Search

Search Results (328883 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53985 1 Zippy 1 Zstore 2026-01-14 6.1 Medium
Zstore, now referred to as Zippy CRM, 6.5.4 contains a reflected cross-site scripting vulnerability that allows attackers to inject malicious scripts through unvalidated input parameters. Attackers can submit crafted payloads in manual insertion points to execute arbitrary JavaScript code in victim's browser context.
CVE-2022-50930 1 Emerson 1 Pac Machine Edition 2026-01-14 8.4 High
Emerson PAC Machine Edition 9.80 contains an unquoted service path vulnerability in the TrapiServer service that allows local users to potentially execute code with elevated privileges. Attackers can exploit the unquoted path in the service configuration to inject malicious code that would execute with LocalSystem permissions during service startup.
CVE-2022-50929 1 Connectify 1 Connectify Hotspot 2026-01-14 8.4 High
Connectify Hotspot 2018 contains an unquoted service path vulnerability in its ConnectifyService executable that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted path in 'C:\Program Files (x86)\Connectify\ConnectifyService.exe' to inject malicious executables and escalate privileges.
CVE-2022-50917 1 Protonvpn 1 Protonvpn 2026-01-14 8.4 High
ProtonVPN 1.26.0 contains an unquoted service path vulnerability in its WireGuard service configuration that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted path by placing malicious executables in specific file system locations to gain elevated privileges during service startup.
CVE-2022-50913 1 Itec 1 Tcq 2026-01-14 8.4 High
ITeC ITeCProteccioAppServer contains an unquoted service path vulnerability that allows local attackers to execute code with elevated system privileges. Attackers can insert a malicious executable in the service path to gain elevated access during service restart or system reboot.
CVE-2022-50912 1 Impresscms 1 Impresscms 2026-01-14 9.8 Critical
ImpressCMS 1.4.4 contains a file upload vulnerability with weak extension sanitization that allows attackers to upload potentially malicious files. Attackers can bypass file upload restrictions by using alternative file extensions .php2.php6.php7.phps.pht to execute arbitrary PHP code on the server.
CVE-2026-0716 1 Redhat 1 Enterprise Linux 2026-01-14 4.8 Medium
A flaw was found in libsoup’s WebSocket frame processing when handling incoming messages. If a non-default configuration is used where the maximum incoming payload size is unset, the library may read memory outside the intended bounds. This can cause unintended memory exposure or a crash. Applications using libsoup’s WebSocket support with this configuration may be impacted.
CVE-2026-0678 3 Logiceverest, Woocommerce, Wordpress 3 Flat Shipping Rate By City For Woocommerce, Woocommerce, Wordpress 2026-01-14 4.9 Medium
The Flat Shipping Rate by City for WooCommerce plugin for WordPress is vulnerable to time-based SQL Injection via the 'cities' parameter in all versions up to, and including, 1.0.3 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Shop Manager-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
CVE-2022-50920 2 Sandboxie, Sandboxie-plus 2 Sandboxie, Sandboxie 2026-01-14 8.4 High
Sandboxie-Plus 5.50.2 contains an unquoted service path vulnerability in the SbieSvc Windows service that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted binary path to inject malicious executables that will be run with LocalSystem privileges during service startup.
CVE-2022-50919 1 Tdarr 1 Tdarr 2026-01-14 9.8 Critical
Tdarr 2.00.15 contains an unauthenticated remote code execution vulnerability in its Help terminal that allows attackers to inject and chain arbitrary commands. Attackers can exploit the lack of input filtering by chaining commands like `--help; curl .py | python` to execute remote code without authentication.
