074ff465 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022 Workqueue: events mptcp_worker Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:317 [inline] print_report.cold+0x2ba/0x719 mm/kasan/report.c:433 kasan_report_invalid_free+0x81/0x190 mm/kasan/report.c:462 ____kasan_slab_free+0x18b/0x1c0 mm/kasan/common.c:356 kasan_slab_free include/linux/kasan.h:200 [inline] slab_free_hook mm/slub.c:1759 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1785 slab_free mm/slub.c:3539 [inline] kfree+0xe2/0x580 mm/slub.c:4567 tcp_disconnect+0x980/0x1e20 net/ipv4/tcp.c:3145 __mptcp_close_ssk+0x5ca/0x7e0 net/mptcp/protocol.c:2327 mptcp_do_fastclose net/mptcp/protocol.c:2592 [inline] mptcp_worker+0x78c/0xff0 net/mptcp/protocol.c:2627 process_one_work+0x991/0x1610 kernel/workqueue.c:2289 worker_thread+0x665/0x1080 kernel/workqueue.c:2436 kthread+0x2e4/0x3a0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306 </TASK> Allocated by task 3671: kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:45 [inline] set_alloc_info mm/kasan/common.c:437 [inline] ____kasan_kmalloc mm/kasan/common.c:516 [inline] ____kasan_kmalloc mm/kasan/common.c:475 [inline] __kasan_kmalloc+0xa9/0xd0 mm/kasan/common.c:525 kmalloc_array include/linux/slab.h:640 [inline] kcalloc include/linux/slab.h:671 [inline] tcp_cdg_init+0x10d/0x170 net/ipv4/tcp_cdg.c:380 tcp_init_congestion_control+0xab/0x550 net/ipv4/tcp_cong.c:193 tcp_reinit_congestion_control net/ipv4/tcp_cong.c:217 [inline] tcp_set_congestion_control+0x96c/0xaa0 net/ipv4/tcp_cong.c:391 do_tcp_setsockopt+0x505/0x2320 net/ipv4/tcp.c:3513 tcp_setsockopt+0xd4/0x100 net/ipv4/tcp.c:3801 mptcp_setsockopt+0x35f/0x2570 net/mptcp/sockopt.c:844 __sys_setsockopt+0x2d6/0x690 net/socket.c:2252 __do_sys_setsockopt net/socket.c:2263 [inline] __se_sys_setsockopt net/socket.c:2260 [inline] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2260 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Freed by task 16: kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38 kasan_set_track+0x21/0x30 mm/kasan/common.c:45 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370 ____kasan_slab_free mm/kasan/common.c:367 [inline] ____kasan_slab_free+0x166/0x1c0 mm/kasan/common.c:329 kasan_slab_free include/linux/kasan.h:200 [inline] slab_free_hook mm/slub.c:1759 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1785 slab_free mm/slub.c:3539 [inline] kfree+0xe2/0x580 mm/slub.c:4567 tcp_cleanup_congestion_control+0x70/0x120 net/ipv4/tcp_cong.c:226 tcp_v4_destroy_sock+0xdd/0x750 net/ipv4/tcp_ipv4.c:2254 tcp_v6_destroy_sock+0x11/0x20 net/ipv6/tcp_ipv6.c:1969 inet_csk_destroy_sock+0x196/0x440 net/ipv4/inet_connection_sock.c:1157 tcp_done+0x23b/0x340 net/ipv4/tcp.c:4649 tcp_rcv_state_process+0x40e7/0x4990 net/ipv4/tcp_input.c:6624 tcp_v6_do_rcv+0x3fc/0x13c0 net/ipv6/tcp_ipv6.c:1525 tcp_v6_rcv+0x2e8e/0x3830 net/ipv6/tcp_ipv6.c:1759 ip6_protocol_deliver_rcu+0x2db/0x1950 net/ipv6/ip6_input.c:439 ip6_input_finish+0x14c/0x2c0 net/ipv6/ip6_input.c:484 NF_HOOK include/linux/netfilter.h:302 [inline] NF_HOOK include/linux/netfilter.h:296 [inline] ip6_input+0x9c/0xd ---truncated---
CVE-2022-49774 1 Linux 1 Linux Kernel 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: x86/xen: Fix eventfd error handling in kvm_xen_eventfd_assign() Should not call eventfd_ctx_put() in case of error. [Introduce new goto target instead. - Paolo]
CVE-2022-49773 1 Linux 1 Linux Kernel 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix optc2_configure warning on dcn314 [Why] dcn314 uses optc2_configure_crc() that wraps optc1_configure_crc() + set additional registers not applicable to dcn314. It's not critical but when used leads to warning like: WARNING: drivers/gpu/drm/amd/amdgpu/../display/dc/dc_helper.c Call Trace: <TASK> generic_reg_set_ex+0x6d/0xe0 [amdgpu] optc2_configure_crc+0x60/0x80 [amdgpu] dc_stream_configure_crc+0x129/0x150 [amdgpu] amdgpu_dm_crtc_configure_crc_source+0x5d/0xe0 [amdgpu] [How] Use optc1_configure_crc() directly
CVE-2022-49786 1 Linux 1 Linux Kernel 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: properly pin the parent in blkcg_css_online blkcg_css_online is supposed to pin the blkcg of the parent, but 397c9f46ee4d refactored things and along the way, changed it to pin the css instead. This results in extra pins, and we end up leaking blkcgs and cgroups.