CVE-2025-71134 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/page_alloc: change all pageblocks migrate type on coalescing When a page is freed it coalesces with a buddy into a higher order page while possible. When the buddy page migrate type differs, it is expected to be updated to match the one of the page being freed. However, only the first pageblock of the buddy page is updated, while the rest of the pageblocks are left unchanged. That causes warnings in later expand() and other code paths (like below), since an inconsistency between migration type of the list containing the page and the page-owned pageblocks migration types is introduced. [ 308.986589] ------------[ cut here ]------------ [ 308.987227] page type is 0, passed migratetype is 1 (nr=256) [ 308.987275] WARNING: CPU: 1 PID: 5224 at mm/page_alloc.c:812 expand+0x23c/0x270 [ 308.987293] Modules linked in: algif_hash(E) af_alg(E) nft_fib_inet(E) nft_fib_ipv4(E) nft_fib_ipv6(E) nft_fib(E) nft_reject_inet(E) nf_reject_ipv4(E) nf_reject_ipv6(E) nft_reject(E) nft_ct(E) nft_chain_nat(E) nf_nat(E) nf_conntrack(E) nf_defrag_ipv6(E) nf_defrag_ipv4(E) nf_tables(E) s390_trng(E) vfio_ccw(E) mdev(E) vfio_iommu_type1(E) vfio(E) sch_fq_codel(E) drm(E) i2c_core(E) drm_panel_orientation_quirks(E) loop(E) nfnetlink(E) vsock_loopback(E) vmw_vsock_virtio_transport_common(E) vsock(E) ctcm(E) fsm(E) diag288_wdt(E) watchdog(E) zfcp(E) scsi_transport_fc(E) ghash_s390(E) prng(E) aes_s390(E) des_generic(E) des_s390(E) libdes(E) sha3_512_s390(E) sha3_256_s390(E) sha_common(E) paes_s390(E) crypto_engine(E) pkey_cca(E) pkey_ep11(E) zcrypt(E) rng_core(E) pkey_pckmo(E) pkey(E) autofs4(E) [ 308.987439] Unloaded tainted modules: hmac_s390(E):2 [ 308.987650] CPU: 1 UID: 0 PID: 5224 Comm: mempig_verify Kdump: loaded Tainted: G E 6.18.0-gcc-bpf-debug #431 PREEMPT [ 308.987657] Tainted: [E]=UNSIGNED_MODULE [ 308.987661] Hardware name: IBM 3906 M04 704 (z/VM 7.3.0) [ 308.987666] Krnl PSW : 0404f00180000000 00000349976fa600 (expand+0x240/0x270) [ 308.987676] R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:3 PM:0 RI:0 EA:3 [ 308.987682] Krnl GPRS: 0000034980000004 0000000000000005 0000000000000030 000003499a0e6d88 [ 308.987688] 0000000000000005 0000034980000005 000002be803ac000 0000023efe6c8300 [ 308.987692] 0000000000000008 0000034998d57290 000002be00000100 0000023e00000008 [ 308.987696] 0000000000000000 0000000000000000 00000349976fa5fc 000002c99b1eb6f0 [ 308.987708] Krnl Code: 00000349976fa5f0: c020008a02f2 larl %r2,000003499883abd4 00000349976fa5f6: c0e5ffe3f4b5 brasl %r14,0000034997378f60 #00000349976fa5fc: af000000 mc 0,0 >00000349976fa600: a7f4ff4c brc 15,00000349976fa498 00000349976fa604: b9040026 lgr %r2,%r6 00000349976fa608: c0300088317f larl %r3,0000034998800906 00000349976fa60e: c0e5fffdb6e1 brasl %r14,00000349976b13d0 00000349976fa614: af000000 mc 0,0 [ 308.987734] Call Trace: [ 308.987738] [<00000349976fa600>] expand+0x240/0x270 [ 308.987744] ([<00000349976fa5fc>] expand+0x23c/0x270) [ 308.987749] [<00000349976ff95e>] rmqueue_bulk+0x71e/0x940 [ 308.987754] [<00000349976ffd7e>] __rmqueue_pcplist+0x1fe/0x2a0 [ 308.987759] [<0000034997700966>] rmqueue.isra.0+0xb46/0xf40 [ 308.987763] [<0000034997703ec8>] get_page_from_freelist+0x198/0x8d0 [ 308.987768] [<0000034997706fa8>] __alloc_frozen_pages_noprof+0x198/0x400 [ 308.987774] [<00000349977536f8>] alloc_pages_mpol+0xb8/0x220 [ 308.987781] [<0000034997753bf6>] folio_alloc_mpol_noprof+0x26/0xc0 [ 308.987786] [<0000034997753e4c>] vma_alloc_folio_noprof+0x6c/0xa0 [ 308.987791] [<0000034997775b22>] vma_alloc_anon_folio_pmd+0x42/0x240 [ 308.987799] [<000003499777bfea>] __do_huge_pmd_anonymous_page+0x3a/0x210 [ 308.987804] [<00000349976cb0 ---truncated---