CVE-2022-49785 1 Linux 1 Linux Kernel 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/sgx: Add overflow check in sgx_validate_offset_length() sgx_validate_offset_length() function verifies "offset" and "length" arguments provided by userspace, but was missing an overflow check on their addition. Add it.
CVE-2022-49784 1 Linux 1 Linux Kernel 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86/amd/uncore: Fix memory leak for events array When a CPU comes online, the per-CPU NB and LLC uncore contexts are freed but not the events array within the context structure. This causes a memory leak as identified by the kmemleak detector. [...] unreferenced object 0xffff8c5944b8e320 (size 32): comm "swapper/0", pid 1, jiffies 4294670387 (age 151.072s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<000000000759fb79>] amd_uncore_cpu_up_prepare+0xaf/0x230 [<00000000ddc9e126>] cpuhp_invoke_callback+0x2cf/0x470 [<0000000093e727d4>] cpuhp_issue_call+0x14d/0x170 [<0000000045464d54>] __cpuhp_setup_state_cpuslocked+0x11e/0x330 [<0000000069f67cbd>] __cpuhp_setup_state+0x6b/0x110 [<0000000015365e0f>] amd_uncore_init+0x260/0x321 [<00000000089152d2>] do_one_initcall+0x3f/0x1f0 [<000000002d0bd18d>] kernel_init_freeable+0x1ca/0x212 [<0000000030be8dde>] kernel_init+0x11/0x120 [<0000000059709e59>] ret_from_fork+0x22/0x30 unreferenced object 0xffff8c5944b8dd40 (size 64): comm "swapper/0", pid 1, jiffies 4294670387 (age 151.072s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000306efe8b>] amd_uncore_cpu_up_prepare+0x183/0x230 [<00000000ddc9e126>] cpuhp_invoke_callback+0x2cf/0x470 [<0000000093e727d4>] cpuhp_issue_call+0x14d/0x170 [<0000000045464d54>] __cpuhp_setup_state_cpuslocked+0x11e/0x330 [<0000000069f67cbd>] __cpuhp_setup_state+0x6b/0x110 [<0000000015365e0f>] amd_uncore_init+0x260/0x321 [<00000000089152d2>] do_one_initcall+0x3f/0x1f0 [<000000002d0bd18d>] kernel_init_freeable+0x1ca/0x212 [<0000000030be8dde>] kernel_init+0x11/0x120 [<0000000059709e59>] ret_from_fork+0x22/0x30 [...] Fix the problem by freeing the events array before freeing the uncore context.