CVE-2025-71130 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/i915/gem: Zero-initialize the eb.vma array in i915_gem_do_execbuffer Initialize the eb.vma array with values of 0 when the eb structure is first set up. In particular, this sets the eb->vma[i].vma pointers to NULL, simplifying cleanup and getting rid of the bug described below. During the execution of eb_lookup_vmas(), the eb->vma array is successively filled up with struct eb_vma objects. This process includes calling eb_add_vma(), which might fail; however, even in the event of failure, eb->vma[i].vma is set for the currently processed buffer. If eb_add_vma() fails, eb_lookup_vmas() returns with an error, which prompts a call to eb_release_vmas() to clean up the mess. Since eb_lookup_vmas() might fail during processing any (possibly not first) buffer, eb_release_vmas() checks whether a buffer's vma is NULL to know at what point did the lookup function fail. In eb_lookup_vmas(), eb->vma[i].vma is set to NULL if either the helper function eb_lookup_vma() or eb_validate_vma() fails. eb->vma[i+1].vma is set to NULL in case i915_gem_object_userptr_submit_init() fails; the current one needs to be cleaned up by eb_release_vmas() at this point, so the next one is set. If eb_add_vma() fails, neither the current nor the next vma is set to NULL, which is a source of a NULL deref bug described in the issue linked in the Closes tag. When entering eb_lookup_vmas(), the vma pointers are set to the slab poison value, instead of NULL. This doesn't matter for the actual lookup, since it gets overwritten anyway, however the eb_release_vmas() function only recognizes NULL as the stopping value, hence the pointers are being set to NULL as they go in case of intermediate failure. This patch changes the approach to filling them all with NULL at the start instead, rather than handling that manually during failure. (cherry picked from commit 08889b706d4f0b8d2352b7ca29c2d8df4d0787cd)
CVE-2025-71110 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/slub: reset KASAN tag in defer_free() before accessing freed memory When CONFIG_SLUB_TINY is enabled, kfree_nolock() calls kasan_slab_free() before defer_free(). On ARM64 with MTE (Memory Tagging Extension), kasan_slab_free() poisons the memory and changes the tag from the original (e.g., 0xf3) to a poison tag (0xfe). When defer_free() then tries to write to the freed object to build the deferred free list via llist_add(), the pointer still has the old tag, causing a tag mismatch and triggering a KASAN use-after-free report: BUG: KASAN: slab-use-after-free in defer_free+0x3c/0xbc mm/slub.c:6537 Write at addr f3f000000854f020 by task kworker/u8:6/983 Pointer tag: [f3], memory tag: [fe] Fix this by calling kasan_reset_tag() before accessing the freed memory. This is safe because defer_free() is part of the allocator itself and is expected to manipulate freed memory for bookkeeping purposes.
CVE-2025-71117 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: Remove queue freezing from several sysfs store callbacks Freezing the request queue from inside sysfs store callbacks may cause a deadlock in combination with the dm-multipath driver and the queue_if_no_path option. Additionally, freezing the request queue slows down system boot on systems where sysfs attributes are set synchronously. Fix this by removing the blk_mq_freeze_queue() / blk_mq_unfreeze_queue() calls from the store callbacks that do not strictly need these callbacks. Add the __data_racy annotation to request_queue.rq_timeout to suppress KCSAN data race reports about the rq_timeout reads. This patch may cause a small delay in applying the new settings. For all the attributes affected by this patch, I/O will complete correctly whether the old or the new value of the attribute is used. This patch affects the following sysfs attributes: * io_poll_delay * io_timeout * nomerges * read_ahead_kb * rq_affinity Here is an example of a deadlock triggered by running test srp/002 if this patch is not applied: task:multipathd Call Trace: <TASK> __schedule+0x8c1/0x1bf0 schedule+0xdd/0x270 schedule_preempt_disabled+0x1c/0x30 __mutex_lock+0xb89/0x1650 mutex_lock_nested+0x1f/0x30 dm_table_set_restrictions+0x823/0xdf0 __bind+0x166/0x590 dm_swap_table+0x2a7/0x490 do_resume+0x1b1/0x610 dev_suspend+0x55/0x1a0 ctl_ioctl+0x3a5/0x7e0 dm_ctl_ioctl+0x12/0x20 __x64_sys_ioctl+0x127/0x1a0 x64_sys_call+0xe2b/0x17d0 do_syscall_64+0x96/0x3a0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> task:(udev-worker) Call Trace: <TASK> __schedule+0x8c1/0x1bf0 schedule+0xdd/0x270 blk_mq_freeze_queue_wait+0xf2/0x140 blk_mq_freeze_queue_nomemsave+0x23/0x30 queue_ra_store+0x14e/0x290 queue_attr_store+0x23e/0x2c0 sysfs_kf_write+0xde/0x140 kernfs_fop_write_iter+0x3b2/0x630 vfs_write+0x4fd/0x1390 ksys_write+0xfd/0x230 __x64_sys_write+0x76/0xc0 x64_sys_call+0x276/0x17d0 do_syscall_64+0x96/0x3a0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK>
CVE-2025-71103 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm: adreno: fix deferencing ifpc_reglist when not declared On plaforms with an a7xx GPU not supporting IFPC, the ifpc_reglist if still deferenced in a7xx_patch_pwrup_reglist() which causes a kernel crash: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 ... pc : a6xx_hw_init+0x155c/0x1e4c [msm] lr : a6xx_hw_init+0x9a8/0x1e4c [msm] ... Call trace: a6xx_hw_init+0x155c/0x1e4c [msm] (P) msm_gpu_hw_init+0x58/0x88 [msm] adreno_load_gpu+0x94/0x1fc [msm] msm_open+0xe4/0xf4 [msm] drm_file_alloc+0x1a0/0x2e4 [drm] drm_client_init+0x7c/0x104 [drm] drm_fbdev_client_setup+0x94/0xcf0 [drm_client_lib] drm_client_setup+0xb4/0xd8 [drm_client_lib] msm_drm_kms_post_init+0x2c/0x3c [msm] msm_drm_init+0x1a4/0x228 [msm] msm_drm_bind+0x30/0x3c [msm] ... Check the validity of ifpc_reglist before deferencing the table to setup the register values. Patchwork: https://patchwork.freedesktop.org/patch/688944/
CVE-2025-71129 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: LoongArch: BPF: Sign extend kfunc call arguments The kfunc calls are native calls so they should follow LoongArch calling conventions. Sign extend its arguments properly to avoid kernel panic. This is done by adding a new emit_abi_ext() helper. The emit_abi_ext() helper performs extension in place meaning a value already store in the target register (Note: this is different from the existing sign_extend() helper and thus we can't reuse it).
CVE-2025-71135 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md/raid5: fix possible null-pointer dereferences in raid5_store_group_thread_cnt() The variable mddev->private is first assigned to conf and then checked: conf = mddev->private; if (!conf) ... If conf is NULL, then mddev->private is also NULL. In this case, null-pointer dereferences can occur when calling raid5_quiesce(): raid5_quiesce(mddev, true); raid5_quiesce(mddev, false); since mddev->private is assigned to conf again in raid5_quiesce(), and conf is dereferenced in several places, for example: conf->quiesce = 0; wake_up(&conf->wait_for_quiescent); To fix this issue, the function should unlock mddev and return before invoking raid5_quiesce() when conf is NULL, following the existing pattern in raid5_change_consistency_policy().
CVE-2025-71138 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Add missing NULL pointer check for pingpong interface It is checked almost always in dpu_encoder_phys_wb_setup_ctl(), but in a single place the check is missing. Also use convenient locals instead of phys_enc->* where available. Patchwork: https://patchwork.freedesktop.org/patch/693860/
CVE-2022-50915 1 Primera 1 Ptpublisher 2026-01-14 8.4 High
PTPublisher 2.3.4 contains an unquoted service path vulnerability in the PTProtect service that allows local attackers to potentially execute arbitrary code with elevated privileges. Attackers can exploit the unquoted path in 'C:\Program Files (x86)\Primera Technology\PTPublisher\UsbFlashDongleService.exe' to inject malicious executables and gain system-level access.
CVE-2022-50918 1 Vive 1 Runtime Service 2026-01-14 8.4 High
VIVE Runtime Service 1.0.0.4 contains an unquoted service path vulnerability that allows local users to execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted binary path by placing malicious executables in specific system directories to gain LocalSystem access during service startup.