CVE-2022-49783 1 Linux 1 Linux Kernel 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Drop fpregs lock before inheriting FPU permissions Mike Galbraith reported the following against an old fork of preempt-rt but the same issue also applies to the current preempt-rt tree. BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: systemd preempt_count: 1, expected: 0 RCU nest depth: 0, expected: 0 Preemption disabled at: fpu_clone CPU: 6 PID: 1 Comm: systemd Tainted: G E (unreleased) Call Trace: <TASK> dump_stack_lvl ? fpu_clone __might_resched rt_spin_lock fpu_clone ? copy_thread ? copy_process ? shmem_alloc_inode ? kmem_cache_alloc ? kernel_clone ? __do_sys_clone ? do_syscall_64 ? __x64_sys_rt_sigprocmask ? syscall_exit_to_user_mode ? do_syscall_64 ? syscall_exit_to_user_mode ? do_syscall_64 ? syscall_exit_to_user_mode ? do_syscall_64 ? exc_page_fault ? entry_SYSCALL_64_after_hwframe </TASK> Mike says: The splat comes from fpu_inherit_perms() being called under fpregs_lock(), and us reaching the spin_lock_irq() therein due to fpu_state_size_dynamic() returning true despite static key __fpu_state_size_dynamic having never been enabled. Mike's assessment looks correct. fpregs_lock on a PREEMPT_RT kernel disables preemption so calling spin_lock_irq() in fpu_inherit_perms() is unsafe. This problem exists since commit 9e798e9aa14c ("x86/fpu: Prepare fpu_clone() for dynamically enabled features"). Even though the original bug report should not have enabled the paths at all, the bug still exists. fpregs_lock is necessary when editing the FPU registers or a task's FP state but it is not necessary for fpu_inherit_perms(). The only write of any FP state in fpu_inherit_perms() is for the new child which is not running yet and cannot context switch or be borrowed by a kernel thread yet. Hence, fpregs_lock is not protecting anything in the new child until clone() completes and can be dropped earlier. The siglock still needs to be acquired by fpu_inherit_perms() as the read of the parent's permissions has to be serialised. [ bp: Cleanup splat. ]
CVE-2022-49782 1 Linux 1 Linux Kernel 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf: Improve missing SIGTRAP checking To catch missing SIGTRAP we employ a WARN in __perf_event_overflow(), which fires if pending_sigtrap was already set: returning to user space without consuming pending_sigtrap, and then having the event fire again would re-enter the kernel and trigger the WARN. This, however, seemed to miss the case where some events not associated with progress in the user space task can fire and the interrupt handler runs before the IRQ work meant to consume pending_sigtrap (and generate the SIGTRAP). syzbot gifted us this stack trace: | WARNING: CPU: 0 PID: 3607 at kernel/events/core.c:9313 __perf_event_overflow | Modules linked in: | CPU: 0 PID: 3607 Comm: syz-executor100 Not tainted 6.1.0-rc2-syzkaller-00073-g88619e77b33d #0 | Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022 | RIP: 0010:__perf_event_overflow+0x498/0x540 kernel/events/core.c:9313 | <...> | Call Trace: | <TASK> | perf_swevent_hrtimer+0x34f/0x3c0 kernel/events/core.c:10729 | __run_hrtimer kernel/time/hrtimer.c:1685 [inline] | __hrtimer_run_queues+0x1c6/0xfb0 kernel/time/hrtimer.c:1749 | hrtimer_interrupt+0x31c/0x790 kernel/time/hrtimer.c:1811 | local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1096 [inline] | __sysvec_apic_timer_interrupt+0x17c/0x640 arch/x86/kernel/apic/apic.c:1113 | sysvec_apic_timer_interrupt+0x40/0xc0 arch/x86/kernel/apic/apic.c:1107 | asm_sysvec_apic_timer_interrupt+0x16/0x20 arch/x86/include/asm/idtentry.h:649 | <...> | </TASK> In this case, syzbot produced a program with event type PERF_TYPE_SOFTWARE and config PERF_COUNT_SW_CPU_CLOCK. The hrtimer manages to fire again before the IRQ work got a chance to run, all while never having returned to user space. Improve the WARN to check for real progress in user space: approximate this by storing a 32-bit hash of the current IP into pending_sigtrap, and if an event fires while pending_sigtrap still matches the previous IP, we assume no progress (false negatives are possible given we could return to user space and trigger again on the same IP).
CVE-2022-49781 1 Linux 1 Linux Kernel 2025-11-07 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86/amd: Fix crash due to race between amd_pmu_enable_all, perf NMI and throttling amd_pmu_enable_all() does: if (!test_bit(idx, cpuc->active_mask)) continue; amd_pmu_enable_event(cpuc->events[idx]); A perf NMI of another event can come between these two steps. Perf NMI handler internally disables and enables _all_ events, including the one which nmi-intercepted amd_pmu_enable_all() was in process of enabling. If that unintentionally enabled event has very low sampling period and causes immediate successive NMI, causing the event to be throttled, cpuc->events[idx] and cpuc->active_mask gets cleared by x86_pmu_stop(). This will result in amd_pmu_enable_event() getting called with event=NULL when amd_pmu_enable_all() resumes after handling the NMIs. This causes a kernel crash: BUG: kernel NULL pointer dereference, address: 0000000000000198 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page [...] Call Trace: <TASK> amd_pmu_enable_all+0x68/0xb0 ctx_resched+0xd9/0x150 event_function+0xb8/0x130 ? hrtimer_start_range_ns+0x141/0x4a0 ? perf_duration_warn+0x30/0x30 remote_function+0x4d/0x60 __flush_smp_call_function_queue+0xc4/0x500 flush_smp_call_function_queue+0x11d/0x1b0 do_idle+0x18f/0x2d0 cpu_startup_entry+0x19/0x20 start_secondary+0x121/0x160 secondary_startup_64_no_verify+0xe5/0xeb </TASK> amd_pmu_disable_all()/amd_pmu_enable_all() calls inside perf NMI handler were recently added as part of BRS enablement but I'm not sure whether we really need them. We can just disable BRS in the beginning and enable it back while returning from NMI. This will solve the issue by not enabling those events whose active_masks are set but are not yet enabled in hw pmu.
CVE-2022-49780 1 Linux 1 Linux Kernel 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: target: tcm_loop: Fix possible name leak in tcm_loop_setup_hba_bus() If device_register() fails in tcm_loop_setup_hba_bus(), the name allocated by dev_set_name() need be freed. As comment of device_register() says, it should use put_device() to give up the reference in the error path. So fix this by calling put_device(), then the name can be freed in kobject_cleanup(). The 'tl_hba' will be freed in tcm_loop_release_adapter(), so it don't need goto error label in this case.
CVE-2022-49779 1 Linux 1 Linux Kernel 2025-11-07 7.8 High
In the Linux kernel, the following vulnerability has been resolved: kprobes: Skip clearing aggrprobe's post_handler in kprobe-on-ftrace case In __unregister_kprobe_top(), if the currently unregistered probe has post_handler but other child probes of the aggrprobe do not have post_handler, the post_handler of the aggrprobe is cleared. If this is a ftrace-based probe, there is a problem. In later calls to disarm_kprobe(), we will use kprobe_ftrace_ops because post_handler is NULL. But we're armed with kprobe_ipmodify_ops. This triggers a WARN in __disarm_kprobe_ftrace() and may even cause use-after-free: Failed to disarm kprobe-ftrace at kernel_clone+0x0/0x3c0 (error -2) WARNING: CPU: 5 PID: 137 at kernel/kprobes.c:1135 __disarm_kprobe_ftrace.isra.21+0xcf/0xe0 Modules linked in: testKprobe_007(-) CPU: 5 PID: 137 Comm: rmmod Not tainted 6.1.0-rc4-dirty #18 [...] Call Trace: <TASK> __disable_kprobe+0xcd/0xe0 __unregister_kprobe_top+0x12/0x150 ? mutex_lock+0xe/0x30 unregister_kprobes.part.23+0x31/0xa0 unregister_kprobe+0x32/0x40 __x64_sys_delete_module+0x15e/0x260 ? do_user_addr_fault+0x2cd/0x6b0 do_syscall_64+0x3a/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] For the kprobe-on-ftrace case, we keep the post_handler setting to identify this aggrprobe armed with kprobe_ipmodify_ops. This way we can disarm it correctly.
CVE-2024-0340 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-11-07 4.4 Medium
A vulnerability was found in vhost_new_msg in drivers/vhost/vhost.c in the Linux kernel, which does not properly initialize memory in messages passed between virtual guests and the host operating system in the vhost/vhost.c:vhost_new_msg() function. This issue can allow local privileged users to read some kernel memory contents when reading from the /dev/vhost-net device file.
CVE-2023-53061 1 Linux 2 Kernel Kernel, Linux Kernel 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix possible refcount leak in smb2_open() Reference count of acls will leak when memory allocation fails. Fix this by adding the missing posix_acl_release().
CVE-2023-53060 1 Linux 1 Linux Kernel 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: igb: revert rtnl_lock() that causes deadlock The commit 6faee3d4ee8b ("igb: Add lock to avoid data race") adds rtnl_lock to eliminate a false data race shown below (FREE from device detaching) | (USE from netdev core) igb_remove | igb_ndo_get_vf_config igb_disable_sriov | vf >= adapter->vfs_allocated_count? kfree(adapter->vf_data) | adapter->vfs_allocated_count = 0 | | memcpy(... adapter->vf_data[vf] The above race will never happen and the extra rtnl_lock causes deadlock below [ 141.420169] <TASK> [ 141.420672] __schedule+0x2dd/0x840 [ 141.421427] schedule+0x50/0xc0 [ 141.422041] schedule_preempt_disabled+0x11/0x20 [ 141.422678] __mutex_lock.isra.13+0x431/0x6b0 [ 141.423324] unregister_netdev+0xe/0x20 [ 141.423578] igbvf_remove+0x45/0xe0 [igbvf] [ 141.423791] pci_device_remove+0x36/0xb0 [ 141.423990] device_release_driver_internal+0xc1/0x160 [ 141.424270] pci_stop_bus_device+0x6d/0x90 [ 141.424507] pci_stop_and_remove_bus_device+0xe/0x20 [ 141.424789] pci_iov_remove_virtfn+0xba/0x120 [ 141.425452] sriov_disable+0x2f/0xf0 [ 141.425679] igb_disable_sriov+0x4e/0x100 [igb] [ 141.426353] igb_remove+0xa0/0x130 [igb] [ 141.426599] pci_device_remove+0x36/0xb0 [ 141.426796] device_release_driver_internal+0xc1/0x160 [ 141.427060] driver_detach+0x44/0x90 [ 141.427253] bus_remove_driver+0x55/0xe0 [ 141.427477] pci_unregister_driver+0x2a/0xa0 [ 141.428296] __x64_sys_delete_module+0x141/0x2b0 [ 141.429126] ? mntput_no_expire+0x4a/0x240 [ 141.429363] ? syscall_trace_enter.isra.19+0x126/0x1a0 [ 141.429653] do_syscall_64+0x5b/0x80 [ 141.429847] ? exit_to_user_mode_prepare+0x14d/0x1c0 [ 141.430109] ? syscall_exit_to_user_mode+0x12/0x30 [ 141.430849] ? do_syscall_64+0x67/0x80 [ 141.431083] ? syscall_exit_to_user_mode_prepare+0x183/0x1b0 [ 141.431770] ? syscall_exit_to_user_mode+0x12/0x30 [ 141.432482] ? do_syscall_64+0x67/0x80 [ 141.432714] ? exc_page_fault+0x64/0x140 [ 141.432911] entry_SYSCALL_64_after_hwframe+0x72/0xdc Since the igb_disable_sriov() will call pci_disable_sriov() before releasing any resources, the netdev core will synchronize the cleanup to avoid any races. This patch removes the useless rtnl_(un)lock to guarantee correctness.
CVE-2023-53058 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: E-Switch, Fix an Oops in error handling code The error handling dereferences "vport". There is nothing we can do if it is an error pointer except returning the error code.
CVE-2024-1151 4 Debian, Fedoraproject, Linux and 1 more 5 Debian Linux, Fedora, Linux Kernel and 2 more 2025-11-07 5.5 Medium
A vulnerability was reported in the Open vSwitch sub-component in the Linux Kernel. The flaw occurs when a recursive operation of code push recursively calls into the code block. The OVS module does not validate the stack depth, pushing too many frames and causing a stack overflow. As a result, this can lead to a crash or other related issues.
CVE-2024-0443 3 Fedoraproject, Linux, Redhat 4 Fedora, Linux Kernel, Enterprise Linux and 1 more 2025-11-07 5.5 Medium
A flaw was found in the blkgs destruction path in block/blk-cgroup.c in the Linux kernel, leading to a cgroup blkio memory leakage problem. When a cgroup is being destroyed, cgroup_rstat_flush() is only called at css_release_work_fn(), which is called when the blkcg reference count reaches 0. This circular dependency will prevent blkcg and some blkgs from being freed after they are made offline. This issue may allow an attacker with a local access to cause system instability, such as an out of memory error.
CVE-2023-33952 2 Linux, Redhat 5 Linux Kernel, Enterprise Linux, Enterprise Linux For Real Time and 2 more 2025-11-07 6.7 Medium
A double-free vulnerability was found in handling vmw_buffer_object objects in the vmwgfx driver in the Linux kernel. This issue occurs due to the lack of validating the existence of an object prior to performing further free operations on the object, which may allow a local privileged user to escalate privileges and execute code in the context of the kernel